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1 Biotechnology Research Institute - National Research Council, Montréal, QC, Canada, 2 Lady Davis Institute for Medical Research, Segal Cancer Centre - Jewish General
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Abstract

The androgen receptor (AR) remains an important contributor to the neoplastic evolution of prostate cancer (CaP). CaP
progression is linked to several somatic AR mutational changes that endow upon the AR dramatic gain-of-function
properties. One of the most common somatic mutations identified is Thr877-to-Ala (T877A), located in the ligand-binding
domain, that results in a receptor capable of promiscuous binding and activation by a variety of steroid hormones and
ligands including estrogens, progestins, glucocorticoids, and several anti-androgens. In an attempt to further define somatic
mutated AR gain-of-function properties, as a consequence of its promiscuous ligand binding, we undertook a proteomic/
network analysis approach to characterize the protein interactome of the mutant T877A-AR in LNCaP cells under eight
different ligand-specific treatments (dihydrotestosterone, mibolerone, R1881, testosterone, estradiol, progesterone,
dexamethasone, and cyproterone acetate). In extending the analysis of our multi-ligand complexes of the mutant
T877A-AR we observed significant enrichment of specific complexes between normal and primary prostatic tumors, which
were furthermore correlated with known clinical outcomes. Further analysis of certain mutant T877A-AR complexes showed
specific population preferences distinguishing primary prostatic disease between white (non-Hispanic) vs. African-American
males. Moreover, these cancer-related AR-protein complexes demonstrated predictive survival outcomes specific to CaP,
and not for breast, lung, lymphoma or medulloblastoma cancers. Our study, by coupling data generated by our proteomics
to network analysis of clinical samples, has helped to define real and novel biological pathways in complicated gain-of-
function AR complex systems.
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Introduction

Significant advances in genomic sequencing methodology have

allowed a better assessment of the extent of somatic mutations

accrued in common neoplasms [1,2]. More important is the

realization that tumors significantly vary genetically from one

patient to another and within a singular patient there exists

extensive inter-tumoral heterogeneity and intra-tumoral heteroge-

neity [3,4,5]. A significant number of these genetic alterations are

missense mutations that provoke new gain-of-function properties

that render a particular gene proactive to tumoral evolution and

are referred to as driver mutations. A better understanding of these

new properties would lead to a better interpretation of oncogen-

esis, but this is difficult due to a large number of different

mutations, the unpredictable nature of gain-of-function properties

associated with somatic mutations, the possible extensive interplay

of different somatic mutants and the ensuing selection processes

initiated by the microenvironment or by therapy itself. Such

complex ‘‘systems’’ require a more global ‘‘omics’’ approach and

more network analysis, rather than the classical single gene

approach, to garner more critical information related to neoplastic

evolution.

In keeping with the newly defined mutational landscape of

tumors, prostate cancer (CaP) also has extensive genetic alterations

that range from single missense mutations, copy number variation,

splicing variants, genetic rearrangements and short DNA alter-

ations in a large number of genes [1,2,6,7], including the androgen

receptor (AR) gene. It is not unexpected that AR mutations can
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add to the protein’s repertoire of powerful new functions [8,9] and

these gain-of-function attributes may allow the AR to function in

an aberrant manner. A number of somatic CaP AR mutants,

especially the most commonly occurring CaP AR mutation,

Thr877Ala (T877A), have unique gain-of-function properties: they

can bind several classes of steroids promiscuously (e.g. estrogens,

progestins, glucocorticoids) with subsequent transactivation, or be

hyperactivated by normal ligands [10]. Classic anti-androgen

treatments [e.g. flutamide, cyproterone acetate (CPA) or bicalu-

tamide] have generated, through selection pressure, specific

somatic AR mutations, e.g. Trp741Cys (W741C) and His874Tyr,

resulting in subversive ARs that are fully active with these drugs

[11]. Even the next generation of anti-androgen drugs exemplified

by enzalutamide (MDV-3100) has provoked specific AR mutations

[12,13]. This observation also correlates with a dramatic fall in

PSA levels subsequent to anti-androgen withdrawal [11]. The

T877A-AR mutations, which is also present in prostate cancer cell

line LNCaP, has been reported by various individuals to occur in

25 to 33% of androgen-independent or castrate-resistant tumors

[11,14,15,16].

Recently, our own work strongly suggests that the AR function

extends beyond its classical role as a transcription factor and

includes the novel properties of RNA splicing, DNA methylation,

proteasomal interaction and protein translation at the polyribo-

somes themselves [17]. Furthermore, the great functional diversity

of the components of AR complexes exemplifies the intricate

nature of protein-protein interactions associated with generating

the appropriate AR biological output. These novel AR functions

may mediate cellular processes and offer new areas in which

somatic AR CaP mutants might ‘‘indulge’’ and promote CaP

oncogenesis.

In an attempt to describe novel gain-of-function properties

associated with mutant CaP ARs, a proteomic-coupled network

analysis was performed. Multiple proteomics-mass spectroscopy

investigations were carried out in order to fully characterize the

protein composition of T877A-AR ‘‘complexes’’ (interactome)

under different classes of hormone/ligand conditions reflecting the

promiscuity of ligand binding associated with T877A. Critically,

mutant CaP ARs may have their own unique ability to undergo

and define new interactions. The coupling of the data generated

by our proteomics screen to system biology analysis has been

helpful in defining real and novel biological endpoints in AR

complex systems, within a clinical disease perspective.

Materials and Methods

Cell lines
The LNCaP prostate cancer cell lines was obtained from the

American Type Culture Collection (ATCC), Rockville MD.

Cell culture, steroid hormones, ligands and stimulation
experiments

LNCaP cell line was cultured in RPMI 1640 media supple-

mented with FBS (10%), at 37uC, 5% CO2 in T-75 plastic culture

flasks. Once confluent, the medium was changed to RMPI

supplemented with 10% charcoal–dextran stripped FBS and

incubated for an additional 24 h. The following day, the medium

was changed to fresh RMPI/charcoal–dextran stripped FBS for

overnight hormone/ligand stimulation studies for an 18 hour

period. Steroids hormones were used at the following final

concentrations, 10 nM dihydrotestosterone (DHT), 10 nM mibo-

lerone (MB), 10 nM R1881, 10 nM testosterone+10 mM finaste-

ride, 10 nM 17b-estradiol, 10 nM progesterone, 10 nM dexa-

methasone, and 100 nM cyproterone acetate (CPA).

Affinity purification and Western blotting
LNCaP whole cell lysates were prepared by freeze-thaw method

with 1X PDG buffer containing the appropriate hormone/ligand

[18]. Lysates were then carried over for a-AR co-immunoprecip-

itations [AR(N20), Santa Cruz Biotechnology, Santa Cruz, CA]

overnight at 4uC. A 50% Protein A Sepharose slurry was added to

each sample and incubated at room temperature for 90 min.

Beads were washed three times with wash buffer (50 mM Tris-

HCl pH 8.0, 150 mM NaCl, 1% Tween 20) and resuspended in

100 mL 1X SDS gel loading buffer. Samples were denatured by

boiling, and resolved on a 10% SDS-polyacrylamide gel before

silver staining according to manufacturer’s guidelines (BioRad) or

transfer to a nitrocellulose membrane for Western blot analysis

using monoclonal antibody AR(441) (NeoMarkers, Fremont, CA).

Mass spectrometry and peptide comparison
TCEP (tris(2-carboxyethyl)phosphine) was added to the protein

samples to reach the concentration of 5 mM. Samples were

incubated at 37uC for 30 min. One mg of trypsin was added and

the samples digested overnight at 37uC, then dried down in a

SpeedVac and resolubilized in 50 ml of ACN 5%/formic acid (FA)

0.2%.

All MS analyses were performed using an LTQ-Orbitrap

hybrid mass spectrometer with a nanoelectrospray ion source

(ThermoFisher, San Jose, CA) coupled with an Eksigent nano-LC

2D pump (Dublin, CA) equipped with a Finnigan AS autosampler

(Thermo Fisher, San Jose, CA). Twenty ml of each sample was

injected on a C18 precolumn (0.3 mm i.d.65 mm) and samples

separated on a C18 analytical column (150 mm i.d.6100 mm)

using an Eksigent nanoLC-2D system. A 76-min gradient from

(A/B) 10–60% (A: formic acid 0.2%, B: acetonitrile/0.2% formic

acid) was used to elute peptides with a flow rate set at 600 nL/min.

The conventional MS spectra (survey scan) were acquired in

profile mode at a resolution of 60,000 at m/z 400. Each full MS

spectrum was followed by three MS/MS spectra (four scan events),

where the three most abundant multiply charged ions were

selected for MS/MS sequencing. Tandem MS experiments were

performed using collision-induced dissociation in the linear ion

trap.

The comparisons of peptide abundance across the different

experimental paradigms were achieved using label-free quantita-

tive proteomics [19,20]. Briefly, raw data files from the Xcalibur

software was converted into peptide map files representing all ions

according to their corresponding m/z values, retention time,

intensity and charge state. Peptide abundance was then assessed

using the ‘‘peak top’’ intensity values. Intensities of peptides eluting

across several fractions were summed together, and only a

coefficient of variance (CV) allowing the maximal ion transmission

was considered to calculate peptide intensity. Clustering of peptide

maps across different sample sets was performed on the peptide-

associated Mascot entry using hierarchical clustering with specific

tolerances (+/215 ppm of peptide mass and +/21 min of peptide

retention time). Normalization of retention time was performed on

the initial peptide cluster using a dynamic and nonlinear

correction that confines the retention time distribution to less

than 0.1 min on average. Reproducibility changes in abundance

across conditions was determined using a two-tail homoscedastic t-
test on sample replicates to identify peptide clusters with p-values

,0.1 with fold changes greater than 7 standard deviations. Peptide

clusters fulfilling these selection criteria was inspected manually to

validate identification and changes in abundance. Expression

analyses were performed on proteins identified by at least two

different peptide sequences. Expression values and relative

standard deviation were gained by averaging the intensity
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differences and standard deviations of the four most intense

peptide triplets after removing outlying peptide clusters. Normal-

ized proteomic data can be found in Table S1.

Datasets for network construction and gene expression
analysis

All AR interactors were given NCBI gene IDs. Human protein

interaction information was compiled from diverse data resources

and annotation databases such as Biomolecular Interaction

Network Database (BIND), the Database of Interacting Proteins

(DIP), Human Protein Reference Database (HPRD), IntAct, and

Molecular INTeraction database (MINT), most of which contain

curated interaction data and high-throughput data. We generated

a metadata of protein interactions by merging these data with our

own manually curated human signaling network containing 4,000

proteins and 22,000 signaling relations [21,22,23].

A protein interaction network was constructed for each

hormone using our manually curated human signaling network

and protein-to-protein interaction network. We only considered

proteins that were $2.5 times the hormone condition abundance

(signal) vs. the vehicle control abundance from the MS dataset, to

be considered significantly present. In the network, a node and link

represent the protein and interaction, respectively. To find the

highly interconnected regions of the network, for each hormone,

we scored each pair of interaction based on the number of

neighboring nodes they have in common. This gave us a matrix

with all the scores between all the interaction pairs. Hierarchical

clustering was applied to the matrix and a threshold score

calculated based on the partition density allowing us to identify the

highly interconnected regions (clusters) for each of the hormone

networks.

Next, we used these protein clusters and identified GO-terms

(http://www.geneontology.org/) that are significantly associated

with each of the protein clusters (p-value,0.05, hyper-geometric).

We also used Gene Set Enrichment Analysis (GSEA) defined

pathways and performed GSEA if 25% of the protein cluster’s

genes were in the pathway. For the pathways and GO-terms that

were significant from the GSEA results (p-value,0.05), we also did

survival analysis. We used genes associated with these GO-terms

and performed GSEA using GSE21034 [24].

RNA extractions and microarray analysis
LNCaP cells were stimulated with panel of ligands as described

above, and total RNA was extracted using TRIZOL (Invitrogen,

Carlsbad, CA). RNA samples were then processed by Quebec

Genome Innovation Centre (McGill University, Montreal, Can-

ada), for microarray analysis with Illumina Human HT-12

Expression Beadchip v4 (Illumina, San Diego, CA). Raw data

was processed using R [22,25].

Two global heatmaps were made. The first heatmap includes

the most differentially expressed gene for each hormone using t-

test (p-value,0.05), where each hormone is compared against all

others. The second heatmap includes the top 10, 20, 50 and 100

genes with the highest variance. The t-test finds the most

differentially expressed genes that are specific to each hormone,

whereas the variance helps us observe genes that are differentially

expressed across multiple hormones. GSEA analysis was per-

formed using GSE21034 [24], of the 10, 20, 50 and 100 genes that

showed the highest variance.

Progression and Survival Analysis
Gene expression profiles, patient survival data, and demo-

graphic information for the 267 clinical prostate samples (29

normal, 181 primary and 37 metastatic tumors) were obtained

from GSE21034 [24]. Breast, lung, lymphoma and medulloblas-

toma datasets were obtained from the Broad Institute (http://

www.broadinstitute.org/cgi-bin/cancer/datasets.cgi) [26]. We ex-

amined the post-radical prostatectomy prognostic values of a

subnetwork based on gene expression profiles of primary tumors,

and performed Kaplan-Meier analysis by implementing the Cox-

Mantel log-rank test using R as described previously [22,25]. If the

p-value is less than 0.05, the subnetwork was treated as statistically

significant to classify the tumors into non-metastatic and

metastatic tumors. We stratified recurrent vs. non-recurrent CaP

cancer based on the following criteria: PSA ($4 ng/mL), Gleason

($7), Tumor Stage ($3) and combined (PSA+Gleason+Tumor).

Structure Preparation for MD simulation
The Crystal structure of DHT (1I38) and CPA (2OZ7) bound to

T877A mutant AR-LBD and testosterone (2AM9) and R1881

(1E3K) bound to wild type AR-LBD are available in the Protein

Data Bank (PDB). The complexes of different ligands bound to the

T877A mutant AR-LBDs were further prepared for MD

simulations using Xleap [27] in AMBER10 [28]. The generalized

AMBER force field (GAFF) and ff99SB [29] parameters were used

for eight different ligands. The complex was solvated in a

truncated octahedron TIP3P [30] water box. The distance

between the wall of the box and the closest atom of the solute

was 12.0 Å, and the closest distance between the solute and solvent

atoms was 0.8 Å. Counterions (Cl2) were added to maintain

electroneutrality of the system. Each system was minimized, first

by applying harmonic restraints with force constants of 10 kcal/

mol/Å2 to all solute atoms; second, by heating from 100 to 300 K

over 25 ps in the canonical ensemble (NVT); and lastly by

equilibrating to adjust the solvent density under 1 atm pressure

over 25 ps in the isothermal–isobaric ensemble (NPT) simulation.

The harmonic restraints were then gradually reduced to zero with

four rounds of 25-ps NPT simulations. After additional 25-ps

simulation, a 15-ns production run was obtained with snapshots

collected every 1 ps. For all simulations, 2 fs time step and 9 Å

non-bonded cut-off were used. The particle mesh Ewald method

[31] was used to treat long-range electrostatics and bond lengths

involving bonds to hydrogen atoms were constrained by SHAKE

[32].

Results

Comparative network characterization of T877A-AR
complexes: interactome and gene expression studies

Our ability to capture both ligand-bound and unliganded full-

length wild-type AR by affinity chromatography under physiolog-

ical conditions has previously allowed us to pursue a proteomics

approach in order to characterize the components of wild-type AR

complexes. This was done by subjecting such complexes to tryptic

digestion followed by mass spectrometry (MS) to assign protein

identification, in effect creating AR interactomes initiated by

ligand binding [33]. To our MS data, a label-free quantitative

method has now been applied across the different experimental

paradigms (see Materials and Methods) [19,20], which allowed us

to obtain data related to protein identification, along with

abundance, thus allowing for direct comparisons between stimu-

lation conditions.

The aim of differential hormone stimulation conditions will

allow us to determine whether disease etiology of the T877A-AR

mutation is dependent upon ligand and co-factor status. There-

fore, we used LNCaP cells that endogenously express the T877A-

AR mutation to characterize the ligand promiscuous protein
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interactome complexes under different hormonal conditions, in

order to highlight the possible distinct complexes that may be

linked to disease progression. LNCaP cells were stimulated with

the following hormones, four androgens: DHT, mibolerone (MB),

R1881, or testosterone (in the presence of finasteride (to prevent

the conversion of testosterone to DHT), or 17b-Estradiol,

progesterone, dexamethasone, or the anti-androgen cyproterone

actetate (CPA), alone or with no-ligand/alcohol-vehicle control.

Hormone stimulated T877A-AR complexes were immunopurified

with an N-terminal specific AR antibody, which would not

interfere with hormone binding to the AR ligand-binding domain.

Eluates from all experimental conditions were analyzed by LC-

MS/MS. In order to increase our sample frequency for peptide

detection in our MS analysis, each experimental condition was

performed four times. Our proteomics data is a compilation of

only fully characterized proteins, with full gene ontology and

function.

Quantitative MS data, for each of the eight hormone

stimulation conditions, was used to create a protein interaction

map (Figure 1A). The protein interaction network map, allows

for a visual analysis of the relationship of the interaction of each

protein with the mutant AR. It is most likely that not all proteins

interact directly with the mutant AR, but can through interme-

diate proteins. Further ontological function classification (see

Materials and Methods) is based on this interaction network map,

by discerning significant clusters of interacting proteins based on

the number of protein-protein interaction connections. Of the

eight hormone stimulation T877A-AR protein lists, we then

systemically applied hierarchal clustering analysis to the experi-

mental conditions. Hierarchical clustering heat-maps representing

the grouping of between whole T877A-AR agonist and antagonist

experimental treatments were then generated (Figure 1B).

Between the different experimental conditions (hormone treat-

ments), a comparative network analysis was applied [21,22,23],

and although four different androgens were used (DHT,

testosterone, MB and R1881), the proteomic profiles of these

androgen ligands do not segregate together, and we observed that

progesterone and dexamethasone AR complexes have proteomic

profiles that look like R1881 and MB, respectively. Moreover, the

protein interaction complex for AR-estradiol-stimulated complex-

es was most similar to the AR-DHT response interactome.

We also proceeded to characterize the gene expression patterns

of the multi-panel hormone stimulated LNCaP cells. Analysis of

most variably expressed genes between the hormone conditions

gave a hierarchical clustering pattern that was much different to

the T877A-AR protein-interaction profile (Figure 1C). Quite

clearly, we again observed that the different androgens used in

these stimulation profiles do not segregate together, and that

synthetic androgens, like R1881 and MB, do not have the same

AR-stimulated transactivation profiles as the natural ligands like

testosterone and DHT. Moreover, the functional ontological

properties between protein-interaction vs. gene expression profiles

of our differential ligand stimulated cells also appear to be very

different. Discerning the impact on disease progression from these

profiles was of particular interest.

To establish statistically significant biological functions, we

implemented the incorporation of Gene Ontological (GO)/

pathways terms using DAVID (Database for Annotation, Visual-

ization and Integrated Discovery, http://david.abcc.ncifcrf.gov/).

Using the protein interaction data from all the ligand stimulation

conditions, the major ontological functions are: RNA pol II-

dependent transcription, protein biosynthesis, with components of

the translational machinery (translation initiation, elongation

factors, ribosomal proteins and other regulatory proteins), RNA

metabolism (specifically RNA splicing), DNA repair (through an

interaction with members of the DNA repair complex), and the

proteasome/ubiquitination pathways (see Table S2). In contrast,

the ligand-dependent gene expression pattern ontological classes

included pathways involved in DNA replication, steroid/sterol

biosynthesis, and apoptosis (see Table S3). Thus, although the

AR is classically described as a transcription factor, its proteome

profile would suggest that the AR is capable of functions beyond

what has initially been described as a gene activator.

Structural analysis of hormone binding to the T877A-AR
To explore the possible mechanisms by which ligands binding to

the mutant AR create different sets of AR interacting proteins, we

obtained the detailed conformation of the receptor, using 15 ns

molecular dynamic (MD) simulation studies (see Materials and

Methods) of the eight different ligands used. Using the docking

program WILMA (Figure 2), we obtained structural data of the

mutant AR bound with progesterone, estrogen, dexamethasone

and MB. The structural data of the mutant AR with testosterone,

DHT, R1881 and cyproterone acetate are already available and as

such, these structures served as the starting points for the MD

simulation studies.

Mutant AR MD simulations were performed over 15 ns

production runs. To inspect the local flexibility of each protein/

hormone complex, we calculated the root-mean-squared deviation

(RSMD) fluctuations of backbone atoms of each amino acid

residue for each mutant AR complex. In the study of globular

protein conformations, one customarily measures the similarity in

the three-dimensional structure by the RMSD of the central

carbon atoms in amino acids, after optimal rigid body superpo-

sition. The most significant fluctuations correspond to loop regions

between a3/a4, a9, a10/a11 and a11/a12 and the helices a11

and a12 themselves of the LBD of AR (Figure 3). It can be seen

that the loop between a9, a10 and a11 is the most flexible region

in all the complexes (Figure 3B). Among the eight different AR

ligand bound complexes, the testosterone- and estradiol-bound

complexes demonstrate the highest flexibility, with some loop

residues having RMSD fluctuations as high as 2.4 Å. Although

these loops are distant from the hormone binding pocket, they are

exposed to the surface and may serve a role as potential binding

sites to other protein partners.

The other major differences observed between the mutant AR

complexes are the positions of a11 and 12, which are known to be

critical for dictating hormone binding and co-activator interac-

tions. Residues of a11 and a12 and the loop between them showed

higher flexibility (Figure 3C). The T877A-AR mutation located

in a11 allows for a more spacious hormone-binding pocket and

will accommodate steroids with different extensions within the D

ring.

The examination of the nature and size of the solvent accessible

surface area (SASA) of proteins is an important tool to measure

potential interaction propensity with neighboring proteins. We

calculated the average SASA of each AR complex from the 15 ns

MD trajectory. No large differences were observed among the

calculated SASAs of different AR mutant complexes, which

ranged from 12,124 to 12,390 Å2. These results show that the

differences are mostly associated with the a11–a12 regions of the

AR-LBD, where the T877A mutation is located. Therefore, we

decided to compare the dynamics among the eight different

complexes, specifically in this region, by using RMSD matrices

(Table 1). The matrices, which essentially capture extreme

movements, reveal regions of high flexibility, especially for CPA

and dexamethasone, compared to other AR-ligand complexes.
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Computational modeling has also been carried out for a

number of other AR somatic mutations in the ligand-binding

domain (LBD), and show sensitivity to a broad range of hormone

ligands, including, AR-W741L[34], -L701H [35,36,37,38], -

H874Y [39,40,41] and -F876L [13]. Determination of the LBD

structure between AR-WT and -H874Y (present in 22Rv1 cells),

when bound to Testosterone in the presence of the N-terminal

FXXLF motif peptide or the TIF2 coactivator peptide, found that

all structures conformed to the canonical nuclear receptor LBD

fold [41]. Moreover, the -H874Y DHT and R1881 structures

conformed to -T877A and -W741L LBD bound to steroid and

nosteroid ligands [34,42]. The double AR-mutant cell lines MDA-

PCa-2a and MDA-PCa-2b, possess the L701H and T877A

somatic mutations, these cells shows similar AR transactivation

and LBD structural properties to the single AR-T877A mutant

LNCaP cells to a broad spectrum of steroid ligands and anti-

androgens, but also show an increased sensitivity cortisol steroids

[35,36]. Most recently, the structure AR-F876L mutations has

been investigated that allows the cell to use the new anti-androgen

enzalutamide as an agonist. Similarly the Leu876 mutation allows

for the antagonist-agonist switch, by accommodating of enzaluta-

mide to the ligand binding pocket [39]. Although only LBD

structural data is available for the AR-F876L mutant, we don’t

believe that enzalutamide vs. androgen binding would significantly

alter helices movement to drastically affect overall global AR

structure, as has been observed with other AR LBD mutants.

AR protein interaction functional clusters, but not
clinically derived gene expression profiles, correlate with
CaP progression and survival outcome

From each of the ligand mutant AR protein interaction

network, we identified specific sub-network modules. These sub-

networks suggest hormone-specific activated pathways involved in

either tumor initiation or progression. The characterization of

ontological functions across the stimulation conditions is important

as these differences or similarities in interacting proteins within the

T877A-AR mutant complex may account for unique or shared

cellular properties contributing to disease progression and

outcomes. Therefore, we annotated significant GO-terms directly

on sub-network modules extracted from the eight different

hormone-protein interaction networks to highlight functions that

Figure 1. Characterization of T877A-AR protein interaction and gene expression profiles. A. Quantified protein interaction network of
DHT stimulated LNCaP cells. The value of each protein, defined by our label-free quantitative MS, is distinguished by both color and size, and sub-
sequent protein-protein interactions. The AR is designated by the black circle. To determine the relationship between protein interaction and gene
expression patterns, hierarchical clustering of multi-panel hormone-stimulated LNCaP cells was carried out. B. Interacting proteins identified by mass
spectrometry. C. Most variably expressed genes upon ligand stimulation. Although it has been suggested that all hormones used are able to activate
androgen-dependent gene transcription with the T877A-AR mutant receptor, there are differences between AR protein complexes and AR gene
expression patterns. This cluster analysis illustrates that even the synthetic androgens like Mibolerone (MB) and R1881, have similar gene expression
profiles, their protein-interaction complexes are more similar to dexamethasone (DEX) and progesterone (PGR), respectively, than to either natural
androgens testosterone and DHT. Moreover, even natural androgens (DHT and testosterone) can be segregated by their protein complexes. This
would suggest that there are functions for the AR beyond gene transactivation. Protein and gene expression values are given as a ratio of quantified
protein of each stimulation vs. vehicle control stimulation.
doi:10.1371/journal.pone.0113190.g001
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may be unique to each of stimulation condition, and extracted the

list of genes corresponding to those GO-terms.

Using the lists of genes from the annotated GO-terms (now to

be referred to as ‘‘gene-sets’’), we determined whether these gene-

sets are enriched in the publicly available clinical prostatic tumor

microarray dataset, by applying Gene Set Enrichment Analysis

(GSEA). We used the clinical data set GSE21034 [24], containing

247 clinical specimens (29 normal, 181 primary and 37 metastatic

tumors). Initial analysis of all primary tumors from this data-set did

not yield obvious enrichment of any gene-sets. However, after

Figure 2. MD average structure of T877A mutant of AR ligand-binding domain with eight different ligands. Docking program WILMA
was used to examine structural changes of the ligand-binding domain of the T877A mutation, upon binding to ligand binding. Illustrated is the
average structure of T877A-AR mutation ligand binding domain with eight different ligands. A. testosterone, B. DHT, C. R1881, D. MB, E. estrogen
(EST), F. progesterone (PGR), G. CPA, H. dexamethasone (DEX). A red box highlights the changes in the helix a 11 loop upon binding to each
hormone ligand.
doi:10.1371/journal.pone.0113190.g002
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further inspection of the data, unique features were noted in

certain tumor samples. Thus, upon returning to the patient

pathology information that accompanied the clinical data-set, two

diverse patient populations could be immediately discerned, and

thus we resegregated our data-sets between 142 White (non-

Hispanic) and 25 African-American samples [other population

groups (Hispanic and Asian) in the 181 available primary samples

were too few to perform GSEA]. By segregating the dataset along

available ethnic demographical information, we immediately were

able to distinctly differentiate gene-sets between White (non-

Hispanic) vs. African-American populations. From these results,

we identified 138 T877A-AR -interacting protein sub-network

modules (gene-sets) that show significant (p#0.05) enrichment of

the T877A-AR -interacting partners that discerned CaP primary

tumors vs. normal samples. Two gene-set examples are shown in

Figure. 4.

Figure 4A represents a gene-set (gene-set 1) that is significantly

enriched among primary tumors of the African-American

population, however subsequent GSEA of the same gene-set did

not show significant enrichment in primary tumors of White (non-

Hispanic) group. One of the unique features of the African-

American gene-set 1 is that is enriched in normal rather than

tumor samples. This suggests that these genes may have anti-

tumorgenic properties or subsequent loss of the expression may

contribute detrimentally to prostate disease. Of particular note, the

genes represented in gene-set 1 are part of the transcription-

dependent DNA repair pathway. Figure 4B shows another gene-

set (gene-set 2) that is significantly enriched in primary tumor

samples of White (non-Hispanic) males and not in the corre-

sponding African-American cohort. Furthermore, the GSEA

results of these two T877A-AR interacting protein gene-sets are

also distinct, and not shared, between primary tumor data of

population groups of White (non-Hispanic) or African-American

males. However, African-American gene-set 1 was significantly

enriched in metastatic tumor data of White (non-Hispanic) males

(data not shown). Due to limited data available on metastatic

tumors from the African-American demographic (2 data sets), and

reciprocal analysis could not be performed. This data highlights

that we can identify gene-sets that show population-specific

distinctions from primary tumors, but also suggests that the

molecular characteristics of AR function underlying disease

Figure 3. Loop structure fluctuations. A. Superimposed average structures of all eight ligand bound receptor complexes. B. Regions of T877A
AR-LBD loop between Helixa9 and Helixa10 showed maximum flexibility. C. Expanded view of Helix a11 and Helix a12 regions of T877A AR-LBD
bound to eight different ligands studied in this study. Residues of a11 and a12 and loop between them showed higher flexibility compared to other
regions of the receptor where T877A is located. Color corresponds to the following ligands: Green - testosterone, Cyan- DHT, Yellow-R1881, Pink- MB,
Rose- EST, Grey- PGR, Orange-CPA, Purple-DEX.
doi:10.1371/journal.pone.0113190.g003
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etiology in metastatic tumors may be common between African-

American and White (non-Hispanic) men.

We next analyzed whether or not these distinct population

T877A-AR gene-sets were predictive of 10-year survival outcomes,

available from the GSE21034 data set [24], based on the following

criteria; PSA ($4 ng/mL), Gleason ($7), Tumor stage ($T3) or

Combined (PSA + Gleason + Tumor stage). From our initial 138

characterized gene-sets, we identified 10 AR-interacting protein

complexes that are indeed predictive for disease outcomes, 8

representing the White (non-Hispanic) population and the

remaining the African-American group. From these 10 gene-sets

(see Table S4), a single gene-set from the White (non-Hispanic)

population (gene-set 2) was able to predict disease outcomes across

all scoring criteria, (PSA, Gleason, Tumor Stage, and combined

(Figure 4C). This particular gene set did not exhibit any

predictive value when analyzed against the African-American

cohort of samples. The African-American gene-set (gene-set 1) was

only able to predict disease outcome using the combined criteria

(PSA+Gleason+Tumor Stage) (Figure 4D). All other gene-sets,

from all population groups, were able to predict survival outcomes

for only one scoring criteria (see Figure S1). Furthermore, these

predictive clusters were shared between all the hormones,

supporting the results from our dynamic modeling study, where

the T877A mutation accommodates all steroid hormones to and

exhibits very subtle structural differences, although the overall

structures appear to elicit the same functional interaction platform.

A similar analysis to that performed with our proteomic data

was performed using our LNCaP multi-panel hormone micro-

array gene expression data across our hormone stimulation

conditions. We selected 10, 20, 50 and 100 of the most variably

expressed genes from our microarray data set to assess the ability

to predict disease progression and outcome between White (non-

Hispanic) or African-American men. We identified two gene-sets

of 10 and 50 genes respectively that were able to distinguish

between normal vs. tumor in White (non-Hispanic) men, but not

African-American men. There appears to be no predictive value

associated with each different class of hormone stimulation,

irrespective of whether the hormones act through T877A-AR or

through their cognate receptor. It is also apparently clear that the

two different data-sets (protein interactome vs. gene expression),

result in two different capabilities of predicting disease outcomes.

This is a direct result of linking ontological function to a specific

protein sub-network vs. arbitrarily selecting a defined number of

genes linked solely to expression profiles.

Finally, although LNCaP cells are derived from a metastatic

CaP lymph-node biopsy from a White (non-Hispanic) male, other

cell lines also possessing the T877A-AR mutation, MDA-PCa-2a

and MDA-PCa-2b, from bone metastatic CaP from African-

American also exist. However, extensive genome-wide gene

expression characterization between these cell lines and LNCaP,

have found them to be most similar to one another vs. other

androgen sensitive cell lines, LAPC4 (possessing a wild-type AR) or

22Rv1 (H874Y-AR) or vs. AR-null cell lines PC3 and DU145

[43]. Thus, if this differential hormone stimulation experiment

were to be performed using MDA-PCa-2a or -2b cell lines, we

would identify the same AR protein complexes in vitro, as

LNCaP, and would also predict disease survival in vivo from

clinical population data.

Characterized T877A-AR protein gene-sets cannot
predict survival outcomes in four other non-CaP cancers

We subsequently determined whether these predictive gene-sets

were cancer specific and extracted gene expression datasets with

available clinical outcome profiles for breast, lymphoma, lung and
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medulloblastoma clinical samples [26]. The gene-sets illustrated in

Figure 4 did not give significant outcome values for any of the

four other cancers (Figure 5). Furthermore, the remaining 8

gene-sets, described above, also lacked significant predictive

outcomes for the same 4 non-prostate cancers analyzed (see

Figure S2). In hormone-dependent breast cancer, certain ethnic

Figure 4. Gene expression profiles of AR protein sub-networks correlate to CaP progression and outcomes. GSEA was applied to
determine the correlation of transcript expression profiles of AR subnetwork protein clusters from raw microarray data of normal and primary tumor
datasets of clinical prostatic samples (GSE21034). A. Illustrated is an enrichment profile of a single AR subnetwork which has significant differential
expression between normal and tumor datasets, and was only significant for a population of White (non-Hispanic) but not African-American men. B.
Enrichment profile for African-American men gene-set 1. Survival outcome analysis was followed-up on these gene-sets. Disease-free survival of CaP
patients stratified by serum PSA, Gleason score, Tumor stage, and combined risk (PSA, Gleason and Tumor Stage) with respect to the AR subnetwork
cluster. Kaplan-Meier analysis was used to plot the fraction of at-risk patients remaining free of disease (y-axis) at the indicated time after radical
prostatectomy (x-axis). Patient stratification is based on serum PSA ($4 ng/mL), Gleason score ($7), Tumor Stage ($T3) and combination of serum
PSA, Gleason score and Tumor Stage score values. C. White (non-Hispanic) functional cluster gene-set 2. D. African-American functional clusters
gene-set 1.
doi:10.1371/journal.pone.0113190.g004
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population differences have been observed, with higher incidences

of breast cancer occurring in African-American woman vs. other

groups [44,45,46], but similar population demographic data used

for the CaP cohort analyzed within our study was not available for

the non-CaP cancers used in this analysis. Such genetic expression

data would have been useful for further confirmatory follow-up

studies. However, the expression of the AR has been described in a

number of non-CaP cancers, especially breast cancer

[47,48,49,50,51,52,53]. It has also been shown that several cell

lines from these non-CaP cancers show androgen sensitivity and

androgen-dependent gene expression profiles similar to CaP cell

lines. However, we have identified AR interactome gene-sets that

can that can differentiate between CaP and non-CaP disease

survival which suggests that there are unique molecular charac-

teristics of AR function in CaP and part of a CaP-specific pathway

in neoplastic development, and also that these gene-sets can be

used to predict CaP disease outcomes between genetically diverse

groups.

White (non-Hispanic) gene-set can predict CaP disease
outcome based on gene copy number

Finally, to deduce a molecular mechanism to account for

differential gene expression patterns for each gene-set, we analyzed

copy number variation of a CGH array dataset (GSE21035) [24],

for the patients used for our GSEA and survival prediction

outcome. For the White (non-Hispanic) gene-set 2, we were able to

confirm that patient survival based on the criteria of PSA value,

Gleason score and combined (PSA+Gleason), was dependent on

copy number variation (Figure 6). This was the only gene-set that

was predictive for survival outcomes based on copy number

variation.

Discussion

Knowledge of various molecular mechanisms of action contrib-

ute to our understanding of wild type AR function. Most

mechanisms require the involvement of ligand binding and

interacting partners. Examples of this include AR interactors

involved in gene transactivation, including HSP70, HSP90, p300

and components of the RNA polII complex [54]. Gain-of-function

somatic mutations, abundant in cancerous tissues, typically add

new functions, adding to the complexity of physiological and

disease outcomes. We investigated the T877A-AR mutation, as it

represents the most common AR mutation in clinical CaP

specimens, and is the AR mutation found in the most studied

prostatic cancer cell line, LNCaP. Mutations like T877A-AR, and

several others in the ligand-binding domain of the receptor, allow

the AR to bind to other classes of steroid ligands such as estradiol,

dexamethasone and progesterone, including anti-androgens such

as CPA, resulting in subsequent AR dependent gene transactiva-

tion [55]. It is also now clear that as cancers evolve through many

somatic mutations [56,57] and undergo selection processes

induced by classical drug therapies themselves. Futhrermore, a

number of studies have used LNCaP cells as a model for studying

the progression from androgen-dependent to –independent/

castrate resistant prostate cancer (AIPC/CRPC) state and support

the hypothesis that continuous AR activity and signaling continues

to be one of the most important mechanisms in CRPC

[58,59,60,61,62]. These studies have substantiated extensive

Figure 5. Disease-free survival of 4 non-CaP cancers. Datasets were retrieved from the Broad Institute (http://www.broadinstitute.org/cgi-bin/
cancer/datasets.cgi) representing expression and disease outcomes for the following cancers: breast, lymphoma, lung and medulloblastoma, to
determine survival outcomes for the gene-sets 1 and 2, as described in Figure 4.
doi:10.1371/journal.pone.0113190.g005
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genetic alterations that range from single missense mutations, to

copy number variations, splicing variants, genetic rearrangements

and short DNA alterations in a large number of genes and AR co-

factor interactions to reproduce androgen-independent scenario

[1,2,6,7,36,63,64]. Modeling AIPC using LNCaP cell lines and

actual tissue from AIPC patients, Wang et al., 2009 [64] found

that the of gene expression regulated by the AR in the absence of

hormone is distinct from androgen-regulated program and can

selectively and directly upregulate M-phase genes found in

androgen-independent CaP and may explain why maximal

androgen deprivation (AR antagonists and LHRH inhibitors),

and cannot prolong androgen-independent survival. Most recent-

ly, it was found that overexpression of AR was a result to

prolonged exposure of LNCaP-derived xenografts with the anti-

androgen enzalutamide, and was similar to chronic androgen

depletion, as a significant mechanism for drug resistance and

CRPC development [65].

In this study we characterized whole mutant AR protein

complexes with several classes of steroids and ligands known to

bind T877A-AR. The specific interactomes were dependent on

the ligand utilized; so too were the specific gene expression profiles

associated with each ligand. Thus mutant AR gain-of-function

properties are not singular but multiple, dictated by the class of

steroid hormones used. Further exploration of other adrenal

androgens such as DHEA or androstenedione or other anti-

androgens such as flutamide and bicultamide were not examined

in this study, however, we did select a diverse class of ligands

known to bind to the T877A-AR variant.

High-throughput gene expression microarray approaches

described in CaP cells have identified hundreds of androgen-

regulated genes and also characterized genome-wide AR recruit-

ment sites [66,67,68,69]. The classical AR complex contains

general transcription factors, coregulators and specific transcrip-

tion factors that associate either directly or indirectly with the AR

to enhance or repress its transcriptional activity function without

themselves necessarily binding to DNA. As shown in our recent

proteomic studies [17], including this one, AR complexes may also

include a larger number of functionally diverse proteins involved

in a multitude of ‘‘non-classical’’ AR cellular processes such as

histone acetylation, DNA methylation, ubiquitination, RNA

splicing, apoptosis, and protein synthesis, with all pathways found

to be dependent on hormone stimulation conditions.

From our data, there are several clusters of AR-interacting

proteins that are worth exploring to understand their role in

disease progression. The first cluster of AR-interacting proteins is

unique to the African-American population group and consists of

the following proteins: ERCC1, ERCC2, ERCC3, ERCC5 and

FEN1. The function of these proteins is required for mediating

DNA damage excision repair. However, they are known

components of the RNA polymerase II transcriptional complex

[70] and ERCC2 and ERCC3 have been previously published as

AR interactors [71]. Experimental evidence show that over-

activity of this complex can lead to instability of CAG/CTG triplet

repeats, resulting in a shortening of the repeat [72,73].

The second cluster of AR-interacting proteins is unique for the

White (non-Hispanic) population and is involved in chromatin

remodeling and histone deacetylation activity. From this cluster we

identified the following proteins: KDM1A, KDM4C, SIRT1,
CTBP1, NR2C1 and SMARCD3. NR2C1 has been previously

described as an AR interactor [74]. The selection of this cluster of

proteins for further analysis would be interesting because of the

increased attention histone deacetylase inhibitors that are garner-

ing in cancer biology [75].

A final pathway for further investigation, and unique to the

White (non-Hispanic) group of men, is the role of the AR in

participating in the negative regulation of apoptosis via its

interaction with BCL2, RELA, FAS, EEF1A2 and NR4A2.

The role of these proteins have been well described in apoptotic

pathways, and RELA (NFkB p65) is a well characterized

interactor of AR [76] and BCL2 [77]. A proposed mechanism

by which these proteins may facilitate regulating apoptosis would

be via a signal transduction cascade that would negatively regulate

pro-apoptotic genes and proteins [77].

Using the T877A-AR hormone-specific interaction complexes

as a basis for a novel systems biology network analysis exercise

established gene-sets with clear predictive CaP clinical outcome

value. In doing so, we confirmed the critical importance of the

genetic backgrounds of the CaP individuals in the clinical dataset.

Without segregating the microarray expression data of CaP

patients along White (non-Hispanic) and African-American

datasets, no defined gene-sets with predictive clinical values could

Figure 6. Survival outcomes reflected by Copy Number Variation. Survival outcomes based on copy number variation (GSE21035) of gene-
set 2 and same patients described in Figure 4, was applied. Patient stratification is based on serum PSA ($4 ng/mL) and Gleason score ($7) and
combination of serum PSA and Gleason score values.
doi:10.1371/journal.pone.0113190.g006
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be identified. Once the data had been segregated, gene-sets with

very powerful clinical outcome parameters were discovered.

African–American men have long been considered to have

clinically different CaP from White (non-Hispanic) men, based

on their genetic background [78,79]. This is not entirely

surprising, as African–American descent has long been associated

with higher incidence and more aggressive disease, characterized

by greater tumor volume for each clinical stage, have greater PSA

levels and a more aggressive cancer for Gleason score of 8 or

greater with compare to White (non-Hispanics) males [80,81].

Investigations, excluding socio-economic disparities that would

limit individuals to health care [82], to explain racial differences

between African-American vs. White (non-Hispanic) males, have

excluded hormones levels, as serum testosterone levels (later in life)

have similar levels at the time of prostate biopsy and in the their

prostate biopsy tissue [83,84]. However, analysis of AR expression

in malignant vs. benign prostate tissue African-American males

found to be 27% more likely to stain positive for AR and the

nuclear localization of the AR was 81% greater than White (non-

Hispanics) [85]. It was also obersved that there was significantly

expression of CaP biomarkers that those of white men, one of

which was the AR [86]. Interestingly, African-American males vs.

other ethnic groups display shorter AR CAG repeat lengths which

code for the polyglutamine tract of the AR [87]. AR with shorter

polyglutamine tracts exhibits higher AR activity and represents a

potential risk factor for CaP [88,89,90]. Therefore, dysregulation

of DNA repair function, specifically loss of expression, and the link

to contraction of CAG tract length in African-American males is a

mechanism to investigate as a mechanism to explain racial

differences in CaP. Furthermore, to gain more insight into CaP

molecular/genetic etiology, our approach, encompassing proteo-

mics, expression studies and network analysis, would benefit from

investigating even more populations of diverse genetic origin

backgrounds that have very low rates of CaP including Chinese

and Middle Eastern men. By identifying such protective pathways

of AR function, along with identifying powerful prognostic tools to

predict disease, now we can assess pathways to also offer novel

therapeutic targets.

In conclusion, our unique approach of using an important gain-

of-function AR mutation, has generated gene-sets along functional

organization lines showing that we can distinguish prostatic disease

between White (non-Hispanic) and African-American men.

Moreover, in our study for classification of AR function based

on interaction profiles was a much more powerful tool predicting

disease and survival outcomes than analyzing androgen-dependent

gene expression patterns. The identification of these new

functional properties of the AR and somatic mutations of the

AR, further suggests that there is a role for the AR beyond that as

a transcription factor and also implicates the ability of non-

androgenic hormones to activate CaP disease-linked pathways.
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