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Abstract

Background: In natural cat populations, Feline Immunodeficiency Virus (FIV) is transmitted through bites between
individuals. Factors such as the density of cats within the population or the sex-ratio can have potentially strong effects on
the frequency of fight between individuals and hence appear as important population risk factors for FIV.

Methodology/Principal Findings: To study such population risk factors, we present data on FIV prevalence in 15 cat
populations in northeastern France. We investigate five key social factors of cat populations; the density of cats, the sex-
ratio, the number of males and the mean age of males and females within the population. We overcome the problem of
dependence in the infective status data using sexually-structured dynamic stochastic models. Only the age of males and
females had an effect (p = 0.043 and p = 0.02, respectively) on the male-to-female transmission rate. Due to multiple tests, it
is even likely that these effects are, in reality, not significant. Finally we show that, in our study area, the data can be
explained by a very simple model that does not invoke any risk factor.

Conclusion: Our conclusion is that, in host-parasite systems in general, fluctuations due to stochasticity in the transmission
process are naturally very large and may alone explain a larger part of the variability in observed disease prevalence
between populations than previously expected. Finally, we determined confidence intervals for the simple model
parameters that can be used to further aid in management of the disease.
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Introduction

Feline Immunodeficiency Virus (FIV) infects numerous feline

species worldwide [1]. This Lentivirus from Retroviridae family is closely

related to Human Immunodeficiency Virus (HIV) and Simian

Immunodeficiency Virus (SIV) [2]. This is a virus of major importance

because it is lethal to the domestic cat (Felis silvestris catus) and can affect

several other cat species, most of which are threatened or endangered

e.g., the European wildcat F. s. silvestris in Europe [3–5]. There is thus

a need to better understand the risk factors affecting the spread and

patterns of persistence of FIV in natural populations of domestic cats.

In natural domestic cat populations, FIV is mainly transmitted

through bites arising from aggressive or sexual contacts [3,6–10].

As a consequence, the spread of FIV in domestic cat populations is

highly influenced by the mating system; a higher FIV prevalence is

observed in aggressive and polygynous cat populations that involve

more fights and bites than in much less aggressive and

promiscuous urban ones [8,9], where FIV can be absent [11].

Basically, factors affecting cats’aggressiveness can be divided

into two categories. At the individual level, some cats are more

aggressive than others. Typically, this is the case for dominant

males [8,9] or orange cats [12]. In the field, they are generally

more often infected than subordinates, females or other colour

morphs [8,12,13]. At the population level, the overall aggres-

siveness of cats largely depends on the population social structure.

A male-biased sex-ratio may make the entire population more

aggressive, making virus transmission more efficient and, thus, lead

to higher disease prevalence.

Until now, to our knowledge, all studies of FIV risk factors have

focused on individual risk factors. Factors that may increase the

overall virus transmission rate are at least as important for

controlling the disease spread but, paradoxically, have been largely

overlooked until now. Here, we investigate how some character-

istics of cat populations, such as cat density or sex-ratio, e.g., as

indicators for aggressiveness in contacts within the population,

may act as population risk factors that increase or decrease the

virus prevalence within populations.

Understanding the factors that may increase the FIV transmis-

sion rate within populations requires the sampling of a set of

neighboring cat populations (which, until now, has rarely been
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done), and then examination of how FIV prevalence correlates

with the suspected risk factors. For that purpose, we sampled 15

cat populations in North-Eastern France and measured, within

each population, FIV prevalence in males and females. We found

significant variability in disease prevalence between populations,

especially in males. We also measured five social indicators in

order to measure how they correlated with FIV prevalence.

Commonly, risk factors are analyzed with logistic regression

models. However, these models are built on the assumption that

individuals become infected independently of each other; a

hypothesis that contradicts the fundamental communicable nature

of infectious diseases [1,14,15]. Moreover, as described below,

assumptions of independence lead to underestimate the variability

in disease prevalence between populations that would be observed

in the absence of risk factors.

Our method is inspired by previous works based on the

comparison of stochastic dynamic models of the disease spread

within host populations to the data [14,16–20]. The idea is that

each combination of population risk factors leads to a different

model. Our objective is to determine the model (i.e. the

combination of risk factors) that best fits the data. Beyond the

simple analysis of the risk factors associated with FIV, this work

aims to understand why the variability observed in our disease

prevalence data is so large - data on disease prevalence in males

exhibited significant extra-Binomial variations. Can we isolate

population risk factors that would explain particularly high disease

prevalence in some populations? Does the spatial aggregation of

populations with high virus prevalence help to explain the

variability in disease prevalence? Or, in contrast, is the large

variability observed in disease prevalence a natural consequence of

the transmissible nature of the virus?

The work presented here supports this last hypothesis: random

fluctuations in the transmission process lead to much greater

variation in disease prevalence than with a simple Binomial

distribution, underlying classical risk factor analyses. So the

simplest model describes well the data and explains the large

variability observed in disease prevalence between cat populations

without invoking any risk factor. Finally, we determine confidence

intervals for the model parameters. The model is very simple,

explains the data well, and hence constitutes an interesting tool for

further understanding and control of the spread of FIV in these cat

populations. The approach developed here can easily extend to

many host-parasite interactions.

Materials and Methods

1. Data set
The field work has been made by qualified people according to

current French legislation. Accreditation has been granted to the

UMR-CNRS 5558 (accreditation number 692660703) for the

program.

Fifteen spatially separated rural cat populations were sampled

during 2007 in North-Eastern France near the city of Nancy

(Fig. 1, black rectangles). The distance separating neighboring cat

Figure 1. The study area. We identified three metapopulations (grey areas). Studied cat populations are represented with black rectangles and
solid arrows represent the suspected interactions between the studied populations. Some unstudied populations may interact with the studied ones
(dashed arrows) and are represented by white rectangles.
doi:10.1371/journal.pone.0007377.g001
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populations varied from 1.2 to 4 km. The study zone covers a

territory of approximately 250 km2. In order to delimit the study

area, we considered the geographical characteristics that might

limit movements between the studied cat populations and

those outside of the studied area. The spatial organisation of

geographical barriers suggests that the populations may be

organized into three distinct metapopulations, with rare contacts

between cats of different metapopulations (Fig. 1, grey areas). At a

finer scale, behavioral observations reveal that males can disperse

between populations along roads. By adopting a basic assumption

that populations are considered connected when they are not too

distant from each other (i.e. less than 2 km) and are connected by

roads, we propose a connection network between the different

populations (see Fig. 1, solid arrows).

Unfortunately, it was not possible to establish a fully isolated

perimeter (at least in relation to spread of FIV), so some

populations of the study area are in fact connected to unstudied

populations (Fig. 1, white rectangles - the connections to the study

populations are represented by dashed arrows). In particular,

Saulxure-Les-Vannes is connected to several study populations.

However, it was not considered for sampling because of potential

bias due to a cat culling programme there. The village of

Sepvigny, which is connected to Champougny, could not be

sampled for technical reasons.

Most of the cats were captured using baited traps; others being

caught directly in their owner’s houses. Upon capture, cats were

anaesthetized with an intramuscular injection of ketamin chlorhy-

drate (Immalgène 1000 15 mg/kg, Rhône-Mérieux) and acepro-

mazin (Vétranquil 5.5% 0.5 mg/kg, Sanofi). They were marked

permanently using an electronic passive integrative transponder

(pig-tag) to allow all individuals to be identified in case of

recapture. For each cat, we have recorded, among other data,

information on sex, age and serological status in relation to FIV.

Blood samples were taken from the jugular vein and the cats were

then released. The ELISA method (SNAP Combo +, Idexx) was

used to detect the presence of FIV-specific antibodies, which

generally identifies virus carriers [6]. All positive sera for FIV were

confirmed by Western blot analysis [21]. FIV was scored as

present or absent for each sampled cat.

2. Statistical analysis
2.1 General approach. The approach we use here is very

similar to the classical approach based on multifactorial logistic

regression, which consists of:

– Step 1: Choice of a model H0 against which the data is compared. In the

case of the classical logistic regression approach, it is assumed

that all individuals have a same probability p to be infected,

independently of the other individuals’ status. As a

result, under model H0 the distribution of the number of

infected cases in the population follows a binomial distribution

of parameter p and N, where N is the number of individuals of

the population.

– Step 2: Some of the model parameters are expected to depend on risk factors.

Choosing p as a function of risk factors means that each

individual has its own probability of being infected (depending

on its characteristics in terms of risk factors). It is classically

assumed that the logit of p is a linear function of the different

risk factors: logit(p) = a0+gaiXi, where Xi denotes the i-th risk

factor value for the individual.

– Step 3: Model selection process. Different models are defined by

setting some coefficients (ai) to 0. Hence, the probability of

being infected only depends on the risk factors which associated

coefficients are non-zero. The different models are compared

(usually using an Akaı̈ke Information Criterium, AIC) to

determine which model best describes the data.

Note that there are two equivalent ways of presenting the

classical approach. Firstly, the expected proportion of infected

captured individuals is taken as a function of risk factors plus a

random term based on a centered binomial distribution. Secondly,

the probability that each captured individual is infected is taken

as a function of risk factors, with random fluctuations in expected

proportions naturally arising from these probabilities. Here, we

present the second format because it allows us to easily illustrate

how our approach is, in fact, a natural extension of the classical

one.

The main difference between our approach and the classical

one comes from the model used to describe the data. It is quite

obvious that for transmissible diseases the probability of one

individual being infected is not independent of the infection

status of the other individuals [1,14,15]. Here we consider the

probability of individuals becoming infected as the result of a

dynamic process of between-host virus transmission (described in

the next section). These types of models are widely recognized as

common tools for representing infectious disease data.

We also make some minor changes to steps 2 and 3. In step 2,

the logit function is chosen in the classical approach mainly

because the model parameter p is bounded by 0 and 1. Since, as

described below, our model parameters are not bounded by 1, we

have no reason to consider their logit value. Lastly, in step 3 for

model comparison we use likelihood ratio tests (LRT) rather than

AIC. LRTs are chosen to test one particular assumption, which is

here whether the simplest model, i.e. where no model parameter

depends on risk factors, is sufficient to describe the data.

2.2. The dynamic epidemiological model – Model H0. The

aim of this framework is to study population risk factors, i.e. factors

that affect the rate at which the virus is transmitted within the

population. Individual risk factors, i.e. factors that make some

individuals more prone to infection than others in the same

population, are not studied here.

Our mathematical model extends the classical Susceptible-

Infected (SI) model (Fig. 2). We assume that all individuals of each

population are equivalent, apart from their sex, the effect of sex on

FIV transmission being too significant to be ignored. Indeed, of

the 250 males captured in the study, 58 were seropositive (23.2%)

compared to 22 of 249 (8.8%) females, which is highly significant

(x2 = 13.80, 1 df, p,1024). Moreover, males and females play

different roles in the transmission of FIV [8,12]. Since females

rarely bite, they can be considered as non-transmitting of the virus.

The sexual structure of the model is simply represented by splitting

classes S and I into two sub-classes, one for each sex.

The age of individuals is not considered in our model, even

though it may affect their behavior and, thus, their risk of

becoming infected [3,8,13]. Moreover, due to long FIV infection

duration, an accumulation of infected cases develops in older age

cohorts. To represent the effects of age in a simplified way, we

assume that the mean age of cats in the population may act as a

risk factor for FIV transmission. This is justified since, here, we

mainly focus on the global prevalence of FIV within populations

without reference to the age-distribution of infections.

We assume a proportionate mixing law for the incidence

function of FIV between males, which is more appropriate in

social species [22,23]. Transmission between males of the same

population occurs at a rate bM/M, where M is the total number of

males in the population, and susceptible females are infected by

infected males from their population at a rate bF/M. The

constants bM and bF are proportional to the rate at which males

FIV Population Risk Factors
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are involved in fights and to the rate at which females mate,

respectively. We assume constant numbers of males (M) and

females (F) within each population, whereby dead cats are

instantaneously replaced by newborn cats. Since vertical trans-

mission is very unlikely in the field [7,24–26], all newborns are

classified as susceptible to infection. Infected cats die at a rate a.

Susceptible cats also die, but since they are instantaneously

replaced by susceptible (and thus equivalent) newborn cats, their

death is not explicitly modeled.

For the sake of simplicity, we assume that populations are not

explicitly connected, such that the numbers of infected cats in the

different populations are independent random variables. To avoid

the definitive extinction of the virus from the populations we

assume regular infections from an external source, e.g. another

population. Males and females are infected from external sources

at a rate eM/M and eF/F, respectively. The rates eM and eF are

termed the external transmission rates.

The model is based on a continuous-time Markov process. Since

we consider independent populations and constant numbers of

males and females, the following set of (M+1)(F+1) ordinary

differential equations describes the model (see [27] for an example

of demonstration of differential equations representing continuous-

time Markovian processes).

For 0#m#M and 0#f#F we have:

dpm,f (t)

dt

~{
bMm(M{m)zeM (M{m)

M
z

bF m

M
z

eF

F

� �
(F{f )zamzaf

� �
pm, f (t)

z
bM (m{1)(M{mz1)zeM (M{mz1)

M
pm{1, f (t)

z
bF m

M
z

eF

F

� �
(F{f z1)pm, f {1(t)za(mz1)pmz1, f (t)za(f z1)pm, f z1(t)

where pm, f(t) is the probability of having exactly m infected males

and f infected females in the population at a time t (IM = m and

IF = f ). We fix pm, f ;0 if m = 21, m = M+1, f = 21 or f = F+1.

In this model, the spread of FIV in males is independent of the

number of infected females. As a result, the probability of finding

exactly m infected males in the population (given by pm~
PF

f ~0

pm, f )

is independent of the female transmission rates (bF and eF) and

hence of the proportion of infected females in the population. The

distribution of the number of infected males given by the model

can also be compared with male infection prevalence data,

independently of female infection prevalence. We define this

model as the ‘‘male transmission model’’. It is equivalent to a

classical SI model [28].

2.3. Influence of risk factors on the model parameters –

Models H1. As discussed earlier, our purpose here is to measure

the influence of some factors on the rate at which the virus spreads

within or between populations. Two types of risk factors are tested

here. The first ones concern the impact of demographic

parameters (such as the number of cats within the population)

on the virus transmission rate between cats of the same population.

The second ones are not really risk factors. Behavioral

observations suggest networks of connectivity between the

different populations. The objective is to estimate whether

introducing this information on the probability of disease

reintroductions within populations produces significant predictive

improvements, compared to models where external reintroduction

rates are simply constants.

Firstly, we try to improve the goodness-of-fit of the observed

data by assuming that both within-population transmission rates

bM and bF depend on the demographic characteristics of the

cat population:

bM~b0
MzbSR

M SRobszbN
MNobszbM

MMobszbAF
M AFobszbAM

M AMobs

bF~b0
F zbSR

F SRobszbN
F NobszbM

F MobszbAF
F AFobszbAM

F AMobs

where SRobs, Nobs, Mobs, AFobs and AMobs are the observed values

for the sex-ratio, the population size, the number of males in the

population (Mobs = SRobsNobs) and the mean age of captured males

and females, respectively; considering these characteristics is

intuitive since all of them may affect the social structure of the

population and, hence, the transmission rates of FIV. b0
M , bSR

M ,

bN
M , bM

M , bAF
M , bAM

M , b0
F , bSR

F , bN
F , bM

F , bAF
F and bAM

F are the (linear)

parameters that quantify the effects of these five demographic

characteristics on the transmission rates bM and bF. Note that, a

priori, the coefficients can have negative values and hence predict

negative transmission rates. We fix a minimum value (1024) below

which bM and bF cannot fall since negative transmission rates are

Figure 2. Compartmental representation of the model. The
model includes both males (susceptible, SM or infected, IM) and females
(susceptible, SF or infected, IF). Dashed arrows illustrate the fact that
infected males are responsible for FIV transmission to both susceptible
males and females.
doi:10.1371/journal.pone.0007377.g002
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not allowed in the model. For the sake of simplicity, we assume

that the external transmission rates eM and eF are not affected by

the risk factors presented above.

We define as H0 the model where bM~b0
M and bF ~b0

F , the

four model parameters (b0
M , b0

F , eM and eF ) being positive. As a

general definition, models involving other parameters are called

H(l), where l denotes the set of free (non-zero) parameters in the

model that are notb0
M , b0

F , eM and eF .

Then we investigate the possibility that, all other parameters being

equal, the external transmission rates (eM and eF) may differ between

cat populations due to their spatial organization. Indeed,

behavioral observations suggest a network of contacts between the

different populations (see Fig. 1, solid arrows), which can be

simplified by dividing the study area into three distinct metapopu-

lations (see Fig. 1, grey areas). Since we do not model spatial

structure explicitly, we assume that connectivity between populations

affects external transmission rate. We define the resulting ‘‘neigh-

boring’’ models and ‘‘metapopulation’’ models as follows.

A potential neighboring network has been suggested by

behavioral observations (see Fig. 1). Intuitively, when there is a

high FIV prevalence in males in neighboring populations, the

external transmission rate of FIV should be higher. For this reason,

we propose that the external transmission rate of FIV within a

population could be considered as an affine function of the number

of infected males in the neighboring populations (I
neigh
obs ):

eM~e0
Mzeneigh

M I
neigh
obs

eF ~e0
F zeneigh

F I
neigh
obs

We refer to this model as the ‘‘neighboring model’’ Hneigh(l), where

l denotes the set of free parameters in the model (in addition to

b0
M , b0

F , e0
M and e0

F that are always freely variable).

The metapopulation model considers that viral exchange is more

intense between populations from the same metapopulation than

between populations from different metapopulations. A simple way

to test this hypothesis is to assume that populations belonging to the

same metapopulation have the same external transmission rate, and

that this external transmission rate differs between populations from

different metapopulations. We define the ‘‘male metapopulation

model’’ HM
meta lð Þ, where ei

M represents the value of eM in

metapopulation i, and l denotes the set of free parameters in the

model (in addition to to b0
M , b0

F , e1
M , e2

M and e3
M that are always

freely variable). Note that in this model the only parameter that

differs between cat populations is eM , which varies among

metapopulations (e1
M , e2

M , e3
M depending on the metapopulation).

Finally, we also define the ‘‘female metapopulation model’’

HF
meta lð Þ, which is strictly equivalent to HM

meta lð Þ, except that it

pertains to female external transmission rates.

2.4. Comparing models to data. Models cannot be directly

compared with data because they predict distributions for the

total number of infected and susceptible males and females in the

population, whereas data are just samples of the real total

numbers, i.e. the probability of capture is strictly below 1. To

simplify, we assume that the total number of males and females in

the populations are proportional to their observed values, i.e.

M = Mcapt(1+pNC) and F = Fcapt(1+pNC), where pNC is a constant

(1/(1+pNC) is the proportion of captured cats) and M and F are the

real numbers of males and females within the population,

respectively. Based on the ratio between the number of cats

captured through baited traps and the number of cats observed

through intense monitoring in each population, we estimate that

pNC is equal to 0.3 in average.

We assume that FIV is present in this area for a long period of

time, corresponding to the stationary state of the distribution. So

data are compared to this state. Note that the fact that the

distribution is stationary does not mean that the population is at

the equilibrium (i.e. endemic state), but only that epidemic,

endemic and extinction events may succeed, and this being

considered a population has a time-independent probability of

being in each of its possible states.

Stationary distributions of the model, i.e. probabilities of finding

exactly m infected males (for all 0ƒmƒM ) and f infected females (for

all 0ƒf ƒF ) in the population, generate a distribution of possible

outcomes d0 for the total number of cats. To incorporate the fact that

data are missing for non-captured individuals, we add a hypergeo-

metric sampling element to the distribution d0 (in other words data

are the result of a random sampling of the entire population). This

leads to the distribution d to which data can be compared [29]:

d m,fð Þ~
X

mƒiƒM
f ƒjƒF

d0 i,jð ÞHM,Mobs,i mð ÞHF ,Fobs,j fð Þ

where Hx,y,z is the hyper-geometric law of integer parameters x, y and

z, which is defined when max(y,z) #x for all integers t satisfying

t #min(x,y) and z2t #x2y by:

Hx,y,z tð Þ~

y

t

� �
x{y

z{t

� �

x

z

� �

The distribution d is then equal to the distribution d0 after

sampling a proportion 1/(1+pNC) of the population. In other words,

d0 is the asymptotic distribution of the number of infected males and

females, after sampling a proportion 1/(1+pNC) of the population.
2.5. Model selection. Each of the models presented above

can be summarized by the set of parameters that may vary freely –

other parameters being fixed. Let us consider a model H. For each

value h of the free parameters in the freely variable parameter

space H (h is a vector of the values of all the free parameters), we

can calculate for each population k the probability of generating

the number of infected males and females actually observed. We

call it Lk(h|Dk), where Dk represents the data restricted to

population k; Dk is defined by the number of infected males and

females in population k.

Since we assumed that populations are independent, we can

easily calculate the likelihood of the data D with the model H:

L h Djð Þ~P
15

k~1

Lk h Dj k

� �

Now, if we consider two models H1 and H2, the two models are

compared using the maximum likelihood ratio statistics defined by:

{2log
max h1[H1f g L1 h Djð Þ

� �
max h2[H2f g L2 h Djð Þf g

We use the classical approximation that, under regularity

conditions, the likelihood ratio follows a x-square distribution with

FIV Population Risk Factors
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r degrees of freedom, where r is the difference in the number of

free parameters between models H2 and H1.

2.6. Determining confidence intervals for the para-

meters. Another important objective of mathematical

modeling is to calibrate the selected model, i.e. the model

selected from the previously described process (see Section 2.4

above) by determining confidence intervals for its parameters. We

consider a model H with a given set of freely varying parameters

that defines a vector (h); i.e. each component of h is a parameter of

the model. Within each population, the model predicts a

distribution for the number of infected cats (male or female).

Each possible model outcome (defined as a vector of 30 integers

representing the number of infected males and females within each

of the 15 populations) has a probability of occurrence. What we

want to determine is the values h of the free parameters for which

the observed data is a plausible outcome of the model. We accept

that the data is a plausible outcome of the model when its

likelihood is within the range of likelihood values of typical model

outcomes, as described below.

For each vector h, we determine the threshold L0.05(h) such that

95% of the model outcomes have a likelihood value larger than

L0.05(h). We now look at the likelihood of the observed data under

the model parameters, defined above as L(h|D). Again we explore

the parameter space. The confidence region HC can be defined as

HC = {hMH / L(h|D).L0.05(h)}. Thus, for HC the observed data is

a likely model outcome. Since the model often has several free

parameters, then the 95% confidence interval is, in fact, a region

of the multi-dimensional parameter space of the free parameters

(H). For that reason we use the term ‘‘confidence region’’ rather

than ‘‘confidence interval’’.

Finally, note that in the models the only parameter value we fix

a priori is the mortality rate of FIV infected individuals (a). Since the

model is analyzed at equilibrium, changing the mortality rate of

infected individuals only results in a change in time scale. To

remain consistent with cat-FIV interaction characteristics, we fix

a = 0.0208 month21, so that infected cats have a 4-year life

expectancy [8]. The model time unit is the month.

2.7. Computational procedure. Computationnal procedures

are performed with Matlab. Stationary distributions of FIV

prevalence in males and females are obtained by resolving the

linear system corresponding to dpm,f/dt = 0. Maximum of the

likelihood function are computed using a conjugate gradient

method.

Results

1. Description of the data
The cat number, sex-ratio, mean age of the males and females

and percentage of FIV positive males and females captured in

each population are given in Table 1.

A total of 499 cats were sampled and tested for FIV in the 15

populations. There was large variability in the number of cats

sampled due to large differences in population sizes, ranging from

13 cats in Clerey-la-Côte to 71 in Sauvigny. The overall sex-ratio

is close to 50% but with differences between populations, although

it does not differ statistically from a 50:50 binomial distribution

(x2 = 17.21, 15 df, p = 0.31). However, in Ruppes the sex-ratio is

rather high (0.79) and this value significantly differs from 0.5 when

applying a Bonferroni correction for multiple tests (p,0.05).

For each captured cat, we estimated its age following Pascal and

Castanet [30], and then the mean age of males and females in

each population. For the entire study area the mean age is 3.08

years for males and 3.55 years for females; ranging from 1.54 years

in Champougny to 5.25 years in Jubainville for males and from

2.32 years in Ruppes to 5.60 years in Barisey-la-Côte for females.

It is also interesting to note that there is a strong correlation

between the mean age of males and females in the studied

populations (r = 0.85).

Finally, as previously documented, the global prevalence of FIV

differs greatly between sexes (23% in males compared to 9% in

females), with an average FIV prevalence in the entire study area

of approximately 16%. There is significant variability in FIV

prevalence between populations, especially in males, where data

show significant extra-Binomial dispersion (Fisher’s exact test with

Table 1. Total number of sampled cats, adult sex-ratio, number of FIV seropositive individuals (FIV+) and mean age of captured
males and females in each population.

Population Cats sampled No. Males (sex ratio) FIV+ males FIV+ females FIV+ total Mean age of males Mean age of females

Allamps (All) 28 12 (0.43) 4 (0.33) 1 (0.06) 5 (0.18) 3.79 4.46

Barisey-au-Plain (BaP) 24 10 (0.42) 2 (0.20) 1 (0.07) 3 (0.13) 4.75 4.57

Barisey-la-Côte (BlC) 34 16 (0.47) 5 (0.31) 0 (0) 5 (0.15) 3.85 5.60

Brixey-aux-Chanoines (BaC) 15 10 (0.67) 3 (0.30) 1 (0.20) 4 (0.27) 2.56 3.08

Champougny (Cha) 26 15 (0.58) 5 (0.33) 2 (0.18) 7 (0.27) 1.54 2.33

Clerey-la-Côte (ClC) 13 7 (0.54) 1 (0.14) 1 (0.17) 2 (0.15) 2.69 3.06

Jubanville (Jub) 50 26 (0.52) 0 (0) 1 (0.04) 1 (0.02) 5.25 5.42

Maxey-sur-Meuse (MsM) 29 16 (0.55) 1 (0.06) 0 (0) 1 (0.03) 2.31 3.05

Mont-l’Etroit (MoE) 19 10 (0.53) 0 (0) 0 (0) 0 (0) 2.40 2.37

Pagny-la-Blanche-Côte (PBC) 61 27 (0.44) 4 (0.15) 2 (0.06) 6 (0.10) 2.17 2.83

Punerot (Pun) 42 19 (0.45) 8 (0.42) 3 (0.13) 11 (0.26) 2.11 2.79

Ruppes (Rup) 29 23 (0.79) 6 (0.26) 2 (0.33) 8 (0.28) 2.95 2.32

Sauvigny (Sau) 71 34 (0.48) 11 (0.32) 4 (0.11) 15 (0.21) 3.36 3.21

Traveron (Tra) 22 11 (0.50) 2 (0.18) 3 (0.27) 5 (0.23) 2.84 3.72

Vaunes-le-Chatel (VlC) 36 14 (0.39) 6 (0.43) 1 (0.05) 7 (0.19) 3.56 4.38

Total 499 250 (0.50) 58 (0.23) 22 (0.09) 80 (0.16) 3.08 3.55

doi:10.1371/journal.pone.0007377.t001
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simulated p-value: p<0.006). In contrast, the variability in FIV

prevalence in females observed between populations is in

agreement with the expectations of a binomial distribution

(Fisher’s exact test with simulated p-value, p<0.183).

2. Qualitative analysis of FIV-prevalence and persistence
with the dynamical model

Here we perform a rapid analysis of the mathematical model,

this type of model having been studied in more detail elsewhere

[28,31]. For the sake of simplicity, we focus on the real distribution

of FIV prevalence in males (the results are thus independent of bF,

F and eF); we assume pNC = 0, i.e. all individuals of the population

have been sampled.

First, we look at the distribution of FIV prevalence in males for

arbitrarily fixed values of the parameters: bM = 0.025, M = 50 and

eM = 0.01 (Fig. 3a, solid line). For clarity, we plot the distribution of

FIV prevalence as a continuous line, although the distribution is

discrete. The probability of finding no infected cats in the

population is high (17%). The mean prevalence of FIV is 12.66%

and in 95% of the model outcomes the FIV prevalence ranges

between 0 and 32%. This predicted distribution of FIV prevalence

in males differs from a binomial one (a distribution frequently used

in risk factor analysis, [8,9]) having the same mean (Fig. 3a, dashed

line). For a binomial distribution, the probability of finding no

infected individuals in the population is much smaller (0.1%) and

the confidence interval for FIV prevalence is [0.01; 0.20].

In Fig. 3b we analyze the effect of the external transmission rate

on the mean and standard deviation of FIV prevalence in males.

We focus on the distribution conditioned to non-extinction and, in

parallel, we plot the probability of FIV extinction from the

population (dashed line, right axis). Unsurprisingly, the probability

of FIV extinction decreases with increasing external transmission

rate (eM). More interestingly, below a given threshold (here

eM = 1023) the distribution of FIV prevalence is not affected by eM,

meaning that infrequent infections of FIV from external sources

have almost no effect on FIV transmission within already infected

populations. Under these circumstances, external infections only

affect the frequency of extinction of the virus. Above the threshold,

the mean prevalence of FIV increases with eM. Thus, external

infections are an important component of FIV transmission, even

within already infected populations.

This result may have important implications. For example, in

our data only two of the 15 populations have no infected males.

This indicates that the external transmission rates of FIV within

our populations must be large enough such that there are infected

males in at least 13 out of the 15 populations. Under such external

transmission rates, is the spread of FIV within already infected

populations affected by external infections or is external infection

only important for the long-term persistence of the virus? This

question will be addressed later when we provide estimates for the

parameters.

3. Analysis of the observed data using the dynamic
model

3.1. Effect of demographic risk factors. Now we consider

the full model, including both males and females, and compare

how integrating the different risk factors increases the goodness-of-

fit to our observations using likelihood ratio tests. We performed

the data analysis with each of the following values for the

proportion of non-captured cats (pNC): 0.15, 0.30 and 0.45. Since

the results obtained from these three values are very similar, we

only show those obtained for pNC = 0.30. It is important to note

that from now on, likelihoods are calculated with the distributions

of FIV prevalence in males and females, without removing the

cases of extinction (i.e. we use the distribution d). The probability of

observing zero infected individuals is an important characteristic

of the models, and removing extinction cases would lead to lose

very important information, especially relating to the external

virus transmission rate.

To start with, we look at the impact of the population

characteristics (the sex-ratio in captured cats SRobs; the estimated

population size, i.e. the number of captured cats Nobs; the number of

captured males in the cat population Mobs = SRobs Nobs; and the mean

age of captured males and females, AMobs and AFobs, respectively).

Results are summarized in Table 2. The only significant effect we

found is associated with the effect of mean age of males (x2 = 4.09, 1

df, p = 0.043) and females (x2 = 5.335, 1 df, p = 0.02) on the male-to-

female transmission rate (bAM
F and bAF

F , respectively).

Figure 3. Results of the model. Parameter values: bM = 0.025 and M = 50. (a) Distribution of FIV prevalence in males (solid line, eM = 0.01). A
binomial distribution having the same mean is also represented (dashed line) and (b) the effect of the male external transmission rate (eM) on mean
FIV prevalence conditioned to non-extinction (solid line, left axis, the grey area represents the standard deviation of FIV prevalence) and on the
probability of FIV extinction (dashed line, right axis).
doi:10.1371/journal.pone.0007377.g003
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Interestingly, there is a negative correlation between the

mean ages of males and females and FIV prevalence (bAF
F ~

{1:14x10{2for model H bAF
F

� �
and bAM

F ~{5:30x10{2 for

model H bAF
F

� �
).

This means that the effect of age on FIV prevalence observed

here is not due to the accumulation of FIV cases with age. The p

values are rather large (p = 0.02 and p = 0.043), especially

considering the large number of tests performed. Unfortunately,

we cannot apply a simple Bonferroni correction for multiple tests

because of dependence among the different tests performed. Due

to the strong correlation between the mean age of males and

females, it is not surprising that both variables have the same

significant effect on the male-to-female transmission rate. It seems

more likely that only one of the two variables has a real biological

effect, the effect of the other one being due to correlation. Due to

the strong correlation between the two variables, we cannot rule

out a role for mean age of males on the male-to-female

transmission rate.

3.2. Integrating the suggested spatial structures does not

improve the model predictions. Now we compare the model

H0 with models where the external transmission rates are assumed

to be different within each of the three cat metapopulations (HM
meta

and HF
meta, respectively) or where the external transmission rates

of FIV in males and females are proportional to the prevalence

of FIV in neighboring populations (models Hneigh eneigh
M

	 

and

Hneigh eneigh
F

	 

, respectively). Under these circumstances, we find

no significant improvement in the models compared to H0 (see

Table 2).

In summary, we found two potential risk factors for FIV: the

mean ages of males and females that influence the FIV prevalence

in females. These two factors are certainly linked because a large

correlation exists between the two variables. Yet, considering the

number of tests we performed and the relatively high p values we

obtained, we cannot exclude the possibility that the simplest model

H0 alone explains the data. We found no risk factor for FIV spread

between males. The maximum likelihood estimation of the

parameters is bM = 2.7161022, eM = 1.9161022, bF = 4.461023

and eF = 2.0861022 for model H0; bM = 2.6661022, eM =

2.1161022, bF = 3.8861022 21.1461022 AFobs and eF = 1.9261022

for model H bAF
F

� �
and bM = 2.7061022, eM = 1.9161022,

bF = 1.9061022 25.3061023AMobs and eF = 2.3061022 for

model H bAF
F

� �
.

4. Confidence intervals for the model parameters
4.1. Male transmission parameters. Of all parameters,

male transmission rates (bM and eM) are the most important for

understanding and controlling FIV transmission. Since we found

no risk factors for the male transmission parameters, we investigate

whether the male transmission model alone can reproduce the

data for male FIV prevalence and, in particular, explain the large

variability observed in the prevalence data. In other words, for

what values of the parameters are the data a plausible outcome of

the model? To answer this question, we look at the parameters for

which the data falls within the 95% confidence intervals of the

likelihoods of the model outcomes (see Material and Methods for

more details).

We remove female prevalence data from the analysis because

there is no female to male transmission of the virus. We determine

the confidence region of the transmission rates bM and eM, of the

‘‘male transmission model’’ parameter space for three different

values of the proportion of non-captured cats: pNC = 0.30 (Fig. 4a,

b), pNC = 0.15 and pNC = 0.45 (Fig. 4b). In Fig. 4b we superimpose

these three confidence regions; only showing their boundaries. We

conclude that pNC has a slight impact on the edge of the confidence

region. If we project the region onto the bM
0 axis we obtain a 95%

confidence interval for the male-to-male transmission rate bM

([1.3061022, 4.0561022]), with a maximum likelihood estimation

of 2.6861022 for pNC = 0.30. Since the within-population basic

reproductive number of FIV is given by R0 = bM/a, we can derive

that a 95% confidence interval for the estimation of the basic

reproductive number is [0.626, 1.942], with a maximum

likelihood estimation of 1.285, for pNC = 0.30. In a same manner

we can estimate a confidence interval for eM([1.9361023,

1.0361021]), with a maximum likelihood estimation of

2.0361022.

Finally we look at the impact of the external transmission rate

eM on FIV spread in already infected populations. We estimate the

average size of a population as the mean number of observed

males per population multiplied by 1+pNC, which is equal to 21 for

pNC = 0.30. We divide the mean number of infected hosts

calculated with the model for a population of average size

conditioned to FIV non-extinction by the value obtained with

the same parameters, but with an external transmission rate a

hundred times lower. We denote R as this value minus one

R~
I e0ð Þ{I e0=100ð Þ

I e0=100ð Þ , where I is the mean number of infected

individuals in the population. R is a proxy of the impact of external

infections on FIV transmission in already infected populations. If

external infections have a small effect compared to the within-

population transmissions, then R will be close to 0 (see Fig. 3c). In

contrast, if external infections have an important effect compared

to the within-population transmissions, then R will be quite larger

than 0.

For pNC = 0.30 we calculate R in a square region of the male

transmission rate (bM and e M) parameter space (Fig. 4) and we

superimpose on the same graph the edge of the confidence region.

We observe that in the upper left corner of the parameter space

(Fig. 4c) R is around 0.02, which means that at low external

Table 2. analysis of FIV risk factors.

Model Value of 2 ln(L/L0) p-value df

Social parameters

H(bSR
F ) 2.639 0.105 1

H(bM
F ) 1.055 0.219 1

H(bN
F ) 0.573 0.447 1

H(bAF
F ) 5.316 0.021 1

H(bAM
F ) 4.094 0.043 1

H(bSR
M ) 0.063 0.803 1

H(bM
M ) 0.264 0.610 1

H(bN
M ) 0.390 0.535 1

H(bAF
M ) 1.425 0.234 1

H(bAM
M ) 1.342 0.246 1

Spatial parameters

HM
meta

2.828 0.243 2

HF
meta

3.572 0.168 2

Hneigh eneigh
M

	 

0.003 0.956 1

Hneigh eneigh
F

	 

2.634 0.105 1

doi:10.1371/journal.pone.0007377.t002
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transmission rates, external infections only increase by 2% the

prevalence of FIV and, so, have a very limited impact on the

spread of FIV in already infected populations. In contrast, in the

lower right corner of the confidence region R is around 2.5, which

means that frequent external infections greatly increase FIV

prevalence even in already infected populations.

4.2. Confidence intervals for parameters influencing FIV

prevalence in females. Now we investigate for which parameters

values in the model including both males and females data are a

plausible outcome of the model. We focus on the simplest model.

First, it is interesting to know if, and for which set of parameters, the

simplest model can fit the data. Second, since the effect of the mean

age of populations is not highly significant, we do not believe it makes

biological sense to take this factor into account here.

Here, the parameter space is four-dimensional, so we cannot

plot the confidence region. Since we are interested in determining

the parameters directly influencing FIV prevalence in females, we

simply plot the projection of the confidence region in the female

transmission rate (bF, eF) parameter space (Fig. 5). Fig. 5 thus

shows all paired values of bF and eF for which there exists

concomitant values of the parameters bM and eM, such that the

observed data are a plausible outcome of the model.

Fig. 5 shows that there is an important dependency between

bF and eF. Increasing the value of eF increases the mean prevalence

in females and so the parameter bF must be decreased in

order to explain the observed data. As a first approximation,

the confidence region can be characterized by the relationship

0:015ƒbF z3:46eF ƒ0:11.

Interestingly, the confidence region crosses the X and Y axis (see

Fig. 5). This means that even if one of the two rates (bF or eF) equals

zero, then the model can still explain the data. In other words, the

data may be explained by considering only infection of females by

males of the same population, without external infections or,

conversely, by only considering infections by males from other

populations without within-population male-to-female infections.

Overall, we cannot determine which source of infection for females

(internal or external) is the most important in our study area.

5. Consistency of the male transmission model with FIV
prevalence data in males

In the previous section we have seen that data are a plausible

outcome of the simple model for a large region of the parameters.

In the present section we show how the simple male-transmission

model (where the transmission rate is independent of risk factors)

Figure 4. Confidence region of the (bM, eM) space for the ‘‘male transmission model’’ parameters where the transmission coefficients
are independent of risk factors. (a) For pNC = 0.30; (b) effect of pNC on the edge of the confidence region: pNC = 0.15 (solid thin line), pNC = 0.30
(bold solid line) and pNC = 0.45 (dashed thin line) and (c) value of the coefficient R (represented as the intensity of the grey-scaled color, see color bar
on the right) in the confidence region (for pNC = 0.30).
doi:10.1371/journal.pone.0007377.g004
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with maximum likelihood estimation of the parameters

(bM = 2.6861022 and eM = 2.0361022, here pNC = 0.30) fits to

male prevalence data (Fig. 6a). For comparison we show the same

graph using a binomial model (assuming independence between

individuals regarding FIV, Fig. 6b).

As seen previously, the dynamic model predicts a very large

variability of FIV prevalence in males within population (see

Fig. 6a), which is larger than with the binomial model (see Fig. 6b).

As a result observed FIV prevalence in males is always in the 95%

confident region for the dynamic model (see Fig. 6a), but not for

the binomial model (see Fig. 6b).

In Fig. 6c we show the variance predicted by the different

models (with maximum likelihood estimations of their parameters)

and we compare it with that estimated from the data (using

ŝs2~
P15

i~1

pi{�ppð Þ2
.

14, where pi is the prevalence of FIV in males

in population i and �pp is the mean FIV prevalence). Again results

show that the binomial model predicts a smaller variance than

what is observed in the field (FIV prevalence data in males show

around 73% more variance than what is expected by the binomial

model), whereas the dynamic model shows an overestimated

variance compared to what is estimated from data (but only

around 42% larger).

To investigate whether the variance estimated from data is

consistent with predictions of the dynamic model, we study the

distribution of FIV prevalence in males expected by the male

transmission model with maximum likelihood estimation of the

parameter. In each population we simulate a male FIV prevalence

according to the distribution d and then we estimate the variance

in FIV prevalence in males between the 15 populations. We run

10,000 replicates and obtain a theoretical distribution of the

estimated variance of FIV in males (ŝs2, Fig. 6d). We find that the

observed value of ŝs2 (black bar) is in fact a plausible outcome of

with the dynamic model.

Discussion

The spread of a transmissible disease in a host population is a

dynamic process where the probability of individuals becoming

infected depends on the number of infected individuals in their

neighborhood. Nowadays, dynamic models of epidemics are

widely accepted as efficient tools to help understand the spread

and management of infectious diseases (see e.g. [32–35]). So it is

not surprising that stochastic versions of these models have

emerged during the past decade as the best way to analyze

infectious diseases data (see e.g. [1,14–19,20,36,37]). Methods

based on the comparison of stochastic epidemic models to data

hence constitute natural tools to estimate how different factors may

affect the spread and impact of infectious diseases.

1. Risk factors associated with FIV
Our dataset exhibits large variability in FIV prevalence in both

males and females among populations. However, a rapid study of

the dynamic model shows that, in such a model, great variability in

FIV prevalence may be expected. The rate at which susceptible

individuals become infected depends on the proportion of infected

individuals in a population. If, by chance, the proportion of

infected individuals becomes large then the number of new

infections will increase, maintaining high infection prevalence for

the next generation. By contrast, a low proportion of infected

individuals decreases the number of infections in subsequent

generations.

To investigate the possibility that the cats density, the sex-ratio,

the number of males or the mean age of cats within the population

may act as risk factors influencing the disease transmission rate, we

performed a statistical analysis of the data using the sexually-

structured SI model. Which population characteristics correlate

with large FIV prevalence and so explain, in part, the variability in

FIV prevalence? We found no such factors, except for mean ages.

Interestingly, these ages have a negative effect on FIV prevalence

in females, despite the accumulation of cases that occurs with age.

One possible explanation is that the presence of older territorial

males in some populations ensures greater social stability, which

decreases the rate of at-risk (mating) contacts. Reversely, a

negative correlation between FIV prevalence and age of cats

could be due to the additional mortality induced by the virus.

However, considering the weak impact of the infection on the life-

expectancy of individuals, this explanation seems rather implau-

sible to us.

In fact, these effects are not highly significant (p = 0.02 for the

mean age of females and p = 0.043 for the mean age of males).

Determining whether or not age affects the probability of

becoming infected by FIV would require i) correction for the

multiple tests performed and ii) correction for the effect of the

accumulation of cases with age. Since this is beyond the scope of

the work presented here, we cannot make definite conclusions on

the effect of age.

2. Impact of external infections on FIV local prevalence
The cat populations observed in this study are of small size, and

certainly are not large enough to retain the virus over long periods

of time. Since we detected infected cats in 14 out of the 15

populations (and infected males in 13 of them), we can assume

regular viral exchange between populations. Previous theoretical

studies have shown the importance of the spatial dispersal of the

FIV virus between populations [38]. Due to the topographic

isolation of our study area, it seems reasonable to assert that viral

exchange between the studied populations is primarily responsible

for the reintroduction of the virus into populations where it has

become extinct. We proposed two different virus dispersal

networks between the populations, but neither significantly

improved the goodness-of-fit to the observed data. Although our

observations are most likely insufficient to capture the exact

Figure 5. Projection of the confidence region of the model H0

(including both males and females) on the parameter (bF, eF)
space for pNC = 0.30. The plotted region represents all paired values
(bF,eF) for which there exist concomitant values of the parameters bM

and eM, such that the observed data are a plausible outcome of the
model.
doi:10.1371/journal.pone.0007377.g005
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dispersal network between populations, the networks we analyzed

should be quite realistic, because they are consistent with the

natural barriers in the study area.

Lastly, it is important to note that a spatial correlation in FIV

prevalence between connected populations can be observed only if

external infections have a substantial impact on FIV prevalence

within the population. An analysis of the confidence region of the

male transmission parameters shows that the impact of external

infections on FIV prevalence within populations is very limited for

the smallest values of the external transmission rate (see Fig. 4c). In

this case, the connectivity between populations cannot be revealed

by a corresponding correlation in FIV prevalence. In contrast, for

the highest values of external transmission rate in the confidence

region, we can expect a correlation in FIV prevalence between

connected populations. To sum up, the fact that no spatial

correlation in FIV prevalence is observed may simply be due to the

fact that external infections are relatively rare and thus play almost

no role for disease prevalence in already infected populations.

3. About the approach
Logistic regression models are still widely used for the analysis of

risk factors associated with infectious diseases, even though their

over-simplified independence hypothesis is largely recognised as a

limitation to their use [1,14,15]. The main difference between the

two approaches, based on binomial and dynamic models, comes

from the variability expected by their respective H0 models, as

illustrated in Fig. 3a. Binomial models predict much narrower

distributions than dynamic models. The consequence is illustrated

in Fig. 4, where we can see that the simple SI model accounts for

the observed variability in FIV prevalence in males for a wide

range of parameters. In contrast, the binomial test on the

distribution of the infected cats among the 15 populations rejects

the global binomial distribution hypothesis (p<0.006). To explain

the data with a logistic regression model that assumes binomial

distributions, additional risk factors need to be invoked. With

dynamic models, risk factors are not required to explain the

variability in the male disease prevalence observed here. The

Figure 6. Consistency of the different models with male prevalence data. 95% confidence interval of FIV prevalence in the 15 population:
with the dynamic epidemic model (a) and the binomial model (b). Crosses represent the mean of the distribution and black points the observed FIV
prevalence data. (c) Comparison of the variance of male FIV prevalence between the 15 populations estimated from the field, and predicted by the
binomial model and by the dynamic model. (d) Theoretical distribution of the estimated variance of FIV prevalence in males with the male
transmission model. Black bar represents the observed value of this quantity.
doi:10.1371/journal.pone.0007377.g006
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implication of that is that bringing evidence for population risk

factors in infectious disease requires large sample sizes. In our

present case n = 499 is not large enough and further sampling is

required to bring evidence of population risk factors for FIV

transmission.

The model developed here is quite simple. In particular, it does

not account for a potential difference in individuals’ infectivity

between the acute and chronic phase of the infection. Such levels

of complexity could be added to the method. This would make the

model more realistic but also more complex, which was not our

purpose here. The most important conclusion of the paper, i.e.

that dynamic models predict much more variability than models

where individuals are independent and hence are sufficient to

explain highly variable prevalence data, would remain true for

more complex model. Another model assumption is that we

neglected the contacts with populations outside the study area

(white rectangles in Fig. 1). Since we did not find an important

effect of the number of infected neighbors on the disease

prevalence in populations, we are confident that adding the

neglected populations would not deeply affect our results.

4. Applications
The approach developed here is general and can easily extend

to a wide variety of cat populations, but also to other host-parasite

systems. It facilitates selection of the best model to describe data,

which can be calibrated by determining confidence regions for the

model parameters. The model can be used, for example, to test

virtual management plans and to look at the expected results in the

entire confidence region. This should assist in predicting the

success one might expect with different management strategies. In

the case of FIV, this study could help to rationalize the use of

potential future vaccines or castration campaigns to limit the

spread of the virus between males.

In the case of FIV, the approach gives us a 95% confidence

interval for the model parameters, in particular for the basic

reproductive number R0 ([0.626, 1.942]), with a maximum

likelihood estimate of 1.285. This value appears rather low,

meaning that virus transmission is rather rare at the level of the

population. This is not surprising, since experimental results

indicate that most of the virus present in the saliva is not infectious

[39], suggesting a weak efficiency in disease transmission [7].

Given the high frequency of fights between males in such

populations and the low rate at which males acquire the infection

(around once every four years in a hypothetical scenario where all

males are infected), our results are consistent with the concept of a

low probability of virus transmission from bites [9].
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