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Abstract

Application of high-density microarrays to the diagnostic analysis of microbial communities is challenged by the
optimization of oligonucleotide probe sensitivity and specificity, as it is generally unfeasible to experimentally test
thousands of probes. This study investigated the adjustment of hybridization stringency using formamide with the idea that
sensitivity and specificity can be optimized during probe design if the hybridization efficiency of oligonucleotides with
target and non-target molecules can be predicted as a function of formamide concentration. Sigmoidal denaturation
profiles were obtained using fluorescently labeled and fragmented 16S rRNA gene amplicon of Escherichia coli as the target
with increasing concentrations of formamide in the hybridization buffer. A linear free energy model (LFEM) was developed
and microarray-specific nearest neighbor rules were derived. The model simulated formamide melting with a denaturant m-
value that increased hybridization free energy (DGu) by 0.173 kcal/mol per percent of formamide added (v/v). Using the
LFEM and specific probe sets, free energy rules were systematically established to predict the stability of single and double
mismatches, including bulged and tandem mismatches. The absolute error in predicting the position of experimental
denaturation profiles was less than 5% formamide for more than 90 percent of probes, enabling a practical level of accuracy
in probe design. The potential of the modeling approach for probe design and optimization is demonstrated using a
dataset including the 16S rRNA gene of Rhodobacter sphaeroides as an additional target molecule. The LFEM and
thermodynamic databases were incorporated into a computational tool (ProbeMelt) that is freely available at http://
DECIPHER.cee.wisc.edu.
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Introduction

The field of microbial ecology aims to resolve the composition

of complex microbial communities in engineered and natural

ecosystems, with the ultimate goal of establishing the link between

community structure and function. To this end, microarrays can

be quite effective in determining community composition as they

allow the simultaneous capture of the different types of a marker

molecule (typically a functional gene or rRNA) in complex target

mixtures using a large set of organism- and group-specific single-

stranded DNA probes [1]. Besides traditional low throughput

techniques such as Sanger sequencing of clone libraries [2] and

fluorescence in situ hybridization (FISH) [3], as well as the recently

established high throughput sequencing approaches [4], micro-

arrays are an important component of the microbial ecologist’s

molecular toolbox. However, the routine use of microarrays for

diagnostic applications is challenged by the difficulty of designing

thousands of oligonucleotide probes with optimal sensitivity and

specificity to phylogenetic markers.

Probe optimization is complicated by the overwhelming

diversity of microorganisms as observed with the sequence

databases of small subunit rRNA, the most commonly used

phylogenetic marker [5,6,7]. While probes in the longer range

(.30 nucleotides) can generally assure sensitivity by efficient target

capture, they cause specificity problems in two ways. First, due to

within-group sequence variability, the longer the target site, the

poorer the coverage of the probe over its targeted group of

organisms (e.g., a species or a genus). Second, the higher affinity of

long probes to their target molecules undermines their ability to

discriminate the perfectly matching target sequences of interest

from mismatching out-group sequences, thereby causing false

positive identifications. Oligonucleotide probes on microarrays

targeting rRNA (genes) are thus mostly in the shorter size range

(,30 nucleotides). However, using shorter probes with lowered

affinity can obviously cause sensitivity problems due to inefficient

target capture, leading to false negatives. Therefore, in microbial

ecology applications of microarrays, probe design and optimiza-

tion of hybridization conditions require establishing a delicate
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balance between sensitivity and specificity in the oligonucleotide

size range.

Since the accurate prediction of probe sensitivity and specificity

is difficult [8], earlier studies with spotted microarrays relied on

experimental evaluations of probes. Single targets from culture

collections or clone libraries hybridized on separate microarrays

were used as references to verify the relationship between probe

response and organism identification in environmental samples

[9,10,11,12]. Although tedious, empirical testing of almost every

individual probe was feasible due to the small enough number of

probes (tens to hundreds) on such microarrays. However,

advanced high-density microarray technology currently allows

the synthesis of thousands to millions of probe features on the same

slide (e.g., http://www.nimblegen.com/, http://www.affymetrix.

com). While this has brought the great advantage of using more

comprehensive probe sets, as in the design of 16S rRNA-based

microarrays for the identification of large numbers of different

phylogenetic groups of microorganisms [13,14,15,16], experimen-

tal testing of all probes is no longer an option. Rather, in addition

to using standard mismatch probes as in Affymetrix setups [15,17],

which are not necessarily adequate controls for cross hybridization

[18], high-density microarray applications rely on the ability to

design multiple probes for each taxonomic group to reduce the

chance of misidentification. Certainly, it is still desirable to develop

a robust strategy for the design of the individual probes with

optimal sensitivity and specificity, thus increasing the accuracy of

identifications based on organism-specific probe sets. We are

therefore interested in establishing stringent and predictable

hybridization conditions to maximize the confidence in the

analyses of microbial communities.

In this study, we propose the methodical use of formamide

during microarray hybridizations to develop design rules for the

optimization of probe sensitivity and specificity. Formamide is a

denaturant routinely used in hybridization techniques to adjust

stringency [19,20,21]. As formamide concentration in the

hybridization buffer is increased, probe/target duplexes denature,

usually resulting in a sigmoidal decrease in signal response and

generating a so-called melting curve [22,23]. Since the denatur-

ation proceeds more rapidly for mismatched duplexes than for

perfect matches, there is generally an optimal range of formamide

concentration that effectively eliminates signal response from

mismatched non-target organisms while maintaining high signal

for still non-denatured perfect match targets. Unlike other

hybridization techniques, systematic evaluations of formamide

denaturation are not available for microarrays, although prelim-

inary formamide series during hybridization have been reported

[24]. We show here that sigmoidal formamide melting profiles can

be obtained with microarray probes, as in FISH [20,23]. For this

approach to be effective in probe design, one needs to be able to

predict formamide denaturation and determine the optimal

concentration range for mismatch discrimination. Thus, we also

use equilibrium thermodynamics to develop a linear free energy

model (LFEM) of formamide melting [23,25] and employ this

model to systematically derive thermodynamic parameters that

characterize the stability of both perfect match and mismatched

duplexes. Our analysis shows that the predictive ability of

microarray LFEM is much better than similar models devised

for FISH [23]. When combined with the multiple-probe strategy

in high-density arrays, the overall approach can potentially

facilitate the optimization of probe sensitivity and specificity for

the high-confidence identification of organisms in complex

microbial communities.

Methods

Targets and Target Labeling
Single 16S rRNA gene clones of Escherichia coli K-12 and

Rhodobacter sphaeroides 2.4.1 were used as pure target templates. A

small subunit rRNA gene clone library was developed and

sequenced to determine the clones retrieved from the rRNA

operons that encoded for the sequences used in probe design (see

below). Briefly, plasmid inserts of clones were obtained from pure

cultures by cell-PCR amplification with 27f [26] and 1492r [27]

primers, followed by ligation and transformation with the

TOPO10 cloning kit and TOP10 competent cells (Invitrogen,

Carlsbad, CA). The insert was amplified with M13 primers and

purified using Ampure (Agencourt Bioscience Corporation,

Beverly, MA). The purified product was sequenced (primed with

27f) at the University of Wisconsin Biotechnology center using

Sanger’s method. Partial sequences (ca. 800 nucleotides) were used

to match sequences to known rRNA operons and one clone that

matched the design template was selected for each organism.

For target labeling, the cloned and purified 16S rRNA gene was

first re-amplified with the 27f and 1492r primers, and the product

was purified using a QIAquick spin column (Qiagen, Valencia,

CA) and Cy3-labeled according to a previously published protocol

[11]. Briefly, Cy3-dCTPs (Amersham, GE Healthcare; Little

Chalfont; UK) were incorporated into 200 ng PCR product

during random prime amplification with Klenow fragment and a

decalabel DNA labeling kit (Fermentas, St Leon-Rot, Germany).

The product of labeling was purified with a QIAquick spin column

and the yield was measured using a Nanodrop 1000 spectropho-

tometer (NanoDrop Products, Wilmington, DE). The target

concentrations were in the range of 25–35 ng/mL, with an

incorporated dye concentration of 0.8–1.2 ng/mL. The applied

labeling procedure results in a fragmented target due to the linear

random priming amplification. This was confirmed by measuring

the labeled product length with an Agilent RNA 6000 Pico Kit

(Agilent, Santa Clara, CA), which showed lengths ranging between

25 and 150 bases, with an average of 65 bases.

Microarrays and Probes
High-density 4-plex microarray slides were obtained from

Nimblegen (Madison, WI). Each of the four subarrays accommo-

dated 72,000 features. Most probes were replicated three times on

the array, with a total of ,24,000 independent probe sequences

produced, of which, 15,394 were used in this study (Table 1). For

designing probes targeting E. coli and R. sphaeroides (Table 1),

rRNA gene sequences with accession codes U00006 and X53853

were used, respectively. A poly-T chain of 20 bases was added to

the 39 end of the probe sequence, to provide an elevation above

the slide surface in addition to the default linker of Nimblegen

design. This was done to minimize the brush effect due to the

surface-proximal tails of target molecules, which may reduce signal

intensity in ways difficult to predict [28,29,30]. All Ts in the first

three nucleotides (nearest to probe sequence) of the poly-T linker

that matched an A or G in the target sequence were converted to

As, to avoid the additional free energy of binding from dT-dA or

dT-dG type interactions between the poly-T linker and target.

The names, sequences, experimental signal intensity values, and

calculated free energy changes of probes used in this study were

deposited at the public database Gene Expression Omnibus

(http://www.ncbi.nlm.nih.gov/geo/), with the accession code

GSE33021, following MIAME guidelines. The naming of probes

(e.g. R101–122, E1013–1034_10AC) was based on the following

convention: Target (‘‘E’’ for E. coli, ‘‘R’’ for R. sphaeroides), target

site positions (59 – 39) on the target gene, position of mismatch
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from the 59 end of the probe (if available), and the change in base

(original followed by modification) to create the mismatch (if

available). For deletions and inserts, ‘‘gap’’ and ‘‘I’’ preceded the

mismatch position, respectively.

Hybridization and Wash
Before hybridization, slides were pre-processed with 6–7 hrs of

incubation in Nimblegen reuse buffer, a denaturing reagent that is

normally used for stripping hybridized targets. The purpose of this

step was to remove unknown surface-related factors that seemed to

make probes less accessible at lower formamide concentrations

(data not shown). For hybridization, a total of 6 or 60 ng (ca. 2 mL)

of labeled and purified target was combined with 0.5 mL

alignment oligo (Nimblegen), dried using a Vacufuge Plus vacuum

centrifuge (Eppendorf, Hamburg, Germany) at 30uC, and then re-

suspended in 10 mL of hybridization buffer (1M Na+, 20 mM Tris

[pH = 7.2], 0.02% SDS, and variable amounts of formamide). To

dissociate the complementary strands of DNA, the suspension was

heat denatured by a 5-min incubation at 95uC, followed by fast

cooling on ice. The hybridization buffer was then applied to the

array surface using NimbleGen 4-plex mixers adhered to the

slides. A total of ca. 8 mL suspension was transferred to each array,

bringing the used target mass to ca. 5 or 50 ng. The slides were

placed in a 12-bay NimbleGen Hybridization System for

overnight (,20 hrs) hybridization at a controlled constant

temperature of 42uC, and with active mixing of the hybridization

buffer to improve mass transfer.

After hybridization, slides were washed in pairs, using a series of

three wash buffers (I, II, and III) provided by Nimblegen and

following Nimblegen guidelines. All buffers were amended with

0.1 mM dithiothreitol according to manufacturer’s recommenda-

tions. Each slide was first submerged in 250 mL of pre-warmed

(40–45uC) wash buffer I to detach the mixer from slide surface and

immediately taken through the wash series in buffers I (2 min), II

(1 min), and III (15 secs) at room temperature with constant

manual agitation. The slides were dried using Arrayit High-Speed

Microarray Centrifuge (Telechem, Silicon Valley, CA) and

subsequently stored in a dark and dry environment.

Scanning and Analysis
Microarrays were scanned with an Axon 4000B laser scanner

and GenePix Pro 6.0 software (Molecular Devices, Sunnyvale,

CA). The wavelength and PMT gain were set at 532 nm and 430,

respectively. Two lines were averaged during scanning. Fluores-

cence data was saved in TIFF files, which were processed with

Nimblescan software (Nimblegen). Using the signal from the

alignment oligomers a custom grid was aligned with the images to

derive raw data for each feature. It should be noted that this

procedure produces data in the form of pixel intensity values

ranging from 0 to 65536, the latter representing a saturation point.

Raw data was saved as pair files and analyzed using Matlab (The

MathWorks, Natick, MA). For each probe, the average and

standard deviation of the brightness of three replicate features

were calculated. An outlier test was also performed, such that if

one of the replicates gave a value that was more than three

standard deviations (of the remaining two) away from the average

of the remaining two it was eliminated. Then, the average of

control (Nonsense) probes (see Table 1) was subtracted from all

averages to obtain background-corrected results (standard devia-

tions were calculated with error propagation).

Linear Free Energy Model (LFEM)
To simulate probe/target hybridization in the presence of

formamide, the LFEM previously developed for FISH [23] was

Table 1. Probe sets used in modeling.

Set Na Probe Length Description Use

TileEb 1380 22 22-nucleotide-long perfect match probes tiling the 16S rRNA
gene of Escherichia coli.

Comparison to mismatches.

Length 1045c 18–26 Probes with varied lengths (18, 20, 24, 26) targeting 209
random sites on 16S rRNA.

Models M1–M3; fitting.

OneMb 4140 22 TileE set with all three types of mismatches inserted in the 11th
position of each probe.

Models M4, M5; fitting.

PosM 4092d 22 62 probes from TileE set with all types of single mismatches
inserted in all positions.

Models M4, M5; verification and positional
effects.

Gap 248 22 62 probes from TileE set with a deletion at the 5th, 11th, 12th,
or 18th position.

Models M6, M7; fitting.

Insertion 248 23 62 probes from TileE set with all types of single insertion between
11th and 12th positions.

Models M6, M7; fitting.

TwoM 1674 22 62 probes from TileE set with all types of mismatches inserted in
positions 5 and 11, 11 and 18, or 5 and 18.

Models M4, M5; verification and double-
mismatch effects.

Tandem 558 22 62 probes from Tile set with all types of 2 mismatches
inserted in positions 11 and 12.

Models M8, M9; fitting.

TileRb 1301 22 22-nucleotide-long perfect match probes tiling the 16S
rRNA gene of Rhodobacter sphaeroides.

Target effects; evaluation of the extent of
cross hybridization.

Nonsensee 1 22 Nonsense sequences not complementary to targets used. Background fluorescence

aNumber of probes in set. Not all probes are directly used in model development (see next footnote, text, and Table 2).
bProbes targeting positions before the 50th and after the 1450th nucleotide (in E. coli positioning) were excluded from all analyses to avoid unamplified terminals of the
targeted genes and other possible end effects.
c209 probes shared with TileE set.
d186 probes shared with OneM set.
eTen replicates of the probe 59-AGAGAGAGAGAGAGAGAGAGAG-39.
doi:10.1371/journal.pone.0043862.t001
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reduced to a two-state hybridization system describing the local

equilibrium at the probe’s microenvironment (P+T = PT, where P,

T, and PT denote probe, target, and hybrid, respectively). The

modified microarray LFEM defines hybridization efficiency (i.e.,

the ratio of probe-bound target to all locally available: [PT]/[T]o)

as shown in Equation 1, where, DGu is the free energy change for

no formamide condition, the m–value defines the linear increase in

the free energy change with increasing formamide concentration

([FA]) [23,31,32], and R and T stand for the gas constant

(0.00199 kcal/molK) and hybridization temperature (315.15 K),

respectively. During the derivation of Equation 1, the activity

coefficients of P, T, and PT were added to the reaction

stoichiometry, as different from the LFEM for FISH [23], and

embedded in the effective probe concentration term ({P}o), which

is treated as an unknown parameter to be derived by model-fitting

(see below).

½PT �
½T �o

~
exp½{(DG0zm½FA�)

RT
�fPgo

1z exp½{(DG0zm½FA�)
RT

�fPgo

ð1Þ

The free energy value in Equation 1 was calculated as described

elsewhere [22,33,34,35]. Briefly, DGu of perfect match hybrids was

obtained by summing the free energies of all nearest neighbors and

adding an initiation free energy to this sum [34,35]. For

mismatched duplexes, the free energy difference introduced by

the mismatch was formulated using a DDGu term described in

Equation 2 [22,33], which reflects both the destabilizing effect of

losing a nearest neighbor pair (second term on the right hand side)

and the contribution of the newly formed internal loop (first term

on the right hand side). Both solution-based and microarray-

specific parameters were used for nearest neighbor and loop terms

in this study. Solution based parameters were obtained from

UNAFold [36], whilst microarray parameters were derived by

modeling.

DDGo~DGo
MMLoop{DGo

NN{ ð2Þ

Curve Fitting
Predicted hybridization efficiency in a formamide series was

matched to normalized experimental melting profiles with

Equation 3, where I is the background-corrected probe signal

intensity at a specific formamide concentration, Imax is the

maximum I value achieved in the whole formamide series, and c
represents a probe-specific proportionality constant that aligns

experimental and theoretical trends. Theoretical formamide

curves of multiple probes were simultaneously fitted to their

experimental profiles using a bi-level fitting approach. Thus, the

parent fitting function changed general modeling parameters ({P}o

and the m-value in Equation 1 along with free energy parameters),

while a secondary fitting function determined the probe-specific

proportionality constants according to Equation 3 (i.e., a particular

c value for each probe). Curve-fitting was done via non-linear

regression [37] using the ‘nlinfit’ routine in the Statistics Toolbox

of MATLAB, as described previously [23]. The goodness of fit was

evaluated by the coefficient of determination (R2) in Equation 4,

where y, r, and n represent experimental data points, residuals, and

the total number of formamide data points used in the fitting,

respectively. To compare the performance of different models with

varied number of parameters, the error squares function (s2) in

Equation 5 was used. Here, n represents the degree of freedom

(i.e., n minus all parameters, including one c value for each probe

used in the fitting).

I

Imax
~c
½PT �
½T �o

ð3Þ

R2~1{

Xn

i~1

r2
i

Xn

i~1

(yi{ymean)2

ð4Þ

s2~

Xn

i~1

r2
i

n
ð5Þ

Curve fitting was based on data from modeling probe sets in

Table 1 using 5 ng of E. coli 16S rRNA gene as the target.

Experimental signal intensity values of some of these probes were

close to the background over the entire formamide series or all

points but 0% formamide. Since these probes were observed to

bias fitting parameters by random noise, they were eliminated

from curve-fitting (,15% of all probes; the final number of probes

used in fitting are provided in Table 2 by the parameter NT; see

below). Eliminations included perfect and mismatched probes with

Imax values ,1000 a.u. and ,500 a.u. respectively, and

mismatched probes whose signal decreased by more than 50%

in the first increment of the formamide series (i.e., from 0 to 5%).

After model development, retrospective analyses showed that

99%, 93%, and 56% of these filtered probes were predicted to

have half denaturation points (see below) at or below 15%, 10%,

and 5% (v/v) formamide, respectively. Thus, filtered data was

mainly a result of predictable poor hybridization efficiency and did

not significantly affect modeling evaluations.

Results

We obtained probe denaturation profiles with a formamide

series of eight concentrations: 0, 5, 10, 15, 20, 25, 32.5, and 45%

on a volume by volume basis (v/v). For each target, this was

achieved by parallel hybridizations with two slides (4 arrays per

slide). Typical experimental profiles are shown in Figure 1A for

selected perfectly matched and mismatched probes from the

hybridization experiment with 5 ng of amplified, fragmented, and

Cy3-labeled E. coli 16S rRNA gene used in model development.

As expected, increasing formamide creates a sigmoid-like loss of

signal as the efficiency of target capture decreases, and the melting

occurs at lower concentrations when mismatches are inserted in

the duplex (Figure 1A). For those probes with a full sigmoid trend,

there is a general increase of signal with increasing formamide at

lower formamide concentrations, as exemplified by the perfect

match probe in Figure 1A, which may be due to the removal of

structural kinetic limitations by formamide as in FISH [38,39] or

other unknown complications in microarray hybridizations. In any

case, the gradual loss of signal at higher stringency creates a

window of formamide concentrations (15–25% in the example in

Figure 1A), where the signal from perfect match duplex is easily

detectable, while the mismatched duplexes are close to the
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background, thereby allowing mismatch discrimination as desired.

Thus, our modeling efforts aimed at predicting the observed

melting behavior for probe design and optimization.

Our mathematical framework depends on the estimation of the

standard Gibbs free energy change (DGu) of the hybridization

reaction (Equation 1). Initially, we used UNAFold [36] to predict a

DGu value based on thermodynamic parameters from in-solution

hybridizations (hence designated DGusln) and evaluated its

correlation with the experimental observations. As shown in

Figure 1B, this free energy value poorly correlated with maximum

signal intensity of probes in a formamide series (Imax). The low

correlation can be attributed to non-thermodynamic factors that

may influence the signal intensity of individual probes, such as the

biases introduced during the amplification and fragmentation of

the target (e.g., fragment concentration and dye labeling

efficiency). Indeed, Imax showed non-random positional depen-

dence in the 16S rRNA gene with regions of peaks and sinks

(Figure 1D), which may presumably reflect these biases. It is

noteworthy that, patterns as in Figure 1D have been reported

before for single target molecules [40], but could be related to

binding free energy unlike with our dataset (Figure 1B). A more

robust descriptor of thermodynamic stability would be the melting

behavior, since positional and other non-thermodynamic factors

for a given probe likely remain constant in a formamide series.

Figure 1. Characteristics of formamide denaturation profiles. (A) Example formamide curves with perfect match, one-mismatch, and two-
mismatch probes targeting the same site on 16S rRNA gene of E. coli. Curves represent theoretical profiles. Observed maximum signal intensity (Imax),
experimental ([FA]1/2,exp) and predicted ([FA]1/2,pred) half-denaturation points, and the prediction error (err[FA]1/2) are illustrated. [FA]1/2,exp is
estimated by linear interpolation between two subsequent experimental points that are greater than and less than Imax/2, respectively. Panels (B) and
(C) show the correlation of solution-based free energy predictions with Imax and [FA]1/2,exp, respectively, with r defining the Pearson’s correlation
coefficient. (D) Imax plotted against position of target site, as represented by the middle point. All data were obtained from probes belonging to the
TileE set (Table 1). Amount of hybridized target was 5 ng.
doi:10.1371/journal.pone.0043862.g001
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Consistently, the point of half-denaturation ([FA]1/2,exp), defined

as the formamide concentration where signal intensity decreased

to half of Imax, was largely predictable by DGusln (Figure 1C). This

term represents the melting point of the duplex when a nearly full

sigmoidal profile is obtained as is the case for most perfect matches

used in this analysis. In retrospect, [FA]1/2,exp also does not

correlate with Imax itself (r = 20.22; not shown), further pointing to

the dependence of Imax on factors not related with stability. Thus,

we focused our modeling strategy on the normalized melting

profiles where thermodynamically irrelevant signal variations as in

Figure 1D are mostly eliminated.

Our methodology is based on simulating the formamide-based

denaturation of a probe/target duplex with the linear free energy

model (LFEM) in Equation 1. This defines hybridization efficiency

as a sigmoidally decreasing function with increasing formamide

concentration, which takes values up to 1 at low formamide and 0

at full denaturation. The resulting theoretical curves are simulta-

neously fitted to large sets of experimental probe profiles

normalized using Equation 3 for each probe (see Figure 2 for

example fits). In what follows, we describe the stepwise use of

LFEM for the systematic establishment of free energy rules and

calibration of formamide denaturation models for perfect and

mismatched duplexes (Table 2).

Perfect Matches
To calibrate LFEM for perfect matching duplexes, we formed a

set of 1045 probes of variable length (Length set, Table 1), of

which, 1,033 were used for modeling after elimination of probes

close to the background (NT = 1033, Table 2). This set was

designed to have a wide variability of half denaturation points

(range, 4–30%; median, 18%) for a robust calibration of key

modeling parameters. A randomly selected subset of 500 probes

(NF = 500, Table 2) was used for curve fitting, and the rest for

model validation. In addition, signal intensity values that were to

the left of Imax and less than 80% of Imax (e.g. the 0% formamide

data point in the perfect match example of Figure 1A) were

discarded to prevent the influence of possible kinetic factors at

lower formamide concentrations. Thus, a total of 3,630 data points

were used in the fitting with 500 probes. Using this data set we

compared three models (M1–M3) with different degrees of

complexity.

Initially, we evaluated the simplest model (M1, Table 2) where

DGusln obtained from UNAFold was used to predict the binding

free energy. Therefore, the only general parameters of fitting were

m and {P}o. The best-fitting m-value showed 0.522 kcal/mol free

energy increase with every percent of formamide added, while the

effective probe concentration was equivalent to 0.0025 nM

(Table 2). These parameters can be assumed to have converged

to true values, as the average residual squares of 0.0207 units per

data point agreed well with the average error squares in the

validation set of 533 independent probes (e2
val = 0.021) (Table 2).

The residual squares translated into a significantly larger s2 value

of 0.024 (Table 2), since this statistic is based on a degree of

freedom (Equation 5) that takes into account all individual c
constants in addition to the two general fitting parameters and is

therefore significantly smaller than the total number of formamide

data points of 3,630 (i.e., n = n–(500+2) = 3128). Thus, the s2 value

of the simple model was set as the reference point to test against

the goodness of fit for the other models, in addition to the

coefficient of determination (R2), which was 0.87 (Table 2).

Next, we evaluated a slightly modified model, designated M2

(Table 2), which included dangling end effects in free energy

calculations. Dangling ends, including terminal mismatches, have

been shown to contribute significantly to duplex stability with in-

solution hybridizations [41,42]. We therefore employed UNAFold

to derive DGusln values with dangling parameters (DGusln,with

dangling). The calibrated and validated model showed a higher s2

than M1 (Table 2), and therefore, we excluded dangling ends from

our framework.

It has been shown that the establishment of specific nearest

neighbor free energy rules for microarray hybridizations can

improve predictive ability [33,43]. We therefore developed model

M3 for better predictions of perfect matching duplexes (Table 2).

The DGu value (designated DGuma) was calculated for every probe

using the free energies of ten DNA/DNA nearest neighbors, which

were derived as part of the general fitting parameter set in addition

to m and {P}o. To get the total free energy of binding, a constant

initiation free energy penalty (DGuini = 1.96 kcal/mol) was used

rather than deriving it for microarrays. This was because DGuini

and {P}o were interdependent by the constant multiplication

exp(2DGuini/RT){P}o because of the way free energy is summed

and Equation 1 is constructed. Between the two variables we

selected {P}o to vary, since there was an in-solution based

approximation available for DGuini [34]. The best-fitting param-

eters point to a constant value of 4.37?1024 for the term

exp(2DGuini/RT){P}o, and DGuini and {P}o values can be

arbitrarily changed without affecting model fits as long as this

constant is satisfied. The results with M3 (Table 2) showed

significantly lower average residual squares (Sr2/n = 0.0083) than

M1, as confirmed with the error squares of the validation set

(e2
val = 0.0080). This was also reflected in an increase of the R2

value from 0.87 to 0.95 and a significant reduction of 0.0144 units

in the s2 statistic, which was more than twice the experimental

variance calculated as 0.0061 based on the standard deviation of

all data points (not shown), and therefore, the statistical difference

between M1 and M3 was remarkable [44].

Example predictions with M3 are shown for 12 perfect match

probes in Figure 2 (biased sampling) and 100 more in Figure S1A

in Supporting Information (random sampling). The upper panels

of Figure 2 show better fits than the lower ones. To evaluate the

global fitting quality, we calculated the distance between

theoretical and experimental profiles based on half-denaturation

points (|err[FA]1/2|), as illustrated in Figure 1A. The theoretical

half-denaturation point, [FA]1/2,pred, is defined the same as [FA]1/

2,exp (see above and Figure 1A), except that it is calculated for the

continuous theoretical curve where the maximum value is always

attained at 0% formamide. The resulting distribution of the

predictive errors in formamide curve positioning is shown in

Figure 3A. Most predictions were represented by the good fits in

Figures 2A–F, as can be seen from respective labelings in

Figure 3A. In fact, average absolute distance between theoretical

and experimental profiles was 2.161.7% in formamide concen-

tration, with more than 93 percent of probes having ,5% distance

(Table 2). These numbers also show significant advancement of

predictive power over the solution-based M1 model (Table 2).

Best-fitting nearest neighbor free energies of M3 are presented

in Table S1A, together with their in-solution matches and plotted

in Figure 4. Although the scale of microarray parameters seems

lower (about 1 kcal/mol reduction in magnitude of free energy)

this was offset by a high effective probe concentration of ca.

0.010 M, compared to that when in-solution parameters were

used (Table 2). The resulting m-value showed 0.173 kcal/mol

decrease in the magnitude of free energy at every percentage of

formamide, not very different from what was previously obtained

for FISH (0.2–0.3 kcal/mol/%, [23]). Given the excellent

correspondence with experimental profiles, the nearest neighbor

parameters, the m-value, and the effective probe concentration
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obtained from M3 formed the backbone of our modeling

framework for the evaluation of mismatches (Table 2).
Central Single Matches

The destabilization effect of a single mismatch (DDGu) is

represented by a loss term and a gain term (Equation 2) due to the

Figure 2. Formamide melting profiles of 12 arbitrarily selected perfect match probes and their mismatched versions. All perfect
matches are from the TileE set, since only this set has mismatched versions (for examples from the Length set, see Figure S1A). Solid and dashed
curves indicate theoretical profiles for perfect matches and mismatches, respectively. x-axis, formamide concentration; y-axis, normalized signal
intensity; error bars, standard deviations.
doi:10.1371/journal.pone.0043862.g002
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replacement of two nearest neighbors with an internal loop

[33,45]. The loss term can now be calculated based on the

microarray nearest neighbor parameters from M3 (hence desig-

nated DGuNN2,ma). To establish the free energy rules for loop

stability, we used a large set of probes named OneM (Table 1).

Probes were created by inserting all three possible single

mismatches in the central 11th position of the perfect matches of

the TileE set (Table 1) to avoid positional effects initially.

Based on the good correlation between in-solution and

microarray nearest neighbor free energies previously obtained

with M3 (Figure 4), we initially assumed that the loop free energy

is a linear function of the in-solution values (i.e., DGuMM

Loop = aDGuSM,sln+b, see M4 in Table 2). The calibrated and

validated model M4 showed an s2 value (0.0107) higher than the

perfect match model M3, and yet showed a similar goodness of fit

based on R2 and |err[FA]1/2| evaluations (Table 2). However, for

best predictions, we developed M5 to derive specific free energy

parameters for all individual loops (DGuMM Loop =DGuSM,ma,

Table 2). These loops are represented by 104 mismatch triplets

that have all combinations of a middle mismatch and two flanking

base pairs (Table S1B). Curve fitting was done separately for each

triplet to find the best-fitting values of DGuSM,ma as listed in Table

S1B. Since the number of available probes was as low as 7 for

some triplets (highest sampling size was 65), we included all probes

in this analysis for the maximal use of the experimental data. The

results showed that M5 outperformed M4 in terms of all goodness

of fit criteria (Table 2).

The relationship between in-solution and microarray loop free

energies was significantly scattered (Table S1B, Figure 4), hence

the better fitting quality of M5 than M4. However, microarray and

in-solution mismatch stabilities seemed to be on a similar scale

unlike with nearest neighbor values (Figure 4). Example model fits

with these values are shown in Figures 2A, 2G, 2J, 2K, and 2L and

their representative ability is indicated in Figure 3B. In addition,

Figure S1B presents profiles for 100 randomly selected probes. We

see in Figure 2 both well-developed (2A) and truncated (2G and

2F) sigmoidal profiles with perfect fits, implicating the accurate

identification of a large range of overall free energy values

(DGuma = 22.5 to 25.2 kcal/mol). Although the best-fits were not

validated by an independent subset in this case (i.e., NF = NT,

Table 2), other mismatch datasets were used for the verification of

the choice of M5, as will be seen below.

Positional Single Matches
The positional dependence of mismatch stability has been

shown in multiple studies (e.g. [8,43,46,47]) with a general

agreement that mismatches towards the ends are less destabilizing

than those in central positions. We addressed positional effects

mechanistically, using the PosM set (Table 1) and the idea of

relaxed ends illustrated in Figure 5A. In theory, a probe with a

Figure 3. Histograms of prediction errors. (A) Perfect match (Length set), (B) central mismatch (OneM set; open bars, right axis) and bulged
mismatch (Gap and Insertion sets; grey bars, left axis), (C) positional mismatch (PosM set), and (D) two-mismatch (TwoM set; open bars, right axis) and
tandem-mismatch (Tandem set; grey bar, left axis) probes. Lower case letters indicate bins to which probes in corresponding panels of Figure 2
belong.
doi:10.1371/journal.pone.0043862.g003
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mismatch in a terminal position may have a more favorable (more

negative) free energy in a relaxed conformation that leaves the

bases spanning positions from the mismatch to the end unpaired.

This happens when the free energy penalty of the loop (i.e., a

positive DGuMM Loop value) is larger in magnitude than the

cumulative negative contribution of terminal base pairs clamping

the duplex together, thereby causing an overall positive free energy

contribution in the closed conformation. Therefore, the free

energy of both imposed and relaxed conformations (Figure 5A)

should be calculated and the most negative used. We adjusted our

free energy calculations to include this effect for the positional

dataset and compared the modified DDGu term (i.e., the free

energy difference from the perfect match duplex) with the

experimental shift in the half-denaturation point (D[FA]1/2,exp)

upon the insertion of the mismatch (i.e., the distance between the

denaturation profiles of a mismatched probe and its perfect match

version). The average D[FA]1/2,exp shifts shown in Figure 5B

revealed a very strong positional trend starting at the 4th position

from each terminal, which was almost perfectly captured by the

modified free energy calculations.

We tested models M4 and M5 against the positional dataset

without making additional calibrations. The results revealed better

goodness of fit values for M5 in all terms, thus confirming that the

derived microarray-specific mismatch parameters were more

informative than in-solution parameters. The error squares with

M5 were larger in the positional dataset compared to the central

mismatch dataset (i.e., compare s2 and e2
ov values in both sets), but

the fitting quality was still satisfactory with a comparably high R2

value of 0.94 and more than 91 percent of the probes having less

than 5% (v/v, formamide concentration) error in the prediction of

half-denaturation points (Table 2 and Figure 3C). Example fits in

Figure 2 show two terminal mismatches that are very difficult to

discriminate from the perfect match (2C and 2E), as well as one

with moderate discrimination potential (2I), which were captured

by the M5 model. Figure S1C presents profiles of 100 randomly

selected probes from this dataset. The relaxation adjustment

adopted during the positional analysis was consistently imple-

mented in the models presented below.

Bulged Mismatches
A bulged mismatch occurs when there is an insertion or deletion

in an otherwise conserved target site and can potentially have a

comparable stability to an average single mismatch [48,49]. We

combined the Gap (deletions) and Insertion (insertions) probe sets

(Table 1) to develop free energy rules for bulged mismatches. The

strategy was the same as with single mismatches, except that

deletions removed two nearest neighbors and insertions only one

nearest neighbor for the calculation of the loss term in Equation 2,

which still required existing nearest neighbor values from M3

(DGuNN2,ma). Thus, modeling aimed at the derivation of the

missing loop terms for bulged mismatches (DGuBM,ma), which were

represented by 64 triplets in total, including all combinations of a

bulged mismatch and two flanking base pairs (see Table S1C).

The general screening procedure yielded 467 probes for testing.

Although this set covered all mismatch triplets, there was not

sufficient information for deriving specific free energy values for

each loop (2 to 14 probes per loop). Thus, we only tested models

assuming a linear relationship between in-solution loop parameters

and microarray parameters (i.e., DGuBM,ma = aDGuBM,sln+b).

Results with and without the constant term of the linear

relationship (b) revealed that it did not contribute to the overall

Figure 4. Relationship between in-solution and microarray free
energy values (at 426C). Red circles, nearest neighbors; blue
triangles, single mismatch loops; blue squares, single bulged mismatch
loops; green dots, tandem mismatch loops.
doi:10.1371/journal.pone.0043862.g004

Figure 5. Effect of mismatch position on free energy and
formamide denaturation. (A) Example probe (E844–865_4GT) with
lower free energy at relaxed conformation as compared to imposed
duplex with one mismatch. (B) Experimentally observed shift in the
half-denaturation point (D[FA]1/2,exp – open squares and black error
bars) and calculated minimum free energy change (DDGu - grey circles
and error bars) upon insertion of a single mismatch, as a function of
mismatch position. Values, averages; error bars, standard deviations.
doi:10.1371/journal.pone.0043862.g005
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fitting quality (i.e., s2 values were the same for M6 and M7,

Table 2). We therefore selected M7 as the preferred method,

which showed goodness of fit parameters similar to single

mismatch models (Table 2). The relationship of loop free energies

to original in-solution parameters is depicted in Figure 4, with a

line of data points of slope a (0.238). As an interesting result, the

plot suggests that bulged mismatches are similar to moderate single

mismatches in microarray-based stability, in contrast with in-

solution parameters where bulged mismatches are generally more

destabilizing. Example fits are illustrated in Figures 2F and 2H,

both of which show poor mismatch discrimination potential due to

stable bulged mismatches. Figure S1D presents 100 additional

randomly selected probes. The distribution of predictive errors at

half-denaturation points was similar to other mismatch datasets

(Figure 3B).

Two Mismatches
In principle, the stability of two separate single mismatches can

be calculated by adding their respective DDGu values. Thus, we

tested M4 and M5 developed for single mismatches, using a set of

two separate mismatches (TwoM, Table 2). Once again, error

square parameters in Table 2 showed that microarray-specific free

energy rules (M5) were better predictors than the linear mapping

from in-solution values (M4), although they also showed lowered

fitting quality in comparison to single mismatches. The predictive

errors were least of all according to the distribution in Figure 3D,

but this was biased by the fact that complete denaturation

happened at very low formamide concentrations (0–10%) in

general with double mismatches. An example is provided in

Figure 2D, while 100 more randomly selected probes are

presented in Figure S1E.

Tandem Mismatches
A special type of double-mismatch is the tandem mismatch,

which involves two adjacent mismatches [50]. Thus, the loss term

in Equation 2 should include three nearest neighbors and the loop

term a quadruplet that accommodates a tandem mismatch pair in

the middle flanked by two base pairs. In the simplest case (model

M8, Table 2), we again assumed a linear relationship of the loop

term (DGuTM,ma) with in-solution parameters (DGuTM,sln) obtained

from UNAFold. However, the massive number of 1,176 combi-

nations of tandem quadruplets lowers the confidence in the

indirect calculation of in-solution parameters based on limited

data [42]. Thus, simple microarray-specific rules may again be

preferred to solution-based modeling.

We developed M9 with a set of eight rules (see Table S1D)

describing the stability of tandem mismatches based on our

observations with single mismatches (Table S1B). The model first

divides tandem mismatch quadruplet into two halves, each having

a closing base pair and a mismatch. Based on single mismatch

data, whether the closing pair is an AT- or GC-type affects the

loop stability, such that GC pairing generally stabilizes the

mismatch. As for the mismatch type, GG, GA, and GT

mismatches show significantly higher stability than others.

Therefore, our eight rules (Table S1D) are established to give a

different score to each one of the 8 combinations of closing pair

(two types) and mismatches (four types). The two scores from

either half of the quadruplet are then added to obtain the overall

free energy of the loop (DGuTM,ma). Initial results with 300 probes

used for model calibration yielded a better s2 statistic than the

solution-based M8 model. However, the validation set showed

somewhat different error squares than residual squares indicating

there was benefit of using more probes (Table 2). We therefore

obtained final best-fitting scores (Table S1D) using the entire

probe set for curve fitting (Table 2). The free energies of the

quadruplets in our dataset were related to in-solution values in a

way similar to single mismatches (Figure 4), except for some

combinations of GT and GG base pairs that were predicted by

UNAFold to stabilize the loop by a significantly negative free

energy, but according to our parameters did not show a negative

contribution (Table S1D). The error distribution of this model

(Table 2 and Figure 3D) was similar to separate double

mismatches. An example fit is provided in Figure 2B, while 100

more randomly selected probes are presented in Figure S1F.

The Effect of Target Concentration
In this study, a uniform amount of target (5 ng in a

hybridization buffer of 8 mL) was used during the model

development. Although total DNA concentration can be con-

trolled in environmental applications, relative abundances of

organisms in the analyzed sample can cause a large range of target

and non-target concentrations. Therefore, it is important to know

if target concentration affects formamide curves in a way that

undermines model predictions. To test this effect, we used an

order of magnitude greater concentration of our target (50 ng) in

independent hybridizations with the same formamide series.

Furthermore, we analyzed an additional dataset obtained with

50 ng of the 16S rRNA gene of R. sphaeroides. As exemplified in

Figure 6A with a probe perfectly matching both targets, when the

signal did not reach saturation levels in the signal scale, 50 ng

target yielded fluorescence values consistent with the 10X increase

in concentration. Despite the remarkable gap in fluorescence

levels, the profiles aligned well when normalized and the

theoretical prediction was not significantly affected (Figure 6C).

When concentrated targets were used, the experimental profiles

of most probes were affected by signal saturation, which was

evident at fluorescence levels of about 40,000 units and above (see

Figure S2). Importantly, this was not the case with the modeling

datasets, since the highest probe signal intensity encountered was

less than 40,000. Typical profiles affected by saturation are shown

in Figure 6B, with another probe that targets both E. coli and R.

sphaeroides. While the level of maximum signal was about

10,000 units with the 5 ng target, the 10X increase in concentra-

tion could not carry this beyond a level of around 60,000 units,

implicating that the full sigmoidal profile could not be observed.

Accordingly, normalized curves could be matched only at higher

formamide concentrations provided that the normalization was

adjusted to offset the signal saturation effect (Figure 6D).

The data in Figure 6 represent the general case except for small

deviations that can be explained by experiment-to-experiment

variability. It follows from the agreement of experimental profiles

that the predictive ability of our models should not be significantly

affected by even large concentration changes. Indeed, a total of

181 E. coli probes (perfect matches) not affected by saturation (i.e.

Imax,40,000 a.u.) showed |err[FA]1/2| values of 1.8961.33%

when hybridized with the 50 ng E. coli target. The same analysis

applied to 50 such R. sphaeroides probes (TileR set, Table 1) resulted

in an absolute error of 1.8261.22% with the 50 ng R. sphaeroides

target. These numbers agree well with the data in Table 2. We

therefore conclude that our models should be applicable to

environmental samples with a range of concentrations, as long as

signal supersaturation is prevented by the optimization of total

target concentration.

Discussion

We adopted the idea of formamide denaturation from FISH

protocols, where the strategy is successfully used for balancing
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probe sensitivity and specificity [3,20]. In FISH, the optimization

is generally carried out experimentally by establishing probe

denaturation profiles (similar to those in Figure 1A) with pure

cultures or clones of target and non-target organisms, an option

that is clearly not feasible for high density microarrays given the

large number of probes. Therefore, we did not only show the proof

of principle for formamide denaturation in microarrays, but also

developed mathematical models for predicting the melting profiles

of perfect and mismatched probe/target pairs. The predictive

accuracy for the position of the melting curves is generally within

5% formamide of the half-denaturation point, remarkably better

than what was previously achieved for FISH with a multi-state

LFEM [23]. This must be in part due to the absence of a stable

secondary structure in the fragmented DNA target of the

microarray method studied, in comparison to the full length

rRNA target in FISH. However, the derived nearest neighbor free

energies in our current two-state model may be reflecting an

averaged out partitioning of nearest neighbors between different

states, including secondary interactions within or between target

fragments. This is consistent with the fact that the scale of nearest

neighbor parameters turned out to be lower in microarrays than in

solution, while that of mismatch loops were consistent (Figure 4).

Overall, we believe that the predictive power achieved by the two-

state LFEM in this study can significantly improve probe design

and optimization in microbial ecology applications of oligonucle-

otide microarrays, as will be discussed below.

The curve-fitting procedure used in this study was carefully

devised to include probes with a large range of melting points. A

key aspect of the mathematical framework was the use of c factors

to adjust theoretical curves when a full sigmoidal profile was not

obtained (Equation 3). We graphically explain how the c factor

affects curve-fitting, and compare alternative approaches to

estimate these factors in Figure S3. For nearly full sigmoidal

profiles, lower formamide concentrations represent points of

approximately 100% hybridization efficiency. In these cases, it is

sufficient to match experimental profiles normalized by Imax to

theoretical profiles with c = 1. On the other hand, when a probe

melts at low formamide concentrations, the sigmoidal curve is

truncated and the experimental hybridization efficiencies cannot

be determined with high enough confidence. Hence, an adjust-

ment of the theoretical curve using c?1 provides a better match of

theoretical and experimental profiles. We tested three different

approaches to calculate c factors. In our preferred approach, c
factors were included as best-fitting parameters. This did not affect

the modeling of formamide denaturation since the loss of the

degrees of freedom by best-fitting c values was taken into account

in key statistics (Equation 5) and c factors do not mathematically

change the melting point, which our modeling effort aims to

Figure 6. Effect of target concentration and type of target molecule on formamide denaturation profiles. Probes E338–359 (A and C)
and E763–780 (B and D) are shown. Both probes perfectly match the 16S rRNA gene of both E. coli (Eco) and R. sphaeroides (Rsp).
doi:10.1371/journal.pone.0043862.g006

Formamide Denaturation in Microarrays

PLOS ONE | www.plosone.org 12 August 2012 | Volume 7 | Issue 8 | e43862



predict. Nonetheless, the use of one c factor per probe may seem

to have caused overparameterization during model development.

We did additional statistical tests to independently show that this is

not the case (Table 3). The details of these analyses are explained

in Text S1. In one set of tests, the selected models were calibrated

with c = 1 for all probes. In another set, we set c equal to the

inverse of the maximum predicted hybridization efficiency (i.e.,

efficiency at 0% formamide) so that the truncated denaturation

profile always started at a value of 1, consistent with the

normalization of experimental intensities with Imax. On the overall,

our evaluations demonstrate that the model predictions were

driven by thermodynamic parameters. Although the alternative

methods resulted in similar conclusions for the test models (Text

S1 and Table 3), a unique advantage of using best-fitted c factors is

the effective buffering of experimental artifacts such as the increase

in signal intensity at low formamide concentrations (Figure S3C)

and general experimental noise. Thus, with the help of c factors,

we were able to estimate a series of thermodynamic parameters,

with minimal influence of experimental artifacts, for the prediction

of probe denaturation in a large range of melting points.

Certainly, our model does not capture free energy parameters

for all possible mismatch conformations in a probe/non-target

duplex (e.g., bulged mismatches with two deletions or inserts, three

adjacent mismatches, etc.) to directly predict their effect on

hybridization efficiency. But the most important (stable) ones were

systematically covered, which allowed us to extend the predictive

algorithm to other (complex) mismatch conformations by penal-

izing them with conservative parameters (see Text S2; Table S2

shows the list of extended free energy rules). The extended model

can be used in the calculation of the hybridization efficiency of

most duplexes with reasonable confidence (see Text S2 and Figure

S4D). The algorithm that simulates formamide denaturation with

LFEM using all thermodynamic parameters established in this

study (Table S1 and Table S2) is named ‘‘ProbeMelt’’ and made

freely available both as an on-line web tool at http://DECIPHER.

cee.wisc.edu and a package in R programming language (R

Foundation for statistic computing, Vienna, VA) (see Text S2 for

details).

Differences with Previous Approaches
The governing equation of our mathematical framework

(Equation 1) is similar to Langmuir isotherms commonly used

for describing the relationship between target concentration and

the fraction of target-bound probes [33,51,52,17]. In addition to

lacking a denaturation term (i.e., m-value and formamide

concentration), Langmuir models differ from LFEM with the

assumption that the target is in excess of probe. This assumes

probes are saturated at a hybridization efficiency of 1, which was

clearly not the case in our experiments as the fluorescence intensity

at the plateaus of sigmoidal melting profiles (i.e., points of

hybridization efficiency , 1) largely varied and was consistently

elevated by increased target (Figure 6). As shown in Figure 6B, we

encountered signal saturation with the highly concentrated target,

but this is likely due to the sensitivity of the scanner as the signal

always converged to the upper limit of the measurable signal scale

(Figure S2). At lower signal values, 10 times more target caused

around 10 times higher signal intensity (Figure 6A and Figure S2).

Thus, the data was more consistent with the depletion of the target

rather than the probe, as was assumed in the derivation of

Equation 1. When the Langmuir model is rejected, the compe-

tition for the limited target molecules may need to be addressed

[53]. However, this competition effect would be evidenced by a

Table 3. Additional statistical testsa,b.

Parameters Statistics |err[FA]1/2|

Test Model eliminated permuted randomized fitted Sr2/n s2 e2
val e2

ov R2 m ,5%

T1 M3 c-factors na na na na na na 0.0118 0.93 2.1 93.4

T2 M3 na c -factors na na na na na 0.0158 0.90 2.1 93.4

T3 M3 na DGuNN na na na na na 0.035 0.78 5.7 52.5

T4 M3 na DGuNN, Probec na na na na na 0.052 0.68 7.7 38.5

T5 M3 na Na Po, m na na na na 0.19 20.18 14 10

T6 M1 c -factors Na na Po, m 0.0321 0.0322 0.0319 0.0320 0.80 2.7d 86.0d

T7 M3 c -factors Na na Po, m, DGuNN 0.0118 0.0119 0.0115 0.0116 0.93 2.1 93.8d

T8 M5 c -factors Na na na na na na 0.0147 0.90 2.0 94.5

T9 M5 na c -factors na na na na na 0.028 0.815 2.0 94.5

T10 M5 c -factorse Na na na na na na 0.0107 0.93 2.0 94.5

T11 M5 na DGuMM Loop na na na na na 0.0144 0.905 3.0 82

T12 M5 c -factorse Na na DGuMM Loop 0.0104 0.0107 0.0104 0.0104 0.93 2.0 94.4

aSee Table 2 for the definition of models and parameters and the reference values. See Text S1 for the details of the statistical tests.
bRandomization and permutation tests are based on at least 100 runs until convergence. Significant figures in these results reflect the uncertainty in the converged
values.
cProbes were permuted while maintaining the original sequence of each probe. This test corresponds to permuting the probe length in addition to the nearest
neighbor free energies.
dShow improvement over original models although statistical parameters indicate otherwise. The discrepancy reflects the fact that half-denaturation point is not a
perfect representation of the melting point for experimental profiles without a plateau (e.g., see Figure S3C). This adversely affects the results with c-factors more than
without, as the models without c-factors tend to compensate for the lack of good fitting in the vertical by moving closer to experimental values in the horizontal,
although this movement does not mean a better match. Since the original models in the main text always use c-factors, the evaluation of model predictions are
conservative and more accurate with respect to half-denaturation points. This analysis provides just another way of seeing how c-factors buffer experimental artifacts as
discussed in Text S1.
eBest-fitted c replaced by a model-derived factor (see Text S1).
doi:10.1371/journal.pone.0043862.t003
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good correlation between predicted hybridization free energy and

fluorescence intensity, which also was not the case in our study

(Figure 1B). The actual mechanism of surface hybridizations on

microarrays is not well understood [18,28,54]. It is beyond the

scope of this study to justify the conceptual model behind our

mathematical framework, except to show that the simulations with

the equilibrium model adequately represented experimental

denaturation profiles, thereby fulfilling our main goal.

Unlike most other models of oligonucleotide microarray

hybridization [51,53], the aim of the LFEM is not to find the

concentration of the target molecules, but to predict the

hybridization efficiency at a given formamide concentration,

which produces the normalized melting profiles regardless of the

concentration. Focusing the predictive power on target concen-

tration is problematic for diagnostic applications in several ways.

First of all, since most DNA-targeted protocols are end point PCR-

dependent, the concentration in question is a biased quantity even

if accurately predicted [55]. Secondly, concentration predictors

work on the signal intensity variation assuming it is a function of

relative target concentration as well as binding free energy.

However, if the target is labeled by the common random priming

method as in this study, there will be significant differences in

signal intensity over different fragments within the same target

(e.g., the fluctuations in Figure 1D), which clearly undermines the

ability to pick target to target differences. But most important for

microbial ecology applications, a strong signal response that leads

to the prediction of a concentration may be both from a target or a

closely related non-target as depicted in Figure 7 (e.g., at 0%

formamide). Thus, detecting the absence/presence of organisms at

high stringency (e.g., 20–25% formamide, Figure 7), rather than

measuring their concentration, seems to be a more feasible

approach, which requires the calculation of melting curves.

Another property of hybridization that our LFEM is not trained

to capture is the decrease in signal intensity upon the insertion of a

mismatch (e.g., the lowered plateaus of mismatches in Figures 2A

and 2H). Since the theoretical hybridization efficiency is close to 1

in the plateau of both perfect and mismatched duplexes, the

LFEM cannot directly address this issue, although the model is

unaffected by it because of the normalization by Imax. Arguably,

mismatch stability (i.e., DDGu) can be quantified by the decrease in

signal intensity level as another way of developing free energy rules

for mismatch discrimination, as was done previously [33].

However, the prediction of the change in plateau levels is also

not a viable approach for applications in microbial ecology,

because the moderate decrease in signal associated with a

mismatch can be easily offset by the relative abundance of the

non-target organism. Figure 7 illustrates this phenomenon as well.

Once again, a more realistic approach is to force the mismatched

duplex to dissociate by applying stringent conditions, so that it

counts as absent even when it is highly abundant (e.g., Figure 7,

20–25% formamide).

To the best of our knowledge, the only other systematic use of

denaturation trends for microarray optimization appears in the

non-equilibrium thermal dissociation (NTD) approach [10,46].

Applications of NTD involve the derivation of dissociation profiles

with reference organisms as well as environmental samples for

matching the two [9,56,57]. This approach is not feasible with

high-density microarrays designed to target thousands of organ-

isms at once [13,15,16]. In addition to the use of formamide rather

than temperature for denaturation, an important difference that

sets apart our methodology from NTD is the adjustment of

stringency during the long hybridization period to achieve

equilibrium-like conditions, whereas NTD is based on a kineti-

cally-driven dissociation during the wash step [58]. Thus, we took

advantage of equilibrium thermodynamics and developed predic-

tive algorithms to create a feasible alternative to the experimental

testing of probes for optimization. Furthermore, we do not

recommend the matching of predicted melting profiles to

experimental ones, as not only would this require an even higher

accuracy of predictions than what we have obtained, but also the

possible superimposition of signals from perfectly matching and

mismatched targets could undermine the curve-matching ap-

proach [58]. The recommended use of our modeling approach for

the rationalization of probe design and optimization is described

next.

Application of LFEM to Diagnostic Probe Design
In this section, we describe how the LFEM-based calculations of

hybridization efficiency can be useful for the optimization of probe

sensitivity and specificity in microbial ecology applications. The

general practice aims at determining the absence/presence of

organisms by setting a signal intensity threshold to define

successful target capture [13,19,59,60]. When there is sufficient

signal from the capture of a mismatched non-target gene, probe

specificity is compromised. To minimize the chance of false

positive identification because of cross hybridizations, multiple

probes with identical or nested coverage are designed per target

group (i.e., operational taxonomic unit; OTU), and nearly all of

these are demanded to be bright in order to call a target group as

present (e.g. 9 out of 10 probes). This assumes the probes are

designed with high enough sensitivity to avoid signal intensities

below the threshold when the perfect match target is captured

(e.g., if 2 out of 10 probes targeting an existing OTU fail to give

bright signal, then it is a false negative identification). Therefore,

the obvious target for our predictive denaturation approach is the

design of optimal probes and hybridization conditions to obtain

the highest possible hybridization efficiency with the targets while

keeping the hybridization efficiency with the non-targets at the

lowest possible level, thus minimizing the chance of false positive

and false negative identification of OTUs.

For the demonstration of optimization, we did sensitivity and

specificity analysis with the 16S rRNA gene of two organisms,

E. coli and R. sphaeroides, such that E. coli served as target for

perfect-match E. coli probes (TileE and Length sets in Table 1) and

non-target for R. sphaeroides probes (TileR, Table 1), and vice versa.

Figure 7. Formamide denaturation profiles with conventional
target and highly abundant non-target. The example probe,
E751–772, is a perfect match to the 16S rRNA gene of E. coli and has one
mismatch to R. sphaeroides. Curves are theoretical predictions fitted to
the experimental scale. Eco, E. coli; Rsp, R. sphaeroides.
doi:10.1371/journal.pone.0043862.g007
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It is important to note that probes that would be filtered due to

poor signal intensity during model development (see Methods)

were included in these tests to avoid biasing the results. The

amount of E. coli target was 5 ng and it represented an organism of

moderate abundance assuming total DNA used in an environ-

mental application was 50–100 ng. This number is consistent with

our signal-optimized applications with real mixed communities

where 70 ng of total target is used for hybridization without

causing frequent signal saturation problems (not shown). The

amount of R. sphaeroides target was 50 ng, and therefore, it

represented an unlikely abundance of a single organism in total

DNA causing signal saturation with most probes and challenging

specificity at the extreme levels. The optimization of probe

sensitivity and specificity by predictive modeling follows two steps.

First, since microarray hybridizations are typically performed at

a single level of stringency, it is important to be able to design

probes with similar formamide-based stabilities (i.e., similar

melting points), to achieve a consistent level of hybridization

efficiency with target organisms over thousands of probes. We can

do this with the ProbeMelt algorithm by predicting melting points.

In Figure 8A, we show the mismatch discrimination potential for

probes designed to have a narrow range of predicted melting

points, between 18–22% formamide. In the E. coli set there are

561 such probes that have one or more mismatches to

R. sphaeroides. We tested the mismatch discrimination ability of

these probes against this extremely abundant non-target. The

results show that, when formamide is not present, the discrimi-

nation for 1–2 mismatches is not possible at all and about half of

the probes with .2 mismatches give a bright signal. The situation

changes radically at 20% formamide (Figure 8A), which represents

the targeted melting point in the design of these probes. However,

there is about a 12% chance of poor target capture at this high

level of stringency (i.e., the corresponding perfect match column in

Figure 8A shows only 88% above signal threshold) implying that

sensitivity is not optimal. As a compromise, hybridization can be

done at 15% formamide (i.e., ,5% less than the predicted melting

points), to decrease the rate of low signal from target to ,2% and

bring the rate of high signal from non-targets to about 72% for 1–

2 mismatches and 13% for more mismatches (Figure 8A).

Although mismatch discrimination potential seems low for 1–2

mismatches, it should be considered within the context of a

multiple-probe strategy, which results in a false positive identifi-

cation only when several non-target OTUs are captured by

different probes. Since it is unlikely to have many such non-targets

in the same environmental sample (i.e., total DNA is 50–100 ng

while the tested non-target was 50 ng), these results show that the

predictive formamide denaturation strategy can be useful to avoid

false positive identification of even extremely abundant non-

targets. The second half of Figure 8A shows the experimental

simulation with 378 R. sphaeroides probes tested against 5 ng E. coli

as the moderately abundant non-target. In this more likely

scenario, using 15% formamide is enough to effectively suppress

the signal intensity of mismatched probes (Figure 8A). Thus, 15%

formamide can be an optimal point for the sensitivity and

specificity of probes designed with a predicted melting point

around 20% formamide.

It is clear from the experimental simulations in Figure 8A that

not all mismatches can be perfectly discriminated even under

optimal conditions, as could be anticipated by the proximity of

some denaturation profiles encountered (e.g., Figures 2E and 2H).

Therefore, an important question is whether problematic

mismatches can be predicted beforehand. This brings us to the

second step in optimization: the prediction of worst non-targets

based on hybridization efficiency calculations during the design

process. We show in Figure 8B the relationship between predicted

hybridization efficiency and percent above threshold for all

mismatched duplexes at four formamide concentrations. Consis-

tent with our goals, the predicted efficiency of R. sphaeroides probes

hybridizing with the moderately abundant E. coli non-target

dictates the frequency of false signal. An important result here is

that more than 2 mismatches can also bind effectively, as captured

by the thermodynamic model. On the other hand, the extremely

abundant non-target R. sphaeroides causes specificity problems with

E. coli-targeted probes starting at ,0.1 hybridization efficiency

(Figure 8B). Nonetheless, probes predicted to have ,0.05

hybridization efficiency, which are the majority of the population

at all formamide points considered (e.g. 72% of the probes for

15% formamide), are still dim even when they have 1 or 2

mismatches. Thus, by defining probe specificity based on the

hybridization efficiency with potential non-targets, probes with the

best specificity scores can be selected during probe design with the

help of the ProbeMelt algorithm.

Figure 8. Fraction of probes above an arbitrarily defined
threshold of 1750 fluorescence units. (A) Probes designed to have
a melting point of 18–22% formamide and hybridized at 0% (red), 15%
(green), and 20% (blue) formamide. Left panel, E. coli probes hybridized
with 5 ng E. coli target (PM data) and 50 ng R. sphaeroides non-target
(MM data); right panel, R. sphaeroides probes hybridized with 50 ng R.
sphaeroides target (PM) and 5 ng E. coli non-target (MM). (B) The
predictive power of hybridization efficiency for E. coli probes hybridized
with 50 ng R. sphaeroides (dashed lines) and R. sphareoides probes
hybridized with 5 ng E.coli (solid lines) for all mismatches (red), 1–2
mismatches (green), and 3–5 mismatches (blue). Data from formamide
concentrations 10, 15, 20, and 25% were combined to maximize the
sample space for each data point. x-axis shows midpoints of bins with a
hybridization efficiency window of 0.1, except for end bins (window of
0.05).
doi:10.1371/journal.pone.0043862.g008
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In summary, we recommend the following steps for the

systematic optimization of microarray protocols with LFEM: (i)

prescribe a single formamide concentration for hybridization (e.g.,

15% formamide), (ii) design multiple probes per target group (e.g.,

10) to allow predictive errors without compromising identification,

(iii) at every target site, adjust probe length to obtain a uniform

probe stability throughout the array, such that the theoretical

melting points are always slightly higher than the prescribed

experimental formamide concentration (e.g., keep the probe

melting points in the range of 18–22% formamide), (iv) set a

specificity score for each probe candidate by calculating the

hybridization efficiency with mismatched non-targets and select

for probes that have best specificity scores. Steps iii and iv are

applicable for designs with large target datasets since the

ProbeMelt algorithm can evaluate more than a million probes

per second. Step iv is also a significant departure from traditional

design approaches based on mismatch numbers or types [61,62],

since it takes advantage of the thermodynamic parameter sets that

were rigorously developed in this study. In addition to helping with

the design and optimization phase, we expect our models to be

useful for the interpretation of signal patterns from hybridized

microarrays. Advanced algorithms for organism detection from

complex array data have been developed [63,64,65], but they

either lack predictive tools for the evaluation of probe hybridiza-

tion with non-targets [64,65], or use in-solution free energy

parameters as a preliminary approach [63]. Therefore, it is not

hard to imagine hybridization efficiency predictions improving the

accuracy of interpretation algorithms for diagnostic microarrays.

Application to other Platforms
Because of platform- and protocol-specific variables such as

probe density and fragment length, our model should be applied to

other types of microarrays with care. Obviously, the modeling

parameters are optimized for 4-Plex Nimblegen arrays hybridized

at 42uC, and therefore, the ProbeMelt algorithm developed in this

study should be directly applied only for these conditions. While

we do not expect the free energy rules to differ significantly in

other similar platforms (if the temperature and hybridization

buffers are not changed), it is anticipated that the effective probe

concentration ({P}o) may need to be re-optimized when probe

concentration or configuration are altered. On the other hand,

more significant adjustments may be necessary if the target

labeling procedure is different. For instance, if long, unfragmented

target nucleic acids are prepared [66], significant competition with

stable secondary structures may change the thermodynamics of

binding. Thus, re-optimization may need to be extended to

nearest neighbor rules or the m-value. In any case, probe sets

similar to those used in this study can be included in a custom

array design, so that the parameters can be re-optimized if

necessary, following our modeling approach. Also, since our

modeling framework is derived assuming the probes are not

depleted by the local target the validity of this assumption needs to

be verified as probe saturation has been clearly shown in some

studies with other platforms [52]. If probe depletion appears to be

the case, the hybridization efficiency term of this study can be

redefined based on the ratio of target-bound probes as in

Langmuir models [51,52] and the same linear free energy

approach can be applied. With the current technology of

microarray fabrication allowing the placement of millions of

probes on a slide, a set of ,15,000 probes allocated for modeling

can be a negligible amount. Extension of the specific formamide

denaturation LFEM to other platforms could also be informative

about the general applicability of the modeling framework,

thereby helping with the efforts to understand the mechanisms

of hybridization.

In conclusion, the thermodynamic modeling framework estab-

lished to simulate formamide denaturation can be effectively used

for the design and optimization of probes in microbial ecology

analyses. For similar platforms and protocols obeying the

assumptions of this work, the LFEM can be directly applied using

the online ProbeMelt algorithm. For others, the systematic

approach developed can be followed to customize the thermody-

namic parameters.
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