PeerJ

Submitted 8 May 2014
Accepted 4 February 2015
Published 26 February 2015

Corresponding author
Susan R. Strickler,
srs57@cornell.edu

Academic editor
Gerard Lazo

Additional Information and
Declarations can be found on
page 15

DOI 10.7717/peerj.793

@ Copyright
2015 Strickler et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Comparative genomics and phylogenetic
discordance of cultivated tomato and
close wild relatives

Susan R. Strickler’, Aureliano Bombarely’, Jesse D. Munkvold',
Thomas York', Naama Menda', Gregory B. Martin'~* and
Lukas A. Mueller'

! Boyce Thompson Institute for Plant Research, Ithaca, NY, USA

2 Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg,
VA, USA

® Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca,
NY, USA

ABSTRACT

Background. Studies of ancestry are difficult in the tomato because it crosses
with many wild relatives and species in the tomato clade that have diverged very
recently. As a result, the phylogeny in relation to its closest relatives remains
uncertain. By using the coding sequence from Solanum lycopersicum, S. galapagense,
S. pimpinellifolium, S. corneliomuelleri, and S. tuberosum and the genomic sequence
from S. lycopersicurn ‘Heinz), an heirloom line, S. lycopersicum ‘Yellow Pear’, and two
of cultivated tomato’s closest relatives, S. galapagense and S. pimpinellifolium, we have
aimed to resolve the phylogenies of these closely related species as well as identify
phylogenetic discordance in the reference cultivated tomato.

Results. Divergence date estimates suggest that the divergence of S. lycopersicum,

S. galapagense, and S. pimpinellifolium happened less than 0.5 MYA. Phylogenies
based on 8,857 coding sequences support grouping of S. lycopersicum and S. galapa-
gense, although two secondary trees are also highly represented. A total of 25 genes
in our analysis had sites with evidence of positive selection along the S. lycopersicum
lineage. Whole genome phylogenies showed that while incongruence is prevalent in
genomic comparisons between these genotypes, likely as a result of introgression and
incomplete lineage sorting, a primary phylogenetic history was strongly supported.
Conclusions. Based on analysis of these genotypes, S. galapagense appears to be
closely related to S. lycopersicum, suggesting they had a common ancestor prior

to the arrival of an S. galapagense ancestor to the Galdpagos Islands, but after di-
vergence of the sequenced S. pimpinellifolium. Genes showing selection along the

S. lycopersicum lineage may be important in domestication or selection occurring
post-domestication. Further analysis of intraspecific data in these species will help to
establish the evolutionary history of cultivated tomato. The use of an heirloom line is
helpful in deducing true phylogenetic information of S. lycopersicum and identifying
regions of introgression from wild species.
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BACKGROUND

Identifying and exploiting diversity present in wild tomato species has been crucial for
the improvement of production traits in cultivated tomato (Grandillo et al., 2011). Useful
traits, such as ease of harvest, shelf life, pathogen resistance, and abiotic stress tolerance
have been introduced through introgressions from wild species. The wild tomatoes, along
with the cultivated tomato, Solanum lycopersicum, comprise the 13 members of Solanum
sect. Lycopersicon, and are native to western South America. All members of the clade can
be crossed to cultivated tomato with varying degrees of ease (Grandillo et al., 2011) and
breeding programs for cultivated tomato have widely utilized this property since the
1940s (Grandillo et al., 2011), allowing for the introgression of traits desirable in

fruit production. Interestingly, most wild species are green-fruited except for three:

S. pimpinellifolium, S. galapagense, and S. cheesmaniae. These species are also thought

to be the closest relatives to cultivated tomato (Darwin, Knapp ¢ Peralta, 2003; The Tomato
Genome Consortium, 2012).

S. pimpinellifolium is native to areas of low elevation on the western slopes of the Andes
in Peru and Equador (Grandillo et al., 2011). It is the proposed nearest wild relative to
the cultivated tomato (The Tomato Genome Consortium, 2012) and is the only red-fruited
wild species. S. pimpinellifolium has been used to introduce traits such as disease resistance
and improved soluble solids into cultivated tomato (Grandillo et al., 2011). The other two
wild species, Solanum galapagense, along with the closely-related Solanum cheesmaniae,
are perennials endemic to the Galdpagos Islands and comprise the only two orange-fruited
tomato species. S. galapagense was only recently recognized as a separate species from
S. cheesmaniae. It was previously classified as S. lycopersicon cheesmaniae L. Riley var. minor
(Hook.f) (Darwin, Knapp ¢ Peralta, 2003) and there is debate based on genetic variation
between the species that questions whether they should be classified as morphotypes rather
than separate species (Lucatti et al., 2013). S. galapagense and S. cheesmaniae have been
used to alimited degree in breeding programs, mainly to improve salt tolerance and soluble
solids (Grandillo et al., 2011). Orange fruit color in these two species is due to a dominant
variant of the B gene that results in 5 to 10-fold increase in 8-carotene in comparison
to red fruit (Ronen et al., 2002). These species have other phenotypic differences from
cultivated tomato including scent, pathogen response, trichomes, and leaf morphology
(Darwin, 2009).

The relative phylogenetic positions of S. lycopersicum, S. galapagense, S. cheesmaniae,
and S. pimpinellifolium are currently unresolved (Grandillo et al., 2011). Several different
tree topologies have been inferred for the species in recent literature using various
methods (Grandillo et al., 2011). In recently diverged species such as these, phylogenetic
discordance can be prevalent (Ané, 2011) due to both incomplete lineage sorting of
ancestral polymorphism and introgression from other species. Introgression is expected
to make an especially strong contribution to phylogenetic discordance in tomato species,
due to the use of wild species in the development of various S. lycopersicum cultivars. In
particular, the sequenced tomato S. lycopersicum ‘Heinz 1706’ (H1706) is known to have
S. pimpinellifolium in its parentage (Ozminkowski, 2004; Labate ¢ Robertson, 2012; The
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Tomato Genome Consortium, 2012). Interspecific hybridization also occurs in wild popu-
lations of tomato along hybrid zones (Nakazato ¢ Housworth, 2010) and also as evidenced
by S. lycopersicum var cerasiforme, which is purportedly the result of crossing between S.
lycopersicum and S. pimpinellifolium (Ranc et al., 2008). In contrast, S. galapagense and
S. cheesmaniae have likely evolved in relative isolation, although S. pimpinellifolium and
S. lycopersicum have been introduced to the Galapagos Islands in the past few decades
(Darwin, 2009). Heirloom lines, which have existed prior to the implementation of major
breeding programs, have been perpetuated mainly from lines of S. lycopersicum often by
home gardeners, decreasing their likelihood of containing introgressions from wild species.
For this study, we have sequenced S. galapagense and the heirloom line Solanum
lycopersicum Yellow Pear’ (YP-1) (Goldman, 2008). Given the close relationship between
S. galapagense and S. cheesmaniae, S. galapagense was chosen as a representative sample
for the current study. These data were used in conjunction with coding sequence data
from S. pimpinellifolium (The Tomato Genome Consortium, 2012), S. corneliomuelleri (Park
etal., 2012), and S. tuberosum (Potato Genome Sequencing Consortium, 2011). Positively
selected genes along the S. lycopersicum lineage were of interest since they may relate to
domestication phenotypes. Using whole genome sequence from H1706, YP-1, S. gala-
pagense, S. pimpinellifolium, S. tuberosum, and the H1706 reference genome sequence
(The Tomato Genome Consortium, 2012), regions of divergence from cultivated tomato
including structural variation were identified and the placement of S. galapagense on the
Solanum phylogenetic tree was resolved for these genotypes. Also, a survey of genomic
discordance was performed to gain a greater understanding of phylogenetic incongruence
in newly diverged plant species. S. lycopersicum YP-1, a heirloom line that predates major
tomato breeding programs was included as a negative control for introgressions from
wild tomato species. All data and results from this study are available at the Sol Genomics
Network site (http://solgenomics.net/) (Bombarely et al., 2011).

RESULTS

Assembly statistics
Quality filtering and trimming of the paired-end reads yielded 462.7 million S. lycop-
ersicurn H1706 reads, 420.3 million YP-1 reads, 363.9 million S. galapagense reads,
and 281.5 million S. pimpinellifolium reads (Table S1). Approximately 92.1% of the
S. lycopersicum H1706 reads, 93.5% of the YP-1 reads, 89% of the S. galapagense, 88% of
the S. pimpinellifolium reads mapped to the S. lycopersicum version 2.40 genome assembly
giving 39x, 45x, 32x, and 25x coverage and covering 99.2%, 99.3%, 95.4%, and 95% of the
tomato genome respectively, after mapping quality filtering and duplicate read removal
(Table S1). Gaps were calculated as regions without read coverage that were not gaps in the
S. lycopersicum H1706 scaffolds. Gap total size ranged from 5.4 Mbp for YP-1 to 38.9 Mbp
for S. pimpinellifolium (Table S1).

In addition, de novo assemblies were produced for each non-reference genome
(Table S2). By comparing assemblies generated from a range of k-mer values, the
best k-mer values were found to be 63, 57, and 51, for YP-1, S. galapagense, and
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Figure 1 Feature density of Yellow Pear, S. galapagense, and S.pimpinellifolium in comparison to
H1706. Red arrow points to putative introgression. (A) SNP density on chromosome 4 of sequenced
genotypes. (B) SNP density on chromosome 5 of sequenced genotypes. (C) Read depth on chromosome
4 of sequenced genotypes. (D) Read depth on chromosome 5 of sequenced genotypes (E) Gene density
on chromosome 4 based on HI1706 annotations (F) Gene density on chromosome 5 based on H1706
annotations.

S. pimpinellifolium respectively. Contigs greater than 200 bp were used for further analysis.
The YP-1 assembly produced the largest contigs with an N50 of 25.2 kb totaling 716.7 Mbp
of sequence while S. pimpinellifolium had the shortest with an N50 of 5 kb totaling 669.3
Mbp of sequence (Table 52).

SNP and indel detection and effect on the genome

Over 500,000 single nucleotide polymorphisms (SNPs) were found between YP-1

and H1706 (Table S3). S. galapagense was found to have approximately 4.7 million
SNPs, whereas S. pimpinellifolium had 6 million when compared to H1706 (Table S3).
Variation in SNP density was found across the genome, and was found to differ between
chromosomes and genotypes (Fig. | and Fig. S1). In particular, regions on chromosomes
4 (~59 Mbp) and 11 (~4 Mbp) show reduced SNP density in S. pimpinellifolium and
elevated density in YP-1 (Fig. 1 and Fig. S1). A large assembly coverage gap in S. pimpinel-
lifolium located at approximately 11 Mbp on chromosome 1 is found at the position

of the tomato self-incompatibility locus (Tanksley ¢ Loaiza-Figueroa, 1985) (Fig. S1).
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Large assembly coverage gaps were also detected in S. pimpinellifolium on chromosomes 3
(~37 Mbp), 8 (~40 Mbp), 10 (~30 Mbp), and S. galapagense chromosomes 8 (~16 Mbp),
and 12 (~60 Mbp) (Fig. S1). As expected, more SNPs were found in noncoding regions
than coding regions (Table 53). SNPs were found in approximately 0.05%, 0.5%, and 0.8%
of the YP-1, S. galapagense, and S. pimpinellifolium intergenic regions respectively, while
affecting only 0.04%, 0.3%, and 0.4% of the coding regions of these genomes (Table S3).
A total of 3,418 YP-1, 20,447 S. galapagense, and 12,143 S. pimpinellifolium genes were
found to have nonsynonymous SNPs associated with them. Additionally, 242,165 SNPs
were identified using the aligned Illumina data from H1706 to the reference H1706 v 2.40
assembly, of which 225,625 were predicted to be heterozygous with the reference genome
(please see solgenomics.net for vcf file).

Approximately 50,000 indels were found between YP-1 and H1706, 350,000 between
S. galapagense and H1706, and 520,000 between S. pimpinellifolium and S. lycopersicum
H1706 (Table S4). Indels were more prevalent in noncoding regions (Table S4). Indels
in coding sequence were found in a total of 595 YP-1 genes, 3,493 S. galapagense genes,
and 3,645 S. pimpinellifolium genes. Additionally, 41,776 indels were identified between
the H1706 sequence and H1706 v 2.40, 4,716 of which were heterozygous (please see
solgenomics.net for vct file).

Structural variation

To determine the nature of regions where reads from YP-1, S. galapagense, or S. pimpinel-
lifolium could not map to the H1706 genome, but H1706 reads could map, these regions
were further analyzed for each species. Regions lacking coverage in the H1706 mapping
are mainly scaffolding gaps in the H1706 reference genome. Gap size distribution was
similar between S. galapagense and S. pimpinellifolium with less gaps found in YP-1
(Fig. 2), with all genotypes having a peak at 90 bp. Since gaps could be missing regions
or divergent regions where short reads cannot map, de novo contigs assembled from the
wild and heirloom species reads were mapped to the reference genome to determine if they
covered gap regions. Approximately 3.3% of YP-1, 3.7% of S. galapagense, and 6.0% of S.
pimpinellifolium contigs did not map with greater than 90% id. A small number of these
contigs contained many repeats or matched plastid, mitochondrial, or vector DNA (Table
S5). After removal of gaps covered by de novo contigs, a total of 2.4 Mbp of YP-1, 13.8 Mbp
of S. galapagense, and 21.6 Mbp of S. pimpinellifolium was putatively deleted relative to
H1706. The largest gap in each species was 12.7 kbp on chromosome 12 for YP-1, 41 kb on
chromosome 12 of S. galapagense, and 38.7 kbp on chromosome 10 of S. pimpinellifolium
(File S1). Deleted genes were determined as genes that were at least 90% contained in
putative gaps and had no matches in de novo contig assemblies. A total of 13 genes from
YP-1, 87 genes in S. galapagense, and 157 in S. pimpinellifolium were found to have no
coverage in either the small read mapping or contig mapping (Table 56). Many of these
genes were classified as disease resistance-related proteins or lacked a predicted function
(Table S6).
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Figure 2 Putative deletion size distribution in combined assemblies.

Two small insertions of 130 bp were predicted in S. pimpinellifolium in reference to
H1706 on chromosomes 4 and 10, but these were not well supported (Table S7). No
insertions larger than 20 bp could be predicted in the other genotypes relative to H1706
with these datasets.

Patterns of gene evolution in Solanum

To determine the average nucleotide substitution rate amongst coding sequences, aligned
sequence from 32,982 S. galapagense genes and 32,795 S. pimpinellifolium genes was
used to generate estimates of nonsynonymous (dN) and synonymous (dS) substitution
rates in reference to YP-1 (Table 1). H1706 was not considered in the analysis since
introgression from wild species could bias the analysis. Missing genes or genes containing
stop codons were removed from the analysis. S. pimpinellifolium had a larger average dS
than S. galapagense (Table 1). The number of synonymous substitutions per synonymous
site ranged from 0 to 0.5655 for S. galapagense, and 0 to 0.3403 for S. pimpinellifolium.
Nonsynonymous substitutions per nonsynonymous site ranged from 0 to 0.2106 in

S. galapagense and 0 to 0.1105 in S. pimpinellifolium.

The coding sequence from 8,857 orthologous genes that could be aligned with
confidence between YP-1, S. galapagense, S. pimpinellifolium, S. corneliomuelleri, and S.
tuberosum were analyzed to infer gene tree topology using maximum likelihood. The
majority of trees (3,611) supported tree topology 1 which groups S. lycopersicum and
S. galapagense, suggesting these two species may be more closely related, although two
other tree topologies were also well supported, albeit to a lesser degree (2,344 and 2,037
trees) (Fig. 3). The genes were then subjected to site-branch selection tests along the
S. lycopersicum lineage. Stop codons were found in at least one of the species for 288 genes
and these were removed from further analysis.
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Table 1 Pairwise estimates of nonsynonymous (dN), synonymous (dS) mean substitution rate. Cal-
culations are in comparison with S. lycopersicum ‘Yellow Pear’ and are based on 8,578 orthologous
coding sequences for numbers not in parenthesis. Numbers in parenthesis are based on all usable coding
sequences.

Species dN ds ®*

0.0012 £ 0.0019 0.0037 £ 0.0059 0.3535 £ 2.0205
S. galapagense

(0.0029 +£ 0.0058) (0.0052 £ 0.0117) (0.5191 + 3.2039)

T 0.0013 £ 0.0022 0.0043 £ 0.0065 0.4305 £ 2.9802

S. pimpinellifolium

(0.0033 £ 0.0062) (0.0064 £ 0.0126) (0.5300 £ 3.3742)
S. corneliomuelleri 0.0037 £ 0.0041 0.0151 £ 0.0123 0.3219 £ 1.0219
S. tuberosum 0.0332 £ 0.4361 0.1306 £ 1.3060 0.2386 £ 0.3127

Notes.
2 Maximum likelihood estimate, values >99 removed.
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Figure 3 Gene trees inferred from coding sequence of 8,796 Solanum species genes. Phylogenetic trees
were derived using maximum likelihood and were supported in at least 75 of 100 bootstrap replicates.

A total of 25 genes showed evidence of a faster rate of evolution along the S. lycopersicum
lineage (File S2 and Table S8). Many of these genes have predicted function in adaptive or
domestication phenotypes such as pathogen and abiotic stress response, cell division, and
carbohydrate metabolism (Table S8).

Species divergence time estimates calculated based on dS values from 3,611 genes fitting
topology 1 suggest a divergence estimate for S. lycopersicum and S. pimpinellifolium
of 0.44 MYA (Table 2). Using coalescence-based divergence estimates of 8 genes
fitting topology 1, a similar divergence of 0.45 MYA was obtained (Table 2), although
hybridizations signatures were apparent between the species (Fig. S2). A subsample of
genes was used since these analyses are not easily scaleable to a large number of loci. The
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Table 2 Divergence time estimates of selected species. Calculations for Global Clock Method based on
pairwise silent site substitutions for 3,611 genes. Calculations for coalescence method were performed
with 8 genes. All genes used in calculations fit gene tree topology 1. Divergence date estimates are in
reference to H1706.

Species ds Divergence Date (MYA)? Divergence Date (MYA)®
S. galapagense 0.0024 £ 0.0038 0.19 0.25
S. pimpinellifolium 0.0053 % 0.0066 0.44 0.45
S. corneliomuelleri 0.0166 £ 0.0126 1.38 1.54
S. tuberosum 0.1335 + 1.2383 11.07 NA
Notes.

2 Based on global clock method.
b Based on coalescence method.
MYA, million years ago.

signatures support the hypothesis of recent hybridizations between the following groups:
(1) S. lycopersicum and S. galapagense, (2) S. lycopersicum and S. pimpinellifollium, and
(3) S. galapagense and S. pimpinellifollium. A more recent divergence of 0.19 MYA, using
dS values, and 0.25, using the coalescence method, was estimated for S. lycopersicum and
S. galapagense (Table 2).

Genomic phylogenetic discordance

To look at genome-wide phylogenetic discordance, whole genome alignments were
created with H1706, YP-1, S. galapagense, S. pimpinellifolium, and S. tuberosum. A total
of 781.5 Mbp of the H1706 genome was represented in the alignment. The alignments were
then partitioned into 100 kb windows resulting in 8,275 loci, since some alignments were
shorter than 100 kb.

Trees for each genome partition were constructed using Bayesian phylogenetic analysis.
A total of 217 loci contained gaps in the alignment and the topology could not be deduced.
A total of 2,227 loci covering 27% of the H1706 genome supported topology 1 with a
posterior probability of 0.9 or greater (Fig. 4, File 53, and Fig. S3) grouping S. galapagense
closer to S. lycopersicum than to S. pimpinellifolium (Fig. 4, File S3, and Fig. 53). Topology
3, which clusters the two S. lycopersicum varieties more closely to S. pimpinellifolium, was
found with a posterior probability of 0.9 or greater at 224 loci covering 2.8% of the H1706
genome (Fig. 4. File 53, and Fig. 53). Overall, the predominant tree topology was topology
1 which was the best supported topology at 72.9% of the genome. Topology 3 was the
second most prevalent tree and supported at 19.7% while topology 2 was found at 5.6% of
the genome.

A total of 82 loci constituting 0.9% of the H1706 genome best supported topologies
indicative of introgression in H1706, placing S. pimpinellifolium closer to H1706 than
YP-1. This includes an introgression of 19.9 kb starting at the beginning of chromosome
9 which is linked to Vel (Solyc09g005090) and Ve2 (Solyc09g005080), involved in
Verticillium wilt resistance (Kawchuk et al., 2001) and a 1.1 Mbp region on chromosome
11 that contains the I gene, which confers resistance to Fusarium wilt (Scott, Agrama ¢
Jones, 2004) (Table S9). An additional 1.7 Mbp region on chromosome 4 containing 172

Strickler et al. (2015), Peerd, DOI 10.7717/peerj.793 8/19


https://peerj.com
http://dx.doi.org/10.7717/peerj.793/supp-15
http://dx.doi.org/10.7717/peerj.793/supp-15
http://dx.doi.org/10.7717/peerj.793/supp-12
http://dx.doi.org/10.7717/peerj.793/supp-12
http://dx.doi.org/10.7717/peerj.793/supp-15
http://dx.doi.org/10.7717/peerj.793/supp-15
http://dx.doi.org/10.7717/peerj.793/supp-12
http://dx.doi.org/10.7717/peerj.793/supp-12
http://dx.doi.org/10.7717/peerj.793/supp-15
http://dx.doi.org/10.7717/peerj.793/supp-15
http://dx.doi.org/10.7717/peerj.793/supp-12
http://dx.doi.org/10.7717/peerj.793/supp-12
http://dx.doi.org/10.7717/peerj.793/supp-9
http://dx.doi.org/10.7717/peerj.793/supp-9
http://dx.doi.org/10.7717/peerj.793

Peer/

Chromosome 4 Chromosome 5

Topologies

.bpnlogy o1
.bpnlogy 02

topology 03
topology 04
.bpnlogy 05
topology 06
topology 07

topology 08

075 -

topology 0%

posterior probability
posterior probability

.topnlogy 1
0.25 0.25 .buulour 12
topology 13
topology 14
.bpulogy 15
000 0.00
' ' ! ! ! ! | ) | : ! ! | !
0e+00 16407 2e+07  3eHDT  de+07 Se+07  Ge+O7 0&+00 16407 28407 3e+D7  AeHT Se+l7  Ba+07
Position (bp) Position (bp)
1 ! 1 1
2 2 2 3
2 # 4 4
4 4 2 2
5 5 5 5
topology 1 topology 2 topology 3 topology 6

Figure 4 Tree topologies across selected chromosomes of H1706. Coordinates are based on the H1706
reference genome. Posterior probabilities are shown for each tree. (A) Chromosome 4. (B) Chromosome
5. (C) Predominant tree topologies. 1 = YP; 2 = H1706; 3 = S. galapagense; 4 = S. pimpinellifolium;
5=S. tuberosum.

gene models was found to be introgressed in H1706, although, to date, no known disease
resistance genes are found here (Fig. 4 and Table 59).

By using functional predictions for the gene models predicted within the chromosome
11 introgression, four TIR-NB-LRR resistance proteins were identified (Table S9). Since 12
is known to be a protein of this type, these genes are likely candidates for I (Scott, Agrama
& Jones, 2004). One of the candidates, Solyc11g011080, was found to have a frameshift
mutation and possible splice site mutation in YP-1, while retaining the H1706 reading
frame in S. pimpinellifolium.

DISCUSSION

Here, we present two new genome assemblies: the wild tomato species, S. galapagense, and
an heirloom variety, S. lycopersicum ‘Yellow Pear” We determined variation by comparing
these two assemblies, as well as the published assemblies of S. pimpinellifolium and the
reference H1706 genome. While a difference in SNP count was found between this study
and a previous study for S. pimpinellifolium (The Tomato Genome Consortium, 2012),
the same SNP calling pipeline was used for all genotypes in this study, so estimates

of variations across species should not be biased. The homozygous SNPs and indels,
which were identified by mapping reads from H1706 to the reference genome from this
genotype, are likely errors in the reference sequence. Heterozygous sites in H1706 were
identified. It is also possible that 454 sequencing used in the reference assembly introduced
indel errors. Slightly more gaps were found in the H1706 assembly than in the YP-1

Strickler et al. (2015), PeerJ, DOI 10.7717/peerj.793 I 919


https://peerj.com
http://dx.doi.org/10.7717/peerj.793/supp-9
http://dx.doi.org/10.7717/peerj.793/supp-9
http://dx.doi.org/10.7717/peerj.793/supp-9
http://dx.doi.org/10.7717/peerj.793/supp-9
http://dx.doi.org/10.7717/peerj.793

PeerJ

assembly, which could be related to newer technologies used for library preparation for
the sequencing of YP-1. The gap peak found at 90 bp is due to scaffolding gaps in the
H1706 reference assembling. Putative divergent regions in the assemblies are likely not
repetitive regions or other regions where reads map poorly to the reference genome, since
these regions would have been removed from further analysis based on gaps in the H1706
reference-guided assembly. Large insertions could not be predicted with accuracy, likely
due to the use of only short insert size paired-end libraries. Based on the total length of the
de novo assemblies and divergent regions, it is likely that the genome size of S. galapagense
is comparable to S. lycopersicum, although earlier studies suggested a possibly smaller
genome (Arumuganathan ¢ Earle, 1991). S. pimpinellifolium may have a smaller genome
than H1706, based on gap sizes and kmer assessment.

Omega values are a method of determining selection at a coding locus. These values
tend to decrease with evolutionary distance (Wolf et al., 2009) and a similar result was
obtained based on the coding sequence analysis of S. pimpinellifolium, S. corneliomuelleri,
and S. tuberosum. Since the omega value is a ratio derived from scaling dN by dS, omega
values can be artificially inflated if synonymous mutations are not neutral and also as a
factor of short branch length. The latter is a likely explanation for our results, as species
in the tomato clade have a very recent divergence. For example, one of the more divergent
wild tomato species, S. pennellii, has an estimated divergence from S. lycopersicum of only
7 MYA (Nesbitt ¢ Tanksley, 2002). Our results suggest a more recent divergence of tomato
from its closest wild relatives, giving further evidence of short branch length. Our results
are similar to a previous estimate of ~1 MYA for the divergence of S. lycopersicum, S. chee-
maniae, and S. pimpinellifolium, which was based on a smaller gene sample size (Nesbitt ¢
Tanksley, 2002). Interestingly, a much larger number of S. galapagense genes are affected by
nonsynonymous substitutions, which could be due to the fixation of slightly deleterious
alleles due to drift acting strongly on a small population size during initial colonization
of the Galdpagos Islands. However, other mutations such as stop codon, indels, and
other deleterious mutations are not inflated, suggesting this increase in nonsynonymous
substitutions could be do to positive selection. Nonsynonymous substitutions per
nonsynonymous site has a larger range in S. galapagense also likely due to drift or selection.

Only 25 genes were detected in this study that are candidates for selection along the
S. lycopersicum lineage. Many factors relevant to this data set likely play a role in these
results. The reduced gene set only includes genes with putative orthologs that fit strict
criteria and contained matches in all species studied. In particular, the S. corneliomuelleri
transcriptome dataset contained only 50% of the total number of expected genes based
on tomato annotations. As a result, this data set is likely a biased sample including
predominantly genes that are more conserved across Solanum species. Indeed, a study
analyzing a larger sample of 11,221 genes, found a total of 51 genes to be positively selected
(Koenig et al., 2013). Moreover, the short branch length of members of the tomato clade
impedes detection of differential rates of evolution. An average dS of 0.05 is necessary
for detection of lineage-specific selection, meaning there is little statistical power to
detect selection along a lineage in this group (Yang, 2007). To detect selection within the
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tomato clade, alternative selection detection methods, such as McDonald—Kreitman tests
(McDonald & Kreitman, 1991) involving intraspecific data, may prove useful, as well as a
larger sample size of genes.

Whole genome phylogenies proved useful to detect topological discordance in these
recently diverged plant species. Since a greater number of SNPs occur in non-coding
genomic regions, higher phylogenetic signal may be achieved with genomic alignments,
rather than only coding sequence. In our study, most regions of the H1706 genome
where phylogenies do not fit the majority rules species tree did fit a pattern expected
from incomplete lineage sorting; for example, grouping both S. lycopersicum varieties
closer to S. pimpinellifolium. Incomplete lineage sorting is also supported by the nearly
equal frequency of two secondary trees in the coding sequence phylogenies (Patterson et
al., 2012). These results are expected when speciation has occurred in a short period of
time from an ancestral population with greater diversity, which is likely the case in this
study. A secondary cause of phylogenetic discordance was found in regions of introgression
from S. pimpinellifolium in the H1706 genome and could be ascertained by the inclusion
of the heirloom YP-1 as a control. Genome-wide phylogenies, as well as SNP density
patterns on chromosomes 4, 9, and 11, support introgression of a S. pimpinellifolium in
the H1706 genome. Some smaller putative introgressions were found on chromosomes
1,2, 3,5, 6, 8, and 10. Additionally, an overlapping region on chromosome 4 was
found in comparisons to an inbred line to H1706 further supporting an introgression
in H1706 at this location (Menda et al., 2014). These regions are in concordance with
previous introgression predictions (The Tomato Genome Consortium, 2012) and the
known H1706 pedigree (Ozminkowski, 2004). There are also several regions of high
SNP density across the chromosomes that do not correspond to regions identified as
introgressions in the tree topologies, suggesting these are regions of high variability. For
example, S. pimpinellifolium chromosome 1 has a region of high SNP density on either
side of the self-incompatibility locus. Self-incompatibility loci are known to exhibit high
polymorphism and rearrangement (Wang et al., 2003) and this is evidenced by the lack of
read coverage in the immediate area between S. pimpinellifolium and H1706. This result
would also suggest the sequenced S. pimpinellifolium has a self-incompatibility haplotype
that is different from H1706, YP-1, and S. galapagense. Also, it is important to keep in
mind, while H1706 is known to have S. pimpinellifolium in its parentage, the specific
genotype analyzed here may be different than the H1706 parental genotype, resulting in
variation between the introgressed segments in H1706.

Despite extensive phylogenetic discordance, by using coding sequence and whole
genome sequence data, we were able to ascertain a predominant species tree for the
varieties in this study. S. galapagense is more closely related to S. lycopersicum than
S. pimpinellifolium as supported in some previous studies, one of which includes a different
S. galapagense genotype than what was used in our study (Grandillo et al., 2011; Koenig
et al., 2013). It is possible by sampling the spectrum of variation in S. pimpinellifolium a
more closely related genotype to cultivated tomato may be found. Sequencing of additional
genotypes of these species will help shed light on the evolution of domesticated tomato.
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CONCLUSIONS

H1706 provides an excellent reference for genome assembly of its nearest wild relatives
and allows for efficient genome analysis. Using this reference genome, we have determined
areas of variation across closely related tomato species and found candidate genes that
could be involved in domestication, crop improvement, or adaptation to new environ-
ments. Genome-wide phylogenies support this S. galapagense genotype as the closest wild
relative of cultivated tomato in our study. The sequenced tomato is expected to have wild
introgressions and we have successfully delimited candidate introgression regions from
wild species. This method may also be useful in detecting candidate regions for breeding
purposes as well as conservation biology, since wild species may be threatened due to
introgression from cultivated tomatoes (Darwin, Knapp ¢ Peralta, 2003; Darwin, 2009).

METHODS

Solanum lines and libraries

S. galapagense genotype LA0436 was obtained from the Tomato Genetic Resource Center
(TGRG; http://tgrc.ucdavis.edu/) and S. lycopersicum ‘Yellow Pear’ (YP-1) was obtained
from the Martin Lab. Genomic DNA was prepared using a modified version of a protocol
described previously (Zhang et al., 1995) using precipitation and CsCl purification instead
of agarose bead imbedding. Samples for S. galapagense were sent to the Life Science Core
Laboratory Center at Cornell University (Ithaca, NY) for library preparation and sequenc-
ing. YP-1 was sent to Genomics Resources Core facility at Weill Cornell Medical College
(New York, NY) for library preparation and sequencing. S. pimpinellifolium genotype
LA1589 and S. corneliomuelleri genotype LA0103 were sequenced by the Lippman Lab at
Cold Spring Harbor (Park et al., 2012; The Tomato Genome Consortium, 2012). H1706 and
Solanum tuberosum sequence is publicly available (Potato Genome Sequencing Consortium,
2011; The Tomato Genome Consortium, 2012). H1706 Tllumina paired-end data from
libraries 090617, 090619, and 090701 _SNPSTERS5B was provided by Syngenta.

lllumina sequencing

Sheared genomic DNA from S. galapagense was run on 2 lanes of an Illumina HiSeq 2000
(Ilumina, San Diego, California, USA). Read length was 100 base pairs (bp) and insert size
was 200 bp. In addition, sheared genomic DNA was run on 7 lanes of an Illumina GA II
using the mate pair module. Genomic DNA from YP-1 was run on 1 lane of an Illumina
HiSeq 2000 and the resulting sequence was 100 bp in length with an insert size of 300 base
pairs. S. galapagense and YP-1 sequence was submitted to the NCBI Small Read Archive
(SRA) as experiment numbers SRX520161 and SRX521582. Data and output from this
study can be accessed through Solgenomics at ftp://ftp.solgenomics.net/genomes/.

Sequence assembly

Reads were inspected for quality using FastQC (http://www.bioinformatics.babraham.ac.
uk/projects/fastqc/) and rechecked after cleaning. Cleaning was performed with fastq-mcf
(https://code.google.com/p/ea-utils/wiki/FastgMcf). Reads were mapped to the H1706
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reference assembly v 2.40 using a tiered approach with an initial round of BWA (Li ¢
Durbin, 2009) mapping followed by Novoalign (http://novocraft.com/) for the remaining
discordant and unmapped reads. Duplicate reads and reads with a mapping quality
less than 30 were removed for variation analysis with Picard (http://picard.sourceforge.
net) and Samtools (Li et al., 2009), respectively. A mapping quality of 30 means for
approximately every 1000 mapped reads, one will be mapped incorrectly.

Whole genome de novo assemblies of S. galapagense, S. pimpinellifolium, and YP-1 were
created using SOAP de novo version 1.05 (Li et al., 2008). Assemblies were produced using a
kmer range between 25 and 63. Scripts supplied with the SOAP de novo package were used
for error correction and gap filling of the scaffolds. Reads that did not map or did not pair
properly in the reference-guided assembly were mapped to the de novo assembled contigs
for each genome. Contigs that had an above average number of reads mapped to them were
further analyzed (see next section).

Variation discovery

SNPs and indels 15 base pairs and smaller were detected using the GATK recommended
best practices (McKenna et al., 2010). Since a suitable dataset was not available for
base quality calibration, one was generated by pooling high quality SNPs from both

S. galapagense and S. pimpinellifolium. Snpeft was used to determine the effect of each SNP
and indel in the genome and determine zygosity (Cingolani et al., 2012). Putative deleted
regions were detected by finding regions that had no sequence coverage and did not overlap
with gaps in the reference assembly using Bedtools (Quinlan ¢ Hall, 2010). Only gaps
greater than 15 base pairs and not found on chromosome 0 were used for further analysis.
These regions were compared to the mapping assembly of H1706 and matching gaps were
removed from further analysis. BLAT (Kent, 2002) with default values (sequence identity
90%) was used to map de novo assembled contigs greater than 200 bp from each genotype
to the reference genome. The best hit was determined by using scripts included with
the BLAT package. Unmapped contigs were processed by Seqclean (https://sourceforge.
net/projects/seqclean/) to identify matches to S. lycopersicum plastid or mitochondrial
DNA (The Tomato Genome Consortium, 2012), plant pathogen sequence found in Com-
prehensive Phytopathogen Genomics Resource (CPGR) (Hamilton et al., 2011), vector
sequence found in UniVec database (http://www.ncbi.nlm.nih.gov/VecScreen/UniVec.
html), or contigs that were low complexity. Putative deletions were confirmed if de novo
assembled contigs did not map to regions not covered in the reference-guided assemblies.
Bedtools (Quinlan ¢» Hall, 2010) was used to identify genes found at least 90% in deleted
regions. BLAT (Kent, 2002) was used to search for orthologs of these genes in the de novo
assemblies. Genes with hits covering less than 50% of the gene and not the top match in
reciprocal BLAT (Kent, 2002) output were considered deleted. Breakdancer v1.1 (Chen et
al., 2009) was used to predict insertions greater than 15 base pairs for insertion analysis.

Coding sequence analysis
Predicted coding sequence from S. galapagense, and S. pimpinellifolium was used for
pairwise comparisons to YP-1. Only genes with no stop codons predicted within the
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gene sequence were used. Coding sequence was predicted using H1706 annotation
version ITAG2.3 (The Tomato Genome Consortium, 2012). Coding regions were first
reverse translated and aligned using ClustalW (Thompson, Gibson ¢ Higgins, 2002).
Alignments containing premature stop codons were discarded. Pairwise maximum
likelihood comparisons were performed to determine nonsynonymous and synonymous
substitution rates using the codeml package of PAML version 4.5 (Yang, 2007).

Predicted coding sequence of genes from YP-1, S. galapagense, S. pimpinellifolium,

S. corneliomuelleri, and S. tuberosum were subjected to phylogenetic analysis. Coding
sequence with at least 50% S. lycopersicum gene coverage was selected as input. BLAST
(Altschul et al., 1990) was used to find putative S. lycopersicum orthologs in S. tuberosum
coding sequence. These matches were then used as a query for a reciprocal BLAST (Altschul
etal., 1990) to the S. lycopersicum genome. Any hits that were not one-to-one matches were
discarded. Alignments were calculated as above. The underlying phylogeny was calculated
for each gene using DNAmI with the Kimura model and 100 bootstrap replicates using
PhygOmics (Bombarely et al., 2012). Pairwise estimates of @ were calculated using the
codeml package of PAML (Yang, 2007). Codeml (Yang, 2007) was also used to perform

a branch-site test to detect positive selection along the S. lycopersicum lineage. The
maximum likelihood value from the alternative model allowing sites to evolve under
positive selection was compared to the value from the null model in which no selection
occurs. The null model was rejected if 2 times the difference between the log likelihood
values was larger than 2.71 at the 5% significance level.

Divergence dating was estimated by assuming a nuclear gene substitution rate of
6.03 x 10-9 dS per site per year and dividing dS by 2 times the substitution rate (Nesbitt
& Tanksley, 2002). These estimates were compared to coalescent-based estimates using
*BEAST (Drummond ¢» Rambaut, 2007). Only genes fitting the predominant gene tree
topology were used in the calculations. Six gene clusters were used for this analysis
(homologous genes to the reference gene models: Solyc02g081560, Solyc02g093130,
Solyc04g054810, Solyc04g078200, Solyc06g009630, Solyc09g013140). Mega 6.06 (Tamura
et al., 2013) was used to determine the best model for 6 of the genes as Jukes and Cantor
based on BIC score for each gene. Monte Carlo Markov Chains (MCMC) of 100,000,000
generations were used to perform this analysis. See File 54 for Beast configuration
parameters. DensiTree (Bouckaert, 2010) was used to visualize tree set output.

Whole genome phylogeny

Genomes for YP-1, S. galapagense, and S. pimpinellifolium were created by substituting
SNPs and masking gaps in coverage into the reference assembly. Repeat masking was
performed using RepeatMasker (Smiit, Hubley & Green, 1996-2010) and a tomato-specific
repeat dataset (The Tomato Genome Consortium, 2012). Whole genome multiple sequence
alignment were generated for H1706, YP-1, S. galapagense, S. pimpinellifolium, and

S. tuberosum using Mercator and Mavid (Dewey, 2008). Each of the 8,275 loci was
analyzed using MrBayes (Ronquist ¢ Huelsenbeck, 2003). The analysis of each locus used 3
independent runs, each having 1 cold and 2 hot chains with a temperature spacing of 0.25,
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a run length of 200,000 generations, a burn-in fraction of 0.2, and a sampling frequency
of 100. The Gelman—Rubin psrf convergence diagnostic (Gelman ¢ Rubin, 1992) based
on log-likelihoods was calculated for each locus analysis, with the result that psrf <1.05,
indicating good convergence, for 99.9% of the loci. Trees were rooted using S. tuberosum as
an outgroup. Tree locations were mapped to H1706 genomic coordinates.

Abbreviations

YP-1 Yellow Pear

H1706 Heinz 1706

Mbp megabase pairs

SNPs single nucleotide polymorphisms

dN nonsynonymous substitutions per nonsynonymous site
ds synonymous substitutions per synonymous site
MDL minimum description length

TGRC Tomato Genetic Resource Center

bp base pairs

SRA Small Read Archive

CPGR Comprehensive Phytopathogen Genomics Resource
MCMC  Monte Carlo Markov Chains.
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