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A method for predicting protein-protein interactions based on detected protein complexes is proposed to repair deficient
interactions derived from high-throughput biological experiments. Protein complexes are pruned and decomposed into small parts
based on the adaptive k-cores method to predict protein-protein interactions associated with the complexes.The proposed method
is adaptive to protein complexes with different structure, number, and size of nodes in a protein-protein interaction network. Based
on different complex sets detected by various algorithms, we can obtain different prediction sets of protein-protein interactions.
The reliability of the predicted interaction sets is proved by using estimations with statistical tests and direct confirmation of the
biological data. In comparisonwith the approacheswhich predict the interactions based on the cliques, the overlap of the predictions
is small. Similarly, the overlaps among the predicted sets of interactions derived fromvarious complex sets are also small.Thus, every
predicted set of interactionsmay complement and improve the quality of the original network data.Meanwhile, the predictions from
the proposed method replenish protein-protein interactions associated with protein complexes using only the network topology.

1. Introduction

Protein-protein interactions (PPIs) contribute to the inter-
pretation of cellular organization, processes, and functions.
They also compose bigger molecules and protein complexes
to perform molecular functions [1]. The deposition of PPIs
has recently been enriched by high-throughput biologi-
cal experiments [2]. Although the PPIs identified by such
experiments are somehow reliable, they produce a number
of false-positive and false-negative interactions [3], which
subsequently influence the associated downstream tasks.
Therefore, numerous computational approaches have been
designed to predict and estimate PPIs based on the existing
PPI datasets [4, 5]. The PPIs predicted with these approaches
complement each other because they are based on different
backgrounds of biological knowledge or hypotheses. The
categories of the methodologies used for predicting PPIs
differ among studies. For example, PPIs are classified by
the structural, genomic, and biological contexts in refer-
ence [6]. PPIs used to detect protein complexes are always
related to interactions derived from experimental technology

of affinity purification [7]. Moreover, PPIs associated with
protein complexes can be visualized with 3D structure data
through the interface region on their surfaces. Structural
approaches provide the physical details of the interactions at
the protein interface that contributes to the protein complexes
identification [6]. However, comparing with the approaches
of genomic and biological contexts, the structural approaches
tend to be more limited in terms of the scale because only
a few proteins have 3D structures deposited in the Protein
Data Bank (PDB) [8]. Despite the structural approaches,
computational methods scarcely predict PPIs associated with
protein complexes.

On the other hand, the known PPIs compose protein
interaction networks. Many approaches are designed to
predict PPIs and protein complexes based on the topology
of the PPI networks [9]. They enjoy the advantages of
simplicity and no extra information. The dense regions in
the PPI networks are prone to be related to the functional
modules and protein complexes [10]. For instance, cliques
(maximal complete subnets) in PPI networks can be used to
predict PPIs [11, 12]. Unfortunately, topological approaches
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Figure 1: Two complexes detected by MCODE based on DIP dataset and composed of several subnets. Proteins between various subnets or
within loosely connected subnets have the low possibility of the interaction.

to predicting PPIs have difficulties in identifying the PPIs
associatedwith protein complexes.Therefore, predicting PPIs
related to protein complexes based on protein interaction
networks is significant for detecting the protein complexes.

Proteins in protein complexes tend to interact with each
other [13].There are also many complex detection algorithms
based only on the protein interaction networks [9]. Thus, the
detected protein complexes can be utilized to predict PPIs
based only on the network topology; that is, the detection
algorithms identify protein complexes, and then the PPIs
are predicted among proteins in the complexes. However,
there are two major problems predicting PPIs if the detected
complexes are directly used. First, a protein complex may
consist of several subnets and proteins between different
subnets are not likely to interact. Second, proteins in an
independent subnet of a complex may connect with each
other loosely, instead of interacting with each other. Figure 1
contains two protein complexes detected by the algorithm
MCODE [14] based on the protein interaction network of
yeast derived from DIP [15], which has the two problems
mentioned above. Many detected protein complexes are
located in dense regions of networks, while some may be
loosely connected subnets.

According to the different structures of protein com-
plexes, it is more feasible to predict the PPIs based on
the densely partial subnets in the complexes, which always
include areas of tight connection regardless of the differences
in the size, number, and distribution of the topological
structure. Therefore, we intend to disassemble the complexes
when searching for the dense regions. A 𝑘-core which is a
complete subnet composed of 𝑘 nodes is used as a seed to
disintegrate a complex with extension and pruning. The 𝑘-
core is the local structure of topology and can ensure the
dismemberment of various detected complexes. A protein
complex is decomposed and pruned into several small sub-
nets connected tightly by extended𝑘-cores and the proteins in
the complex of loose connections that are abandoned. Finally,
the proteins in the subnets can be predicted to interact.

To validate the proposed methods of predicting PPIs,
we choose three complex detection algorithms which found
complexes highly different in the number, size, and topologi-
cal distribution based on the DIP dataset from Saccharomyces
cerevisiae. The predicted PPIs are evaluated using a statistical
method based on the gold standard [16], and the results are

satisfying by comparing them with the ones from the meth-
ods based on cliques. Besides, the predicted protein pairs are
directly estimated with the BioGRID database [17], which
collects numerous PPIs from different biological experi-
ments, and a big overlap between them is found. Moreover, a
predicted PPI is more reliable if it can be repeatedly predicted
according to multiple complexes. There are small overlaps
among the predicted PPI sets based on complexes derived
from different complex detection algorithms. Small overlaps
are obtained between our predicted PPIs and the ones from
the clique methods. The predicted PPIs can complement
deficient PPIs associated with protein complexes in protein
interaction networks.

The remainder of this paper is organized as follows. In
Section 2, we describe ourmethod of getting PPI predictions.
In Sections 2.2 and 2.3, we present the key steps of predicting
PPIs by pruning complexes with the adaptive 𝑘-coresmethod
and its improvement in a special condition. In Section 3, the
results of our method are applied to predicting PPIs in the
DIP dataset of yeast. Conclusions are drawn in Section 4.

2. Methods

In this section, we will present the method of predicting
PPIs in three steps and introduce the methods of estimating
the predicted PPIs (see Figure 2). There are many highly
connected regions in a PPI network which tend to associate
with functional modules or protein complexes. Identification
of highly connected sets can be achieved using various
techniques [18]. Initially, the known complex detection algo-
rithms are used to find dense regions, and the proteins in
these regions possibly interact with each other. To improve
the interacting possibility of proteins in the dense subnets,
we apply the adaptive 𝑘-cores method to dissemble these
subnets into smaller parts in which the proteins connect with
each other more tightly. Proteins within smaller subnets are
predicted to interact if they do not interact with each other in
the original network. Finally, the performance of predicted
PPIs is estimated using two ways.

2.1. Detection Algorithms of Protein Complex. This paper
selects three algorithms for detecting the protein complexes
and finding the initial subnets in a PPI network, that is,
MCODE [14], COACH [19], and NDComplex [20]. They
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Figure 2: Flowchart of PPI prediction and estimation. Based on PPI networks, complex detection algorithms identify the initial regions of
the PPI prediction.The adaptive 𝑘-cores method extracts the more accurate scope of the prediction.The PPIs are predicted in smaller subnets
and are finally estimated with two methods.
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Figure 3: Flowchart of pruning a complex based on the adaptive 𝑘-cores method. First, a 𝑘-core is identified in the current complex. The
process of pruning the complex ends if no 𝑘-core is found. Second, the 𝑘-core is extendedwith greedymethod and is pruned from the complex
when it is unsatisfied with the density threshold. Finally, the rest of complex is treated as the current one and the process of pruning complexes
is repeated until a 𝑘-core cannot be found in the current complex.

identify the complexes based only on the network topology
and the detected complexes are quite different in the struc-
tural features of subnets. MCODE detects complexes based
on the weight of the seed node, that is, the local neighbor
density of each node, to extend and cluster new nodes via
selecting the high weight nodes. The number of detected
complexes is small, but their sizes are large, and their topol-
ogy distributions are loose. COACH identifies complexes
using two steps: (1) core nodes are determined according
to the neighbor relationship of the nodes and (2) the core
nodes are extended to complexes by following the structure
direction of the biological significance. The detected protein
complexes are large in size and number but are connected
loosely. NDComplex identifies complexes by extending the
overlapping subnets. The detected complexes are large in size
and number but have a relatively high density of subnets.

2.2. Complex Decomposition with Adaptive 𝑘-Cores Method.
For a detected protein complex, a 𝑘-core in it is determined
randomly as the extended seed firstly. And then the seed is
expanded in the region of the complex until the set conditions
cannot be satisfied. The subnet based on extended 𝑘-core
is pruned from the complex. The nodes of the rest of the
complex are treated as a new complex. Finally, the above
process is performed repeatedly until no 𝑘-core is found and
the nodes of the rest of the complex are abandoned.

The greedy method is introduced to extend the seed
of the 𝑘-core. A node in the detected complex that has

the maximum number of connections with the 𝑘-core is
chosen and appended into the 𝑘-core. The density of the
extended 𝑘-core is calculated by density = 2𝑚/𝑛(𝑛−1), where
𝑚 and 𝑛 are the number of edges and nodes in the extended
𝑘-core, respectively. If the density is larger than a threshold
𝜆, then extended 𝑘-core is set as the new seed and continues
to be expanded. Otherwise, the expansion stops. See Figure 3
for the process used to predict PPIs.

The time complexity of the proposed method is analyzed
as follows. For a protein complex, there are 𝑛 protein nodes,𝑚
protein pairs, and l 𝑘-cores. Finding a 𝑘-core in the complex
is 𝑂(𝑛𝑚𝑙) [21]. In the neighbors of the nodes of the 𝑘-core,
finding a node that has the maximum number connected
with the 𝑘-core is 𝑂(𝑛). Calculating the subnet density is
𝑂(𝑛
2
). Predicting PPIs based on the subnets decomposed

from the complex is also 𝑂(𝑛2). Therefore, the final time
complexity is 𝑂(𝑛𝑚𝑙 + 𝑛2). In practice, the number of nodes
in the protein complex, 𝑛, is not too large, and it will decrease
after an extended 𝑘-core is found. Thus, the real processing
time is very short.

Figure 4 shows an example of pruning a protein complex
based on an extension with a 4-core seed. Figure 4(a) repre-
sents a protein complex. Figure 4(b) identifies a 4-core abcd
that can extend node 𝑒. Figure 4(c) shows that the subnet
abcde is pruned and the rest of the subnet fghi is not extended
and is therefore abandoned. Consequently, only one subnet
abcde is obtained to participate in the PPI prediction from the
complex, and the other parts of the complex are discarded.
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Figure 4: An example of decomposing a complex with 𝑘-cores.
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Figure 5: Flowchart of PPI prediction among subnets. The interactions are predicted in the subnets and the predicted numbers are recorded
simultaneously.

2.3. Adjustment of Adaptive 𝑘-Cores Method in a Special
Condition. There may be overlapping nodes among various
protein complexes derived from a certain complex detection
algorithm, such as algorithms COACH and NDComplex.
The extended cores of COACH may have overlaps but its
section is small.The overlaps among complexes derived from
NDComplex are relatively large. So, various complexes are
decomposed into small subnets and may predict the same
PPIs. Therefore, we introduce a parameter of repetitive pre-
diction, ℎ.The initial value of ℎ is one for every predicted PPI.
If a predicted PPI is to be predicted again by another subnet,
the value of ℎ is increased by one for the corresponding PPI.
A high ℎ corresponds to multiple times for a predicted PPI
with different complexes and can present a better possibility
for the reliability of the predicted pairs.

2.4. Prediction of PPIs in Subnets. A set of original inter-
actions is built based on the PPIs of the network and is
defined as the original set. A set of predictions is used to
store the predicted PPIs and is defined as the predicted set
which is initialized with null. We traverse every protein in a
subnet and test the arbitrary proteins 𝑃

𝑖
and 𝑃

𝑗
to determine

whether the interaction 𝑃
𝑖
𝑃
𝑗
can be put in the predicted set

(see Figure 5). Simultaneously, we count for every prediction.
The interaction 𝑃

𝑖
𝑃
𝑗
equals 𝑃

𝑗
𝑃
𝑖
and only one interaction is

determined. The process will be performed for every subnet
derived fromall complexes.Thefinal predictions of PPI are all
deposited in the predicted set. The time complexity is 𝑂(𝑛2)
if the subnet contains 𝑛 proteins.

2.5. Estimation of the Predicted PPIs. Two methods are
proposed to estimate the predicted PPIs. The first estimation
is a statisticalmethodbased on a likelihood ratio𝐿 [16]. In this

method, Jansen et al. introduce a gold standard (GS) dataset
which contains two reliable sets of PPIs, that is, a true positive
set and a true negative set. 𝐿 = (𝑃

+
/𝐺
+
)/(𝑃
−
/𝐺
−
), where 𝑃

+
is

the number of predicted PPIs contained in the true positive
GS set,𝑃

−
is the number of predicted PPIs in the true negative

GS set, 𝐺
+
is the number of the true positive sets of GS, and

𝐺
−
is the number of the true negative sets of GS. 𝐺

+
and

𝐺
−
are constant and equal to 8250 and 2705844, respectively.

The predicting performance is good if most of predictions
hit in the true positive set and a few of predictions drop in
the true negative set. This method can overcome the biased
assessment from the deficient samples between positives and
negatives. Jansen et al. have set two thresholds of 𝐿, that is,
300 and 600 [16]. The value 𝐿 of predicted PPIs is acceptable
if 𝐿 is more than the two thresholds. Of course, the larger 𝐿 is
the better.

The second way of the estimation is via a direct com-
parison with other records of biological experiments. There
are many datasets from various biological experiments for
yeast. Database BioGRID collects sufficient and reliable data
in Saccharomyces cerevisiae from primary literature [17].
Therefore, we compare the predicted PPIs with the BioGRID
dataset (version 3.2.98), which includes 319436 PPIs of yeast.
The overlap rate between the PPI predictions and the PPIs
in BioGRID is calculated. The predicted PPIs are prone to
be true positive if they have the high percentage of hits in
BioGRID.

3. Results

Among the methods of predicting PPIs derived from dense
regions of PPI network, clique methods have the strictest
topology so that they can obtain good performance of the PPI
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prediction. Therefore, we compare our methods with the
clique methods and hope to obtain similar performance.
The analysis of the predicting performance is presented in
Section 3.1. In Section 3.2, we will test the influence on the
performance via selecting the different values of the density
threshold. In Section 3.3, we present the better performance
of the adjustment method.The remainder sections of Results
section will present the advantages of the proposed method.
In Sections 3.4 and 3.5, we will present the differences of
prediction sets among various methods so that our multiple
sets of PPI prediction can complement PPI dataset together.
Furthermore, we will present the correlation between PPI
predictions and protein complexes in Section 3.6.

Our method of predicting PPIs associated with com-
plexes is applied to a large-scale PPI network from the DIP
dataset of yeast (version of 2010/6/14) [15]. DIP is gener-
ally acknowledged as an excellent data source containing
PPIs determined experimentally. The dataset of the version
contains 26,718 interactions. In order to adapt to various
complex detection algorithms, the proteins of self-interacting
and reduplicative interactions are deleted. Finally, a protein
interaction network is achieved with 4,997 protein nodes and
23,233 interaction pairs fromDIP database. Concurrently, we
select the algorithmsMCODE, COACH, and NDComplex to
obtain the three sets of protein complex based on the DIP
dataset, respectively.MCODEhas four parameters, that is, the
vertex weight percentage (VWP) which defines the density
of the resulting complex, threshold of fluff, and two Boolean
options (haircut and fluff). We aim to obtain large complexes
which do not need to be postprocessed. Thus, we set VWP
to 0.2, fluff to be false, and haircut to be true according
to the application of the similar PPI network from MIPS
[14] and obtain 50 protein complexes. For COACH, there
is only one parameter, the threshold of the neighborhood
affinity.The bigger the value of the threshold is, the bigger the
overlaps among complex cores are obtained and the higher
the 𝐹-measure of detected complexes is achieved in the
threshold range between 0 and 0.1 [19]. Thus, this parameter
is set to 0.05 and 274 protein complexes are obtained.
NDComplex has four parameters, that is, 𝑡, 𝑐, 𝑑, and 𝑠. The
first two represent the similarity threshold and the occurrence
threshold during the computation of neighborhood density,
respectively. The last two represent the subnet density in low
and dense regions, respectively. They are set to 0.3, 3, 0.7, and
0.2 sequentially to get the best overall performance [20] and
1,184 complexes are predicted.

3.1. Performance of Our Method. According to the scales of
detected protein complexes from the three complex sets, we
set three sizes of the 𝑘-core to our method, that is, 4, 4, and
7, respectively. Generally, a subnet in a PPI network can be
judged as a dense one when its density threshold exceeds 0.5
[22].We adopt a tradeoff threshold 0.7 to judge dense subnets
in this research [12]. And we will discuss the performances of
selecting different thresholds in the next section.We get three
prediction sets of PPIs, which are denoted by M, C, and N,
respectively.There aremany overlap sections between various
complexes derived from NDComplex. Thus, we apply the
adjustment of our algorithm; that is, we get a new predicted
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Figure 6: Performance of different prediction sets based on the
number, statistical likelihood ratio𝐿, and percentage hit in BioGRID
of the PPI predictions.

PPI set from N via selecting predictions of ℎ > 1, and this set
is denoted by N+.The detailed prediction sets ofM, C, N, and
N+ are listed in the Supplementary Material (available online
at http://dx.doi.org/10.1155/2015/259157).

Meanwhile, we introduce two approaches of predicting
PPIs based on cliques, Yu et al. [11] and Yang and Tang
[12], to contrast with the performance of our algorithm.
Yu’s approach predicts PPIs based on protein interaction
networks by completing the defective cliques, which is stricter
and more reliable compared with the methods based on
clustering subnets and functional classification in the protein
interaction network [11]. Yang’s approach gets PPI predictions
based on clique extension and rule filtration of gene ontology,
and this is more stable and reliable than predicting methods
using only the network topology. Based on the DIP network,
the predicted set of Yu’s approach is denoted by YU, and the
two prediction sets obtained by Yang’s approach are denoted
by CORE and ALL, respectively.

The performance of various predicted PPIs is shown
in Figure 6, which is estimated with the predicted number,
likelihood value 𝐿 of statistical significance, and hitting ratio
of BioGRID validation, respectively. The number of N that
is close to the number of ALL is the largest at 928, and the
number of M is the smallest at 171. The others are close to
each other. These predicted numbers are consistent with the
numbers of protein complexes derived from various complex
detection algorithms. All of the 𝐿 values of predictions are
acceptable based on the low standard. Most of them are
close to YU, except for the predictions based on COACH set.
The value 𝐿 of the predictions based on algorithm COACH
is the lowest. The complexes from COACH are large, and
the distribution of nodes in complexes is prone to be very
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threshold 0.7 almost gets good performance based on the number,
statistical likelihood ratio 𝐿, and percentage hit in BioGRID of the
PPI predictions.

loose. This illustrates that the large and loose structures of
complexes are not conductive to predicting PPIs. All of these
predictions have the relatively high percentage of hitting
in BioGRID. Although the protein complexes derived from
different complex detection algorithms are diverse in their
topological structure, our method of predicting PPIs based
on them is stable and the performance is close to themethods
of Yu and Yang.

3.2. Selection of Subnet Density Threshold. The values of the
subnet density threshold result in different predicted sets.
If the density of a subnet is 1, the subnet is the completely
connected region. We choose five values of threshold 𝜆
between 0.5 and 0.9 to test the performance of the predicted
PPIs (see Figure 7).Themaximumnumber of the predictions
derived from complex set N is 2245, the lowest value 𝐿
of the predictions is 268 based on complex set C, and the
lowest hitting ratio in BioGRID of the predictions is 78%
based on complex set N. All of them are obtained when 𝜆
is 0.5. With the increase of 𝜆, we almost get lower number
of predictions, higher likelihood ratio 𝐿 estimated with
statistical significance, and higher hitting ratio in BioGRID.
Higher threshold is conductive for generating more accurate
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Figure 8: Estimation of predicted PPIs oriented from N+ based on
the adjustment method. With the growth of the repeated number of
PPI predictions, the number of the predictions decreases, and the
value 𝐿 and percentage of hitting in BioGRID are almost increasing.

quality of predictions but lower number of predictions, and
vice versa. We achieve good performance when 𝜆 is 0.7
based on these three aspects. So, the tradeoff threshold 0.7
is recommended. We may also choose the 𝜆 value of 0.9 if we
merely care about the quality of predicted PPIs and not about
the quantity.

3.3. Estimation of the Adjustment Method. The predicted
PPIs based on the complexes from NDComplex have many
repetitive ones. The maximum number of the repetitive
predictions is 19. We estimate the effect of the repetitive
number of predicted PPIs for the reliability of predictions (see
Figure 8). The predicted set, N, contains 928 protein pairs
of which 437 (nearly 50%) are predicted once. Predictions
repeated more than five times are nearly 160. The value of
𝐿 rises almost with the increase of the repetitive number.
This is consistent with the hitting ratio in BioGRID. The
higher repeated number obtains the better performance of
PPI prediction when tolerating the lower number of PPI
predictions. We obtain a tradeoff value of parameter ℎ based
on the prediction number, value 𝐿, and hitting ratio in
BioGRID, that is, ℎ > 1, to obtain more reliable predictions
of PPI.

3.4. Comparison with Predictions Based on Clique Methods.
Cliques in protein interaction networks also associate tightly
with protein complexes. Therefore, we examine the relation-
ships of the predictions from the cliques and detected com-
plexes. There are 465 predicted PPIs based on Yu’s method,
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Table 1: Overlap ratio of predictions between our method and YU, CORE, and ALL, respectively.

Predicted set ∩YU ∪YU O1 ∩CORE ∪CORE O2 ∩ALL ∪ALL O3

M 184 705 26% 51 492 10% 102 943 11%
C 94 542 17% 114 682 17% 226 1072 21%
N 344 1049 33% 197 1103 18% 432 1370 32%
N+ 294 608 48% 137 672 20% 305 1006 30%

372 predictions in CORE, and 874 in ALL. We compare our
predictions of PPIs with the ones oriented from Yu, CORE,
andALL, respectively (see Table 1).The overlap ratio between
the two prediction sets is a percentage calculated with the
division of the intersection and union of the two prediction
sets. The common predictions between Yu and N+ are close
to one-half. Except for predictions of Yu and N+, the overlap
ratios of predictions are about one-third. This illustrates that
our predicted PPIs are different compared with the ones
derived from clique methods and can complement deficient
interactions in PPI networks. Our method can improve PPI
networks sequentially ifmore complexes detected by different
algorithms are introduced.

3.5. Complement between the Predictions from Different Com-
plexes. This section identifies the relationship between var-
ious predictions of PPIs based on different protein complex
sets. Figure 9(a) indicates the relationship between predicted
sets M, C, and N.The three sets have 1186 predictions of PPIs.
There are 40 common PPIs. The overlap section between C
and N is the largest and has 233 common interactions (about
20%) between the two sets. This illustrates that the predic-
tions based on different complex detection algorithms have
good complementarities. Figure 9(b) shows the relationship
among predicted sets M, C, and N+. Only two protein pairs
are absent from the common predictions of the three sets,
which illustrates that the quality of the predictions of N+
is better than those of N. Therefore, the adjustment of our
method can obtain more reliably predicted PPIs.

3.6. Association between Predicted PPIs and Complexes. The
predictions of M, C, N, and N+ are annotated on the cellular
components of gene ontology (GO) [23]. We identify pre-
dicted PPIs associatedwith protein complexes using semantic
screening; that is, proteins in predictions must be included
in the same GO term containing the word complex. The
predicted protein pairs from different prediction sets related
to complexes are about one-third (see Table 2). Because of the
incompleteness of GO annotation and semantic screening,
the real hitting ratio in complex of predictions may be higher
in reality.

Figure 10 shows the top 10 GO annotations of protein
complexes corresponding to M, C, N, and N+, respectively.
There are six types of protein complexes in the four col-
lections of top 10 rankings, including proteasome complex,
U4/U6 ×U5 tri-snRNP, spliceosomal complex, transcription
factor TFIID complex, proteasome core complex, andmRNA
cleavage and polyadenylation specificity factor complex. The
PPIs from different predictions focus on different complexes
that are associated with the complex detection algorithms.

Table 2: Ratio of predictions hit in annotations of GO of protein
complex.

Predicted set Prediction
number Hitting in complex Hitting ratio

M 171 63 36.84%
C 424 107 25.24%
N 928 282 30.39%
N+ 437 164 37.52%

The number of predictions between C and N+ is almost
the same, but the hitting ratio in terms of protein complex
has a wide gap. This is because the complexes derived from
COACH are large and loose in the structure and some
proteins in them are not likely to be in the same complex.

4. Conclusions

Various protein complex detection algorithms produce com-
plexes having different features in terms of the number,
size, and distribution of the nodes. Nevertheless, the method
of decomposing complexes based on 𝑘-cores can identify
the dense regions in complexes despite the topological
structure of the complexes. This paper proposes a method
of predicting PPIs that is adaptive to various complexes
robustly and the predictions are reliable with the estimations.
The predictions based on various complexes detected with
different algorithms can complement each other, and they
differ from the ones derived from the clique methods.
Therefore, the predicted PPIs can supplement the deficient
data of the protein interaction networks associated with the
protein complexes. The improved networks contribute to
detecting the protein complexes and studying the relationship
of proteins in complexes.
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