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ABSTRACT

Motivation: Global expression patterns within cells are used for
purposes ranging from the identification of disease biomarkers
to basic understanding of cellular processes. Unfortunately, tissue
samples used in cancer studies are usually composed of multiple
cell types and the non-cancerous portions can significantly affect
expression profiles. This severely limits the conclusions that can
be made about the specificity of gene expression in the cell-type
of interest. However, statistical analysis can be used to identify
differentially expressed genes that are related to the biological
question being studied.
Results: We propose a statistical approach to expression
deconvolution from mixed tissue samples in which the proportion
of each component cell type is unknown. Our method estimates the
proportion of each component in a mixed tissue sample; this estimate
can be used to provide estimates of gene expression from each
component. We demonstrate our technique on xenograft samples
from breast cancer research and publicly available experimental
datasets found in the National Center for Biotechnology Information
Gene Expression Omnibus repository.
Availability: R code (http://www.r-project.org/) for estimating sample
proportions is freely available to non-commercial users and available
at http://www.med.miami.edu/medicine/x2691.xml
Contact: jclarke@med.miami.edu
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1 INTRODUCTION
In the past decade, gene expression profiling has demonstrated an
amazing potential for identifying disease biomarkers and improving
our understanding of cellular processes (Pittman et al., 2004; van’t
Veer et al., 2002; Wheelan et al., 2008). An issue not often discussed
is that many biological samples contain mixtures of cell or tissue
types (Wang et al., 2006); for example, cancer cells may only
constitute part of a biopsy sample. The amount of each mRNA
detected in a microarray experiment is influenced by the composition
of the sample; observed changes in gene expression may simply
reflect a change in the distribution of the cell types in the sample
population (Causton et al., 2003). In breast cancer Cleator et al.
(2006) noticed that the proportion of benign tissue of biopsy
samples can significantly affect expression profiles, and taking
into consideration this proportion can improve response prediction.
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Sample heterogeneity severely limits the conclusions that can be
made about specificity of gene expression and may explain in part
why the results of numerous gene expression experiments have
failed rigorous validation (Michiels et al., 2005).

Given a heterogeneous sample there exist laboratory approaches
to separate cells of distinct types. Laser capture microdissection
(LCM; Fend and Raffeld, 2000) is a popular technique for isolating
regions of a biological sample that are separated by distances of
a few cell widths. However, the cell types of interest need to
be morphologically distinct. LCM, is very time-consuming and
specialized equipment, is required to obtain a sufficient quantity
of biological material for profiling. If the sample of interest is in
suspension, cell-sorting methods can be used to isolate cells of
interest. This requires a suitable biomarker for the cell type of
interest. The main drawback of cell sorting with respect to profiling
is that the act of separation itself can alter gene expression (Gosink
et al., 2007).

We present a method for deconvoluting expression from a
heterogeneous sample into components that reflect the contributions
to the observed expression attributable to each component cell or
tissue type. The key component of this method is the estimation,
from a mixed tissue sample, of the proportion of mRNA from a
single tissue type. Estimation is based on specific logarithmic data
transformations and theory from differential geometry regarding the
radius of curvature (Lipschutz, 1969). We demonstrate our method
on several datasets from breast cancer xenograft studies, from both
proprietary sources and the National Center for Biotechnology
Information (NCBI) Gene Expression Omnibus (GEO) repository
(http://www.ncbi.nlm.nih.gov/geo/; Barrett et al., 2006).

2 APPROACH
Several approaches have been taken to the problem of expression
deconvolution and each approach depends on access to different
types of information, different statistical assumptions and different
objectives.

If there are genes known to be expressed exclusively in one
tissue type, then these genes can be used to estimate the proportion
of expression coming from that tissue. For example, the program
DECONVOLUTE (Lu et al., 2003) uses simulated annealing and
genes expressed only during specific cell cycles to identify the
proportion of cells in each cycle from an asynchronous cellular
sample. These methods depend on known tissue- or cell-specific
genes, and technology that can detect their expression with little
or no cross-hybridization. If these conditions is not met, widely
varying estimates of pA can be obtained by selecting different subsets
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of tissue-specific genes. Note that low specificity of microarray
hybridizations has been suggested to be one of the prime measures
affecting discrepancies in gene-expression profiles between different
probes targeting the same region of a given transcript or between
different microarray platforms (Koltai and Weingarten-Baror, 2008).
We do not assume knowledge of cell- or tissue-specific genes in our
method, although such knowledge may be available, particularly
for samples from xenograft studies (where the tissues of interest are
from different species).

Similarly, several researchers have used expression data from
purified reference tissue types to determine the expression of each
tissue type in heterologous samples (Lahdesmaki et al., 2005; Venet
et al., 2001). For example, Wang et al. (2006) use a method similar
to that of Lu et al. (2003), mentioned above, to determine the
proportions of each cell type in a mixed sample. This method
generates estimates by obtaining solutions to linear equations via
simulated annealing. These approaches depend on having expression
data from a purified reference sample for each cell or tissue type,
which may not be available.

Another approach uses proportions of each sample or cell
type, assessed by pathologists, to establish either tissue-specific
expression or differential expression between mixed and control
samples. In Stuart et al. (2004) linear regression models, regressing
expression on fractional content of tumor (or stroma), were used
to estimate the expected cell-type expression as the regression
coefficient. A more sophisticated statistical approach was used by
Ghosh (2004) to determine differential expression in the presence of
mixed cell populations. In his approach, a pathologist’s assessments
of the proportions of each cell type were used in a hierarchical
mixture model to model the data. A combination of methods
of moments procedures and the expectation–minimization (EM)
algorithm provided estimates of the model parameters. Although
not shown in the publication, this method could be adapted to
provide expression estimates specific to each cell type, as opposed to
estimates of differential expression. Unfortunately, the assessment
of a pathologist only provides the proportion of each cell or tissue
type in the sample, and not an assessment of the amount of mRNA
or protein attributable to each. It is well known that the total amount
of mRNA generated by tumor cells, for example, is much higher
than the amount generated by normal cells. As a result estimates of
expression based on pathological assessments of tissue proportions
may not be accurate.

Finally, an approach exists to use expression data from a single cell
type to determine the proportion of each cell type in a heterogeneous
sample (Gosink et al., 2007). This method depends on the estimation
of the minimum of a proportion, a minimum that provides a good
estimate in noiseless or simulated data. However, this minimum is
much more difficult to estimate in noisy data, and microarray data is
inherently noisy. Our research builds upon this work by providing
a method for estimating this minimum that has reasonable accuracy
and can be applied in situations where one or multiple heterologous
samples are available.

3 METHODS
First, we will discuss the idea of estimating the proportion of a single cell
or tissue type in a two-type mixed sample. We will then describe the role
of data transformation in this estimation and the interest in finding the point

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MDA231/Mouse Lung Titration

ratio ranking

so
rt

ed
 r

at
io

s
Fig. 1. Rank-sorted ratios (Ri) from ‘electronic’ data across values of pA

of minimum radius of curvature. Finally, we will describe the use of the
bootstrap (Efron, 1979) for obtaining a standard error for our estimate.

3.1 Proportion of tumor as a minimum ratio
The idea of estimating the proportion of one type in a two-type mixed sample
comes from Gosink et al. (2007). As they describe, let A be a purified sample
of one type and AB be a mixed sample, composed of tissue or cell types A and
B. Let Ei(AB)(Ei(A)) be expression of gene i in Sample AB(A) for i=1,...,m.
Let E(AB)={E1(AB),...,Em(AB)}. We want to estimate pA, the proportion
of expression in the mixed sample (Sample AB) due to tissue type A. For a
given gene i we can express Ei(AB) as

Ei(AB)=pAEi(A)+(1−pA)Ei(B)+ε.

Let Ri =Rimix/pure =Ei(AB)/Ei(A). In the noiseless case,

Ri =pAEi(A)/Ei(A)+(1−pA)Ei(B)/Ei(A).

Note that for a fixed pA this ratio is at its minimum when Ei(B)=0, since
expression is assumed to be non-negative. Hence, if Ei(A)>0,

lim
Ei(B)→0

Ri =pA +(1−pA)Ei(B)/Ei(A)=pA.

Thus, under the assumption that Ei(B)→0 for some sequence of i’s,
mini Ri =pA. This can be seen in Figure 1 where rank-sorted ratios Ri

have been plotted from ‘electronic’ simulated data at a range of proportion
values pA. The ‘electronic data’was generated by computationally combining
expression values from purified samples of each composite type in these
specific proportions, e.g. for pA =0.25 the electronic data is 0.25∗E(A)+
0.75∗E(B) where E(A) are expression values from a purified sample of
breast cancer cell mRNA and E(B) the expression values from a purified
sample of normal mouse lung mRNA. Note that the values of Ri are sorted
from lowest to highest.

Unfortunately, the minimum ratio is an underestimate of the true
proportion value pA for simulated noisy data and for observed data [as
Gosink et al. (2007) establish]. For example, Figure 2 shows observed data
from a titration series (pA =0.25,0.5 and 0.75) of breast cancer cell mRNA
(MDA231) and normal mouse lung mRNA. By a titration series, we mean a
set of mixed samples (breast cancer and normal lung) in which each sample
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Fig. 2. Rank-sorted ratios (Ri) from ‘electronic’ titration data (dark) and
observed titration data (light) for proportion values pA =0.25,0.5 and 0.75.
Note the qualitatively different curves caused by noise in the observed data.

has a fixed proportion of each tissue/cell type. What we observe is expression
data from each mixed sample in this series, so a total of three samples
with proportions of breast cancer mRNA to normal mouse lung mRNA of
{(0.25,0.75),(0.5,0.5) and (0.75,0.25)}. Hence for pA =0.25 the observed
data is expression from a mixed sample (AB) composed as 0.25∗A+0.75∗B.
The ‘electronic data’ is the same data as shown in Figure 1. The values of
mini Ri are very accurate estimates of pA for the ‘electronic’ data but are
poor estimates of pA for the observed data. Clearly, the ability of mini Ri to
estimate pA is greatly affected by the noise in the data; understanding and
incorporating the noise and its effect on mini Ri in the estimation process is
the key to finding an accurate estimate of pA.

3.2 Data transformation
The noise in the observed expression data from mixed samples causes
the minimum ratio to be an underestimate of the true proportion value.
A transformation that increases small ratio values while shrinking larger ratio
values may improve the accuracy of this estimate. To explore this proposition,
we considered transforming both E(AB) and E(A) with a transformation of
the form

tEi(AB)= log(1+αEi(AB))

tEi(A)= log(1+αEi(A))

for some α>0 and for all i. The untransformed values of Ri have a skewed
distribution with a long tail of large values (data not shown). As such the
mean of the Ris is larger than the median. The above transformation, by
decreasing large values and increasing small values, brings the mean and the
median closer together.

We discovered that across several datasets a value for α does exist
for which mini tRi =mini tEi(AB)/tEi(A) is an accurate estimate of pA.
Unfortunately, this value for α varies with each dataset and with the value of
pA, i.e. within each dataset and across datasets the value of α that provides an
accurate estimate of pA is different for each value of pA. For any given dataset
and value of pA we could successfully model α as a function of pA, using
a function of the form −log(θ∗pγ

A +1)/(pA −1) for some θ,γ>0. However,
this function depends on pA, the value we are trying to estimate.

Fig. 3. Values of tR(α) and md(tR(α)) as functions of α for (a) MDA231/
mouse titration data at pA =0.5 and (b) MAQC human titration data at
pA =0.75. The vertical line indicates the correct value of α.

We acknowledge that the minimum value of tRi is sensitive to the noise in
the data, particularly in relation to the mean or the median. Hence we decided
to explore the possibility of using information from a summary statistic of
tRi (e.g. mean or median) as a function of α to determine the correct value
of α, and hence the value of our estimate mintRi. The mean of tRi(tR(α)) as
a function of α is defined as

tR(α)= 1

m

m∑
i=1

[
log(1+αEi(AB))

log(1+αEi(A))

]

where m is the number of expression values (i.e. number of genes). The
median is analogously defined. We decided to plot the mean and median
of tRi for a fixed pA across a range of values of α. Example plots for two
different titration series [MDA231/mouse lung at pA =0.5 and data from
MicroArray Quality Control (MAQC) project 2006 (GEO accession 5350)
at pA =0.75] are shown in Figure 3. The value of α that provides the most
accurate estimate of pA is marked by a vertical black line.

The value of α that provides the most accurate estimate of pA, in these plots
and many others, is located at what one may refer to as the ‘knee’ or ‘elbow’
of the curve. This point may be familiar from principal components analysis
as the point on a scree plot that indicates the number of significant principal
components (Jolliffe, 2002). To calculate this point, we need a mathematical
definition for the ‘elbow’ of a curve.

3.3 Minimum radius of curvature
We want to find the value of α at the ‘elbow’ of the curve defined by tR
as a function of α. The ‘elbow’ of a curve is the point at which the tradeoff
between pulling low values up and pulling high values down (values of Ri(α))
is optimal. Here, we formalize this by choosing that point at which the radius
of curvature is at its minimum. The radius of curvature ρ(s) is defined as the
inverse of the vector norm of the second derivative of the curve, expressed
as a function of arc length s, i.e.

ρ(s)=1/
∣∣∣∣C′′(x(s))

∣∣∣∣ (1)

where C is the curve of interest originally parameterized in terms of x
(Lipschutz, 1969). Thus, to find the value of α of interest several steps are
required. First, we need to represent the function tR(α) as a curve in the
plane. Second, we must reparameterize this curve in terms of the arc length
s. Third, we use the reparameterized curve to determine the value of arc
length s∗ that minimizes the radius of curvature ρ(s). Finally, we determine
the value of α that corresponds to s∗.

3.3.1 Radius of curvature in terms of arc length Recall that a
parameterized curve in the plane is of the form

x(α)=x1(α)e1 +x2(α)e2, α∈[α′,α′′] (2)

where x1,x2 are the coordinate functions, e1 = (1,0) and e2 = (0,1) the natural
basis and α the parameter of the curve. To define the radius of curvature of
x(α) at a point x, we first reparameterize in terms of arc length s. The arc
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length parameterization is defined to be the parameterization with unit speed
along the curve. This eliminates the possibility of an unnaturally high or low
radius of curvature simply due to the local speed of transversal of the curve.

The arc length s of a curve is defined as

s(α)=
∫ α

α0

||dx/dα||dα (3)

where ||·|| is the Euclidean norm. Now consider a function f (α) and observe
that its graph (α,f (α)) is a geometric curve in the plane. Thus, as in Equation
(2), we can write

x(α)= (α)e1 +f (α)e2, α∈[α′,α′′].
Hence

dx/dα=1∗e1 +f ′(α)e2 and ||dx/dα||=
√

1+f ′(α)2.

So the arc length parameter [Equation (3)] is given in terms of α by

s(α)=
∫ α

α0

√
1+f ′(α)2dα, α∈[α′,α′′].

Since the parameterization is in terms of unit speed, it is invertible, so
we can write α=α(s) as well. Thus, s′ =s(α′) and s′′ =s(α′′). The radius
of curvature of a geometric curve C as stated in Equation (1) can now be
defined as

ρ(s)=1/
∣∣∣∣f ′′(x(α(s)))

∣∣∣∣
for the curve C = (α,tR(α)). We will argue that choosing α to minimize ρ(s)
leads to a good estimate of pA over [α′,α′′].

3.3.2 Implementation Given the definitions in the last subsection, it
remains to obtain the arc length parameterization for the curve (α,tR(α))
and find the value of α that corresponds to s∗. Replacing f (α) with tR(α) we
have the following:

Partition the interval [α′,α′′] uniformly by setting

α′ =α0 <α1 < ···<αk =α′′ and αi −αi−1 = α′′ −α′

k
.

Then,

s(αj)=
∫ αj

α0

√
1+f ′(α)2dα=

j∑
i=1

√
1+tR(αi)

′2 ∗1/(αi −αi−1)

where we approximate tR(αi)
′

as

tR(αi)
′ = tR(αi)− tR(αi−1)

αi −αi−1
.

This will yield a one-to-one relationship between α and s, hence a one-
to-one relationship between s and tR(α). Once we have this we can find the
value of s that minimizes the radius of curvature ρ(α(s)), i.e. maximizes∣∣∣∣f ′′(x(α(s)))

∣∣∣∣ over s∈[s′,s′′].

3.3.3 Determining s∗ and α To find the maximum of

∣∣∣∣f ′′(x(α(s)))
∣∣∣∣=√

(tR(α(s))
′′
)2 =|tR(α(s))

′′|
we find the value of s, s∗, which maximizes the absolute value of the second
derivative with respect to s using centered difference approximations (Ames,
1977). Approximate tR(α(sk))

′′
by

tR(α(sk+1))−2tR(α(sk))+tR(α(sk−1))/(sk −sk−1)2.

Using this approximation, we calculate tR(α(s))
′′

over a range of values
[s′,s′′] and determine the value s∗ that minimizes tR(α(s))

′′
.

Note that this method for finding s∗ (and subsequently α) only works if
the two axes of the plot for tRi, are similarly scaled. If the two scales are not
equal, they must be equalized prior to calculating s∗ by rescaling one axis to

be the same length as the other. For example, to rescale the axis for tR we
would use values of the following in place of tR

(max(α)−min(α))∗(tR−min(tR))

max(tR)−min(tR)
.

That is, the range of the function tR is the same as the range of the
parameter α. This ‘scaling’, like the arc length parameterization, seems
necessary to prevent arbitrary choices from dominating the solution.

One key task is choosing k large enough so that the approximation of
the second derivative with respect to second differences is accurate over
the range [α0,αj]. We found that k of several thousand worked well in the
examples in Section 4.

3.4 Bootstrap estimates of standard error
We used a simple bootstrap resampling procedure (Efron, 1979) to generate
standard errors for our estimate of pA. For a given dataset of n observations
and m genes, we draw T bootstrap samples; each sample contains expression
values of m′ genes drawn at random with replacement where m′ ≈0.6∗m
(so a total of nm′ values). From each sample j, j=1,...,T , we calculate the
mean of tRi(tR(α)) across values of α in a given range. We then determine
the value of α that corresponds to the minimum radius of curvature (s∗) of
tR(α), plotted as a function of α (as described in Section 3.3). This value of α

is used to generate tRi for the genes in sample j and determine its minimum,
i.e. our estimate of pA. The result of our bootstrap procedure is T estimates of
pA, {p̂A1,...,p̂A}, one for each sample. The SD of these estimates is taken as
the standard error of our estimate of pA, and a (1−τ) confidence interval for
our estimate is calculated as [p̂A(τ/2),p̂A(1−(τ/2))] where p̂A(τ/2) and p̂A(1−(τ/2))

are the (τ/2)th and (1−(τ/2))th percentiles of our 100 estimates of pA.
Stated as psuedo-code for clarity, our procedure is as follows:

(1) Generate T bootstrap samples where each sample contains nm′
expression values, i.e. expression values for m′ genes from each
sample. The m′ genes, m′ ≈0.6∗m, are selected at random and with
replacement.

(2) For each sample, calculate the values of tRi, i=1,...,m′, for a range
of values of α.

(3) For each sample, calculate the values on the curve (α,tR) for a range
of values of α, using the result of step 2.

(4) For each sample, use the curve calculated in Step 3 to determine the
value of α that corresponds to the minimum radius of curvature s∗
(as described in Section 3.3). Label this value as αj for each sample
j,j=1,...,T .

(5) For each sample j, use the values of tRi that correspond to αj (as
calculated in Step 2) and determine its minimum, i.e. our estimate of
pA. This yields {p̂A,1,...,p̂A,T }.

(6) Calculate the standard error of our estimate (as the SD
of {p̂A,1,...,p̂A,T }) and a (1−τ) confidence interval (as
[p̂A(τ/2),p̂A(1−(τ/2))] where p̂A(τ/2) and p̂A(1−(τ/2)) are the (τ/2)th
and (1−(τ/2))th percentiles of our 100 estimates of pA).

As a sort of stability analysis, we chose a range of values for T in
our computations below to see whether there was any obvious relationship
between the size of T and the likelihood that a bootstrapped confidence
interval contained the true value. The results in Table 2 suggest that the size
of T and the accuracy of the bootstrap intervals is slight at most.

4 RESULTS
We implemented our procedure for estimating pA in several gene
expression datasets, both proprietary and public, in which expression
data was generated from samples composed of two tissue/cell types.
Some of the samples consist of different cell types from the same
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Table 1. Available datasets

Source Type Platform Proportion n Norm GEO

UMiami
MDA231

ILM 0:100:25 3
None

Mouse lung cubic
qspline

UMiami
MCF7

ILM 0:100:25 1
None

Mouse lung quantile
qspline

MAQC Site 3
Univ human

ILM 100/75/25/0 5 Cubic GSE5350
brain

MAQC Site 1
Univ human

AFFX 100/75/25/0 5 MAS5 GSE5350
brain

BIIB 500
Mouse T cells

AFFX 0:100:20 3 MAS5 GSE5130
Mouse B cells

BIIB 100
Mouse T cells

AFFX 0:100:20 1 MAS5 GSE5130
Mouse B cells

Source, data source; type, tissue/cell types; platform, expression platform; proportion,
pA; n = number of samples at each proportion; Norm, normalization; GEO, GEO
accession number. See text for further details.

organism, while other samples are a mix of cell types from different
organisms. The proportion of each component type is known, as the
data come from titration series; we use these values to assess the
accuracy of our estimates.

4.1 Data
Our data consists of six datasets obtained either from the University
of Miami School of Medicine (UMiami) or the NCBI GEO (Barrett
et al., 2006). The UMiami datasets were created as a titration
series of RNA from breast cancer cells (either MDA231 or MCF7)
and normal mouse lung cells. The expression platform is Illumina
Human WG-6 version 2 (MCF7) or version 3 (MDA231) (Illumina
Inc., 2009); chips were processed at two different laboratories.
The data from GEO includes titration series of Universal Human
Reference RNA and Human Brain RNA from the MAQC study
(MAQC Consortium, 2006). We selected data processed at two
different laboratories and on two different platforms, either Human-
6 BeadChip 48K version 1 (Illumina Inc., 2009) or HG-U133 Plus
2.0 GeneChip (Affymetrix Inc., 2009). Two other datasets from GEO
were also included in our studies; these data include two titration
series of mouse T and B cells (Shearstone et al., 2006). These sets
were processed on the Mouse 430A version 2 GeneChip platform
(Affymetrix Inc., 2009). The details of each dataset are presented in
Table 1.

The method of normalization of gene expression data can
impact substantially which probes are identified as detected and
which probes are identified as differentially expressed between
conditions (Dunning et al., 2008b; Johnstone et al., 2008). For
this reason, we implemented several normalization methods on
our proprietary datasets, while using the available normalized data
for the publicly available datasets. The normalization methods
for the Illumina data include quantile normalization and qspline
normalization as implemented in the R package beadarray (Dunning
et al., 2008a; R Development Core Team, 2009) and cubic
normalization as implemented in the Illumina BeadStudio software
(Illumina Inc., 2009). After normalization, only those genes with
a detection P-value <0.01 in all samples (Illumina Inc., 2009)
or considered present in all samples according to the Affymetrix
MAS5 algorithm (Affymetrix Inc., 2009) were included in further

Fig. 4. Bootstrap estimates of pA with 90% confidence intervals. Boxes
indicate the point estimates of pA; light grey vertical lines indicate the true
values of pA. (a) MDA231 qspline-normalized data; (b) MCF7 quantile-
normalized data; (c) MAQC ILM cubic spline-normalized data; (d) MAQC
Affymetrix MAS5 data; (e) BIIB 500 Affymetrix MAS5 data; and (f) BIIB
100 Affymetrix MAS5 data.

analyses (i.e. bootstrap estimation of pA by the procedure described
in Section 3.4).

4.2 Accuracy of estimation
Select results of our bootstrap estimation procedure for each dataset
are shown in Figure 4. For the UMiami datasets, we chose to display
results for only one normalization method for brevity.

In ∼90% of cases, our point estimate is within 5% of the true
proportion; in ∼80% of cases, the 90% bootstrap confidence interval
for our estimate contains the true value of pA. We note that our
method found the BIIB 100 dataset to be the most challenging. This
is no surprise as this titration series was designed with very low
levels of mRNA, as a challenge to the procedure used for RNA
amplification prior to running the expression assay (Shearstone et al.,
2006). In other words, this data was generated from a very small
amount of biological material so the estimation of the proportion of
the biological components is very challenging.

There is evidence in Figure 4 of an interaction between the
normalization procedure and the accuracy of our estimation method.
For example, we tend to overestimate pA when the data is qspline
normalized, as with the UMiami MDA231 data, but we tend to
underestimate pA when the data is quantile normalized. We note that
this relationship could also be a consequence of other experimental
variables, such as the expression platform or the specific laboratory
in which the data were generated. Further, datasets and analysis are
required to determine which factors (e.g. normalization, platform
and laboratory) have significant effects on the accuracy of our
procedure.

In addition, the stated confidence level of the confidence intervals
(90%) is predicated on the validity of the underlying model (Leeb,
2009; Shen et al., 2004). Because our underlying model has some
level of uncertainty, the stated level of confidence is an overestimate
of the actual level of confidence. In other words, model uncertainty

1047



[10:33 23/3/2010 Bioinformatics-btq097.tex] Page: 1048 1043–1049

J.Clarke et al.

Table 2. Bootstrap estimates of pA

Source Norm nb Prop Est SE 90% CI

UM-MDA231 Qspline
39 0.75 0.788 0.023 (0.746, 0.819)
37 0.50 0.529 0.065 (0.396, 0.604)
10 0.25 0.304 0.108 (0.180, 0.437)

UM-MCF7 Quantile 100
0.75 0.722 0.086 (0.596, 0.863)
0.50 0.448 0.057 (0.375, 0.553)
0.25 0.286 0.031 (0.265, 0.336)

MAQC-ILM Cubic
40 0.75 0.776 0.041 (0.710, 0.842)
55 0.25 0.303 0.021 (0.275, 0.335)

MAQC-AFFX MAS5
14 0.75 0.763 0.040 (0.688, 0.805)
68 0.25 0.270 0.027 (0.232, 0.317)

BIIB500 MAS5 100

0.80 0.761 0.031 (0.697, 0.800)
0.60 0.576 0.048 (0.508, 0.659)
0.40 0.493 0.053 (0.388, 0.567)
0.20 0.208 0.101 (0.092, 0.381)

BIIB100 MAS5 100

0.80 0.752 0.021 (0.722, 0.789)
0.60 0.518 0.050 (0.437, 0.593)
0.40 0.443 0.050 (0.365, 0.527)
0.20 0.190 0.093 (0.067, 0.347)

Source, data source; Norm, normalization; nb, number of bootstrap samples; Prop, true
value of pA; Est, bootstrap point estimate, SE, bootstrap standard error; 90% CI , 90%
bootstrap confidence interval. Bold values denotes cases where the true pA is not in the
interval.

tells us that a true 90% confidence interval is larger than the stated
90% confidence interval. In light of this the accuracy of our method
is most likely better than the results in Table 2 would suggest.

An accurate estimate of pA can be used to generate estimates of
expression specific to each tissue/cell type. Given expression from
a mixed sample AB and an estimate of pA we can estimate E(A) and
E(B) as

Ê(A)= p̂AE(AB) and Ê(B)= (1− p̂A)E(AB).

As we observe E(A), we can compare Ê(A) with the observed E(A)
to assess the quality of our estimate. Whether the error in using Ê(A)
as an estimate of E(A) can be used to improve our estimate of pA is
a topic for future research.

5 DISCUSSION AND CONCLUSIONS
We have demonstrated a statistical method for estimating the
proportions of each sample (Samples A and B) in a two-sample
mixture (AB). This method requires expression data generated
from the mixed sample AB and expression data generated from a
purified sample of one type A. Given this information, the method
approximates the proportion pA as the minimum of the ratios of
expression in the mixed and purified samples, where the minimum
is taken over genes. For this estimate to be accurate, it is required
that the data be transformed; the value of the parameter of the
transformation is determined by a geometric argument involving
the minimum radius of curvature of a function, parameterized as
a curve in the plane. Our results show that our method provides a
reasonably accurate estimate of pA on both proprietary and publicly
available datasets.

As demonstrated in Cleator et al. (2006) a large value of pA (say,
over 0.5) can have a substantial effect on the results of tests for
differential expression and confound tumor classification. However,

whether a large pA should be cause for concern depends on the
specific study. We would argue that pA should be assessed in all
samples, but the action of the investigator in response to a large
value of pA may vary from no action to discarding the sample from
further consideration. In the case where pA is very large, our method
will still give a reasonable estimate of E(B)(Ê(B)) but the variability
in this estimate could be large. Whether a large pA necessitates a
renormalization of the data is unknown; we conjecture that if Ê(A)
and E(A) are comparable then renormalization is unnecessary.

The results presented are preliminary and as such further research
is required to optimize and validate our method. Our bootstrap point
estimates and confidence intervals could be substantially improved
by increasing the number of bootstrap samples T and running
diagnostics to ensure that the number of samples and size of samples
are adequate for generating valid bootstrap quantities of interest
(Canty et al., 2002). In addition, we would like to explore the
relationship between the method of normalization and our estimation
technique. By altering the noise distribution, normalization alters
the relationship between the noise and the values of Ri, thereby
influencing the accuracy of minRi as an estimate of pA. The extent of
this influence is unknown, but further research may help determine
which normalization method yields the most accurate estimate of pA.
Finally, the calculation of the radius of curvature depends on the
estimation of the second derivative of the curve; we approximate
the second derivative by the second difference equation [Equation
(4)]. This approximation is accurate if the curve is smooth and is
well sampled, i.e. the distance between sk and sk+1 is small. Using a
well-sampled curve in our method can be computationally expensive
if the range of value of α (i.e. values of s) is large. We would like to
design a variation of our method which starts with a sparsely sampled
curve over a large range of values of α and iteratively narrows the
range of interest and increases the sampling density as information
about the probable location of s∗ is obtained. This should yield a
better estimate of pA at lower computational expense. We hope to
implement this variation and provide our approach to the statistics
community as an R package (R Development Core Team, 2009).

Our definition of the ‘elbow’ of a curve as the point of minimum
radius of curvature is applicable to other problems in statistics, such
as the choice of the number of principal components in a principal
components analysis (Jolliffe, 2002). One existing way to make
this choice is to identify the ‘elbow’ of the curve from a scree plot
and choose the number of components closest to the ‘elbow’. Our
procedure for finding the minimum radius of curvature, coupled with
a curve-fitting method, may be directly applicable to this problem.
This would provide a formalization, in the spirit of Zhu and Ghodsi
(2006), of what is currently an ad hoc approach.
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