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The Drude-Smith equation is widely used for treating the
frequency-dependent electrical conductivity of materials in the
terahertz region. An attractive feature is its sparsity of adjust-
able parameters. A significant improvement over Drude theory
for these materials, the theory includes backscattering of the
charge carriers. It has nevertheless been criticized, including by
Smith himself, because of the arbitrariness of a step in the

derivation. We recall a somewhat similar behavior of back
scattering in fluids observed in molecular dynamics computa-
tions and discussed in terms of memory functions. We show
how theories such as Drude-Smith and Cocker et al. are
examples of a broader class of theories by showing how they
also arise as particular cases of a memory function formalism
that divides the interactions into short and long range.

1. Introduction

The Drude-Smith equation for the frequency-dependent elec-
trical conductivity ~s wð Þ was first derived for the conductivity of
the liquid metals[1] to treat the backscattering of the charged
carriers. It was later applied to semiconductors[2] and is now
widely used for treating the frequency-dependent conductivity
of materials in the terahertz regime, e.g. Ref. [3–10]. One of its
attractive features is its sparsity of parameters, of which there
are two, a Drude-type relaxation time and a backscattering
probability.

We recall that in the original Drude equation for the
conductivity there is a relaxation time arising from the
interaction of each charge with the other charges. In his
extension of the Drude equation, Smith incorporated back-
scattering and neglected all backscattering collisions after the
first one. He noted that “the justification for this procedure is
not too clear.”[1] Similar criticism has been made by a number of
authors, e.g. Ref. [10–14]. A recent review of THz studies is
given in Ref. [14].

For a system of free charges the frequency dependent
conductivity is related to the velocity autocorrelation function
(VAF) by a simple factor and it is useful to recall some numerical
results on the VAF for fluids that sheds some light on the
behavior of charges in semiconductor conductivity. In partic-
ular, backscattering plays a prominent role in the statistical
mechanical theory of diffusion in fluids. Examples in the

computer-calculated VAF are given in Figure 1,[15–17] where
either only a single backscattering is seen (for the “collisionally
soft” bromide anion and for liquid argon atoms), and a few but
small subsequent backscattering events are seen for a collision-
ally “hard” small cation, such as the Lithium cation or Rubidium,
using the hard-soft concept taken from inorganic chemistry.[18]

Computer-calculated velocity autocorrelation functions
(VAF) associated with diffusion are typically interpreted using a
memory function, e.g. Ref. [19], In the time domain the VAF
often has a small negative contribution, directly showing
backscattering. Using the memory function approach[11] in the
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Figure 1. The VAF (dots) in various liquids obtained from molecular
dynamics simulations. The (a) Br anion and (b) Li cation in liquid LiBr[15]

(c) Liquid Ar[16] (d) Liquid Rb at three temperatures.[17] The horizontal dotted
lines indicate zeros in the VAF at each MD simulation.
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literature for the conductivity we find that the Cocker et al.
current autocorrelation function is also included in the present
analysis. Of particular interest, this latter equation treats grain
boundary scattering, with a Drude term having one lifetime and
the scattering at a grain boundary having another lifetime.[11]

The memory function approach also suggests a simple exten-
sion of the Drude-Smith theory.

The overall qualitative similarity of the velocity autocorrela-
tion (VAF) plots of fluids, such as that in Figure 1, and the
Drude-Smith plot for the time-dependent electrical conductivity
σ(t) of electrons and holes given later in Figure 3(a), and the
frequent use of memory functions to treat the former prompted
the present treatment. Although the two scattering cross-
sections differ in detail they have some features in common
discussed later.

An outline of the paper is as follows: 1) the Drude-Smith
equation is given in the next section. 2) A memory function
formalism is introduced and used there to obtain an equation
for the complex-valued conductivity ~s wð Þ. It is shown there
how the Drude-Smith equation and the Cocker et al. equation
arise as special cases of that formalism. 3) The relation to the
velocity autocorrelation function for diffusion in fluids, exten-
sively studied via computations in the literature, is discussed
together with some results resulting from the latter. 4) Various
experimental results on terahertz conductivity are considered
and discussed. 5) Concluding remarks are given in the last
section.

2. Frequency-Dependent Electrical
Conductivity, Autocorrelation Function and
Drude-Smith

We consider the component j(t) of the electric current along the
direction of the electric field. We recall that the electric current
autocorrelation function is related to the frequency-dependent
conductivity per unit volume ~s wð Þ by the Fourier-Laplace
transform[20–22],

~s wð Þ ¼
1

VkBT

Z
1

0
exp iwtð Þhj 0ð Þj tð Þidt: (1)

The inverse relation is given by

hj 0ð Þj tð Þi ¼
VkBT
2p

Z
1

� 1

expð� iwtÞ~s wð Þdw: (2)

Each j in Equation (2) involves a sum over the particles. In
this double sum we neglect cross terms from different particles,
and thereby the product of j’s in Equation (1) is proportional to
N, the number of particles. As in the Drude-Smith equation we
consider the contribution of one kind of particle. We recall that
the Drude-Smith equation for the frequency-dependent con-
ductivity ~s wð Þ is given by:[1,2]

~s wð Þ ¼
ne2t

m
1

1 � iwt
þ

c
1 � iwtð Þ2

� �

; (3)

where n, e, m and t are the particle density, charge, effective
mass and lifetime, respectively, and c is a constant lying in the
interval (0,-1). From Equations (2) and (3) using contour integra-
tion to evaluate the integral we also obtain the Drude-Smith
equation [Eq. (4)] in the time domain.

hj 0ð Þj tð Þi ¼
Ne2

m
1þ

ct
t

� �

exp
� t
t

� �

: (4)

3. Memory Function Formalism and Application
to ~s wð Þ

3.1. General

We consider next the generalized Langevin equation[23] for the
velocity of the charged particle v(t), containing a memory kernel
M(t) and given by Equation (5):[24]

dv tð Þ
dt ¼ �

Z t

0
M t � t1ð Þv t1ð Þdt1 þ R tð Þ; (5)

where R(t) is a random force. Multiplying, as usual, by v(0),
taking an ensemble average, and noting that v(0) and R(t) are
uncorrelated and so hv(0)R(t)i= hv(0)ihR(t)i, we have Equa-
tion (6):

hv 0ð Þ
dv tð Þ
dt i ¼

Z t

0
Mðt � tÞhv 0ð Þv tð Þidt: (6)

Taking the Fourier-Laplace transform of this equation and
integrating by parts yields the velocity autocorrelation function
in frequency space ~C wð Þ [Eq. (7)]:[20–22]

~C wð Þ ¼

Z
1

0
exp iwtð Þhv 0ð Þv tð Þidt ¼

hv2 0ð Þi
~M wð Þ � iw

; (7)

where ~M wð Þ is the Fourier-Laplace transform of M(t).
For the specific conductivity ~s wð Þ we note its relation to the

velocity autocorrelation function [Eq. (8)][20]

~s wð Þ ¼
ne2

kBT

Z
1

0
exp iwtð Þhv 0ð Þv tð Þidt; (8)

where we used Equation (1), neglected the cross-terms in the
double sum over the particles in the product of the j’s, and note
that [Eq. (9)]

j tð Þ ¼ N e v tð Þ; (9)

where v(t) is the component of the velocity of the charge carrier
along the direction of the electric field. From Equations (7)
and (8) we have [Eq. (10)]
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~s wð Þ ¼
ne2

m
1

~M wð Þ � iw
: (10)

We turn next to an expression for ~M wð Þ, confining our
attention initially to models that build on the Drude model,
Smith’s being one example. This memory function has to be
such that it yields the Drude model in the appropriate limit. The
Drude model contains no time constant associated with the
build-up, after an electric field pulse, of the velocity distribution
of the charged particle. The associated memory term that yields
this instantaneous build-up is therefore a δ-function, one
defined for the time domain t�0. A second term in a suitable
memory function is associated with the backscattering.

Models for M(t) for molecules in fluids that involve back-
scattering include a sum of two exponentials,[25] a sum of a
Gaussian and an exponential,[26] and others. The term in the
memory function associated with a small lifetime (in our case a
delta function) reflects the instantaneous phase space redistrib-
ution of the other charges that accommodate themselves to
interact with the charged carrier (the Drude term) after an
electric field pulse. The term in the memory function associated
with shorter range interactions (backscattering) has instead a
long lifetime.

3.2. Application of Memory Function to Specific Models for
~s wð Þ

Common two-term memory functions M(t) in the literature
have four parameters: the two amplitudes and the two
lifetimes.[25,26] If we choose one of the memory function terms to
be a delta like function, we are left with three parameters in
M(t), which we write as p, q, and r:

M tð Þ ¼ p dþ tð Þ þ q expð� rtÞ (11)

with M(t)=0 for t<0. In Equation (11) δ+ (t) is a Dirac delta-like
function for the interval (0, 1), instead of (� 1, 1), i. e.,
R
1

0 f tð Þdþ tð Þdt ¼ f 0ð Þ. (It is also the derivative of a unit step
function at t=0.) The corresponding conductivity ~s wð Þ in
frequency space, obtained using Equation (11), is

~s wð Þ ¼
ne2

m
1

pþ q
r� iw � iw

: (12)

Equation (12) can be rewritten as

~s wð Þ ¼
ne2

m
r � iwð Þ

iw � wþð Þ iw � w�ð Þ
; (13)

where

2w� ¼ pþ r �
ffiffi
s
p
; (14)

and s, the discriminant, is given by

s ¼ p � rð Þ2 � 4q: (15)

The correlation function C(t) associated with the current j(t)
is given by Equation (2), the inverse of the Fourier-Laplace
transform of ~s wð Þ. In Equation (2) we form a contour integral
by completing the contour by a large semicircle in the lower
half of the complex ω plane and so obtain Equation (16)

hj 0ð Þj tð Þi ¼
VkBT
2pi

I

expð� iwtÞ~s wð Þdw: (16)

Applying Cauchy’s residue theorem using Equations (13)–
(15), one obtains for the electric current autocorrelation
function hj(0)j(t)i

hj 0ð Þj tð Þi ¼
e2kBT
m

wþ � rð Þe� wþt þ r � w�ð Þe� w� t

wþ � w�ð Þ
: (17)

There are three types of behavior for the autocorrelation
function given by Equation (17), depending on whether w� in
Equation (14) has s>0, s<0, or s=0. When s>0, the roots wþ

and w� are real and so the autocorrelation function decays as a
double exponential (a biexponential). When s<0, the wþ and
w� are complex-valued and it decays instead in an oscillating
manner. When s=0, the two poles arising from Equations (13)–
(15) coalesce and the double root w� ¼ ðpþ rÞ=2 contributes
to the contour integral. The current autocorrelation function
then becomes Equation (18)

hj 0ð Þj tð Þi ¼
e2kBT
m 1þ

r � pð Þt
2

� �

exp �
pþ rð Þt

2

� �

: (18)

This equation has only two constants p and r, and the
equation is equivalent to the Drude-Smith Equation (4), the two
constants being related to the c and t in the latter by
ðr þ pÞ=2 ¼ 1=t and ðr � pÞ=2 ¼ c=t.

Another special case of Equation (17) is the underdamped
case. (i. e., s<0). In this case the equation for the electrical
current autocorrelation function is that of an exponentially
damped periodic decay [Equation (19)]:

hj 0ð Þj tð Þi ¼
e2kBTe

�
1
2 pþrð Þt

m

r � p
ffiffi
s
p�
�
�
�

 !

sin
ffiffi
s
p�
�
�
�t

2

� �

þ cos
ffiffi
s
p�
�
�
�t

2

� �" #

:

(19)

3.3. Application to the Corker et al.[11] Scattering Equation for
~s wð Þ

Corker et al. developed a treatment that includes scattering
from grain boundaries and the probability of crossing them.[11]

Their equation for ~s wð Þ can be written as Equation (20) (eq 47
in Ref. [11])
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~s wð Þ ¼
ne2

m
t

1 � iwt
1þ

c Rð Þ
1 � iw=a

� �

; (20)

partly in their notation, where n and τ denote their N and τ’.
One sees that their model for ~s wð Þ has two poles on the
negative imaginary axis, at -i/τ and at -ia. From the inverse
transform obtained by contour integration over the lower half
plane one sees therefore that the current autocorrelation
function hj(0)j(t)i of Corker et al.[11] has a biexponential decay,
with decay times of τ and 1/a and no oscillations or half
oscillations. The factor c(R) depends exponentially on the grain
size.[11] If the two poles merged it would reduce to the Drude-
Smith expression, but with a grain boundary interpretation for
the non-Drude term.

4. Comparison with the Velocity
Autocorrelation Function of Fluids

To gain additional insight into the Drude-Smith and related
equations we compare with some of the many computer-based
results on the velocity autocorrelation function of fluids with
the results on semiconductors. In marked contrast to the
current autocorrelation function of semiconductors almost all
the studies of the velocity autocorrelation function in fluids,
with a few rare exceptions,[27,28] have been made by computer
simulations rather than in laboratory experiments. The com-
puted velocity autocorrelation functions (VAF) are typically
plotted versus time, and so immediately revealed visually any
backscattering, as in Figures 1(b) and 1(d) given earlier.
However, observing such detailed temporal data would require
an optical rather than a THZ spectrum - judging from the τ
values ~10 fs inferred from experiment (e.g., in a Ref. [44] cited
later).

The molecular dynamics (MD) simulation of molten LiBr and
other salts was studied by Lantelme et al.[15] and some of their
results were given in Figure 1. To treat the data they introduced
a memory function that is a sum of two exponential terms, and
so is a more general function than the present sum of a delta
function and an exponential. The resulting correlation function
has three exponential terms and thereby as many as 6
parameters if none of the roots coincide, instead of only two
parameters in the Drude-Smith expression The functions fitted
well their computer simulation results, as seen in the Figures in
Ref. [15].

The MD calculations also bring out, as noted earlier, the
concept of hard and soft acids and bases drawn from inorganic
chemistry.[18] Because a cation is typically “harder” than an anion
in its contact with other particles, the VAF of a cation tends to
have oscillations,[29–31] a deviation from the Drude-Smith equa-
tion.

5. Discussion

5.1. Drude versus Drude-Smith Equations

The Drude equation, ~s wð Þ=ne2τ/m(1-iωτ) is known to success-
fully describe the frequency dependence of the conductivity in
a most metals.[32] The photoconductivity in a defect-free bulk
semiconductor is also expected to follow the Drude equation,
since backscattering is expected to be rare. For example, Titova
et al. and Baxter et al. applied time-resolved terahertz spectro-
scopy to bulk silicon[33] and ZnO,[34] respectively. The data are
reasonably well described by the Drude current autocorrelation
function, an equation with no backscattering. Both fitted results
of the Drude-Smith formula, Eq. (5), and 3-parameter memory
kernel conductivity, Eq. (12), as shown in Figure 2, and are
similar to the results of the Drude formula.

When there is significant backscattering, as in nanoparticle
semiconductors, the Drude-Smith equation is, as noted earlier,

Figure 2. Frequency dependent photoconductivity of bulk (a) silicon[33] and
(b) ZnO.[34] The lines are the best fitted result of the Drude-Smith formula,
Eq. (5) and 3-parameter memory kernel conductivity, Eq. (12). Both fits give
overlapping results and are similar to the Drude formula.
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widely used for fitting experimental data on the frequency-
dependent conductivity in the terahertz region. The Drude
equation gives a monotonic decay in time, while the Drude-
Smith equation corresponds to the “critically damped” case,
that has a minimum and slowly approaches to zero at long
times with no oscillatory behavior, as discussed in the previous
section. The plot versus time also permits a direct comparison
with extensive data on molecular dynamics computations of
the velocity autocorrelation function (VAF) in fluids, which are
typically plotted in time space. The back-scattering feature, for
example, is immediately seen visually in plots of the VAF versus
time, e.g., Figures 1(b) and 1(d).

The corresponding difference between Drude and Drude-
Smith equations in frequency spaces is shown in Figure 3. For
the Drude-Smith equation the imaginary part is negative in the
low frequency region, and then becomes positive as the
frequency increases. In the terahertz experiments the latter

feature may not be easily observed because of the limits of the
spectral range used in those experiments.

5.2. Comparison with Terahertz Data

When in Eq. (11) r@1 THz, the corresponding lifetime in the
exponential term is much shorter than a picosecond. In
terahertz experiments the study of the dynamics is typically
around the picosecond region. An exponential function with a
very fast decay and a delta function give a very similar
contribution in the memory formalism. In this extreme of using
a delta function, the fit using the 3-parameter memory kernel
gives a behavior very similar to the Drude-Smith result, as seen
in Figure 4 and so here this 3-parameter memory function
formalism gives little improvement over the Drude-Smith result.

We note that in the Drude-Smith formula a very negative c
value (c�� 1) correspond to a complete velocity reversal on the
first collision. Experiments often give a c value between � 0.6
and � 0.9, as in Table 1. In the case of granular boundaries in
nanoparticles the velocity of a charged particle can be easily
reversed in collision. Some materials give nearly perfect velocity

Figure 3. Comparison of the Drude and Drude-Smith (with c= � 1) equations
in (a) time and (b) frequency space. The dashed and solid lines are the Drude
and Drude-Smith equations, respectively.

Figure 4. The frequency dependent photoconductivity of a silicon nano-
crystal film (SiO0.4) at 10 ps after photoexcitation.[33] The 1/r in the fitted
unconstrained memory kernel conductivity equals 0.24 THz, which is much
shorter than the region of most experimental measurements.

Table 1. The range of fitted c values, obtained by fitting the Drude-Smith
equation to the conductivity data.

Material c values

Si nanocrystal films[33] � 0.61–� 0.995
Si nanocrystalline[35] � 0.98–� 0.998
VO2 nanocrystal films[36] � 0.59–� 0.71_
W-doped VO2 nanocrystal films[37] � 0.62–� 0.68_
SnO2 nanowires[38] � 0.90–� 0.94_
ZnO[39,40] � 0.68–� 0.92_
CdSSe nanobelts[41] � 0.79–� 0.96_
TiO2 nanoparticles[40] � 0.87_
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reversal (� 1�c�� 0.95).[35,42] The Drude-Smith equation and
Eq. (12) then gave nearly overlapping results in fitting these
experiments, as seen in Figure 5.

Regarding the criticism[11–14] that the Drude-Smith formula-
tion does not include back scattering terms after the first
collision, it is useful to recall that a scattering event is three-
dimensional and not the one-dimensional model sometimes
used, and what counts after the collision is the change in the
component of the velocity along the direction of the initial
velocity. That component can be quite small when the differ-
ential scattering cross-section is substantial over a wide range
of scattering angles. Any further collisions involve a similar
distribution of scattering angles and a convolution leads to,
particularly in the case of soft colliders, very little final
component of the velocity along the initial direction. This

situation is not too different visually from the Drude-Smith like
behavior and in this sense a conducting electron can be
regarded as a soft collider. The behavior that the “soft” fluid
and the scattered electron share is that their scattering is three-
dimensional rather than one-dimensional and that both appear
to interact as soft particles.

We note that the VAF of fluids and the electrical
conductance of semiconductors have some features in com-
mon, perhaps explaining the approximate similarity of their
VAF’s. Both have a thermal distribution of velocities in a
reflecting system that, on averaging over the velocities, causes
a rapid initial decrease in a plot of the VAF versus time plot.
They also may have in common a “cage effect”, well known in
the chemistry literature for molecules in fluids, and in
disordered solids there may be a “rattling” of the charged
particle in a cage created by grain boundaries. Such a rattling is
described by the damped periodic function for the under-
damped regime, as in the present Eq. (19).

There is a shortcoming in using in the memory function a δ
function. Because of a property (stationarity) of the velocity
autocorrelation function one can show that C(t)=C(-t) and
hence that dC(t)/dt at t=0. This property is clearly not obeyed
by the Drude or Drude-Smith C(t)’s or indeed, one can show
analytically, is not obeyed by a memory function which the sum
of two simple exponentials and so they too will fail at small t
and hence at sufficiently high frequencies. A typical τ appearing
in eq shorter than this. There are experiments on the
frequency-dependent electrical conductivity that have been
performed at higher frequencies in the THz range, e.g., as in
plots of ~s wð Þ σ(ω) up,[34] to ~13 THz in [44] and up to ~20 THz
in [45], and so much higher than the frequencies appearing in
the plots here, ~2 THz. The Drude and Drude-Smith equations
appear to adequately represent the experimental data in those
regions. In passing we note that Smith first obtained the Drude-
Smith equation for the conductivity of liquid metals at optical
frequencies of several eV,[1] ~700 THz. It fitted the data very
well and has a detailed structure that one can’t see in the THz
spectral region.

We comment further on events happening during the short
time after an applied electric field has been introduced and
approximated by the use of a δ-function in the memory
function. Just before t=0 there is no applied electric field and
so just after the introduction of an external electric field the
distribution of charges and velocities of the charges around a
charge carrier is that for zero applied field and so the motion of
the carrier is ballistic. The use of the δ-function in Eq. (11)
ignores what happened during this short time period. Shortly
after t=0 the distribution of charges and velocities around the
carrier has become a perturbed distribution whose deviation
from the equilibrium distribution is proportional to the applied
electric field. Mathematically, M(t) is an even function of t at
short times.[19] The use of a δ-function in M(t), or indeed of any
function which at small times is not an even function of t,
simple exponential decay, for example, does not satisfy this
condition, though one can select a function that does, e.g.,
Ref. [26].

Figure 5. The Drude-Smith equation and Equation (12) are very similar in
fitting experiments with nearly perfect velocity reversal. (a) Silicon nano-
crystal film measured at 1100 °C.[35] The fitted c value in Equation (12) is
� 0.985. (b) A blend of Regioregular poly(3-hexylthiophene) and [6,6]-phenyl-
C61-butyric acid methyl ester (P3HT/PCBM) film excited at 800 nm.[42] The
fitted c value is � 0.967.

ChemPhysChem
Articles
doi.org/10.1002/cphc.202100299

1672ChemPhysChem 2021, 22, 1667–1674 www.chemphyschem.org © 2021 The Authors. ChemPhysChem published by Wiley-VCH GmbH

Wiley VCH Dienstag, 10.08.2021

2116 / 210987 [S. 1672/1674] 1

http://orcid.org/0000-0001-6547-1469


When there is an “optically active” low frequency phonon in
the sample in the terahertz region it too can contribute to the
terahertz spectrum.[43] It is related to a dipole correlation
function, rather than to the electric current correlation function
for electrons or holes. Its ~s wð Þ is typically a Lorentzian (bound
oscillator) and is not considered here. We also note that we do
not treat plasmons here. They obey the Drude-Smith Eq. (3)
with c= � 1, the other symbols having somewhat different
physical significance.[3]

Eq (5) presumes that there is one type of charged carrier.
When both holes and electrons are present one limiting
situation is that the hole and the electron are tightly coupled,
so forming an exciton. The other limit is that they move
independently of each other. In that case the ~s wð Þ is the sum
of contributions from each type of carriers and their contribu-
tions have sometimes been resolved. A recent contact-free
method is cited later in [53], which also makes a comparison
with earlier results.

5.3. Memory Functions

Memory functions used for treating the statistical temporal
behavior of dynamical quantities can be introduced either via
the time-evolution of a dynamical quantity using a generalized
Langevin equation, e.g. Ref. [20, 46], or via the evolution of the
probability distribution function of that quantity using a
generalized master equation, e.g. Ref. [47, 48], the relation
between the two approaches being described in Ref. [20,46].
We have used the former, prompted by its extensive application
in interpreting molecular dynamics computations of the
velocity autocorrelation function, e.g. Ref. [20]. Kenkre and
coworkers in their study of effective medium theories used
instead a master equation with a memory function of the form
given by .Eq. (11), e.g. Ref. [47] and chapter 13 in Ref. [48]. We
also note that effective medium theories for treating frequency-
dependent electrical conductivity have been discussed in terms
of memory functions using a generalized master equation for
the time-dependent probability distribution of position on
lattices, e.g. Ref. [47–49]. A problem involving spatial disorder
has thereby been translated into one involving temporal
behavior, the longer times corresponding to longer distances. A
model describing the Drude-Smith equation in terms of
broadened resonances for motion in a confined region has
been given in Ref. [50].

A pioneering use of a memory function for a velocity
autocorrelation function was given by Berne et al.,[51] who used
the memory function in Eq. (11) with p=0, thereby restricting
the number of parameters to two instead of three and so it
representing a special case of the present expression.

For comparison with Smith’s method we note that that in
general there are several different methods for treating
frequency-dependent coefficients of dynamical variables using
nonequilibrium statistical mechanics. One of these is the
method used by Smith, using a theory for the response of the
system to a unit electric pulse and taking its Fourier-Laplace
transform.[1] A second is the linear response theory which

expresses the frequency-dependent dynamical coefficient in
terms of a current autocorrelation function, the method used in
the present article. A third method is the use of an external
electric field and turning it off at any given time and studying
the response[20,52] All three methods give the same result.

6. Conclusions

The Drude-Smith equation, widely used in terahertz conductiv-
ity studies of materials, is shown to be a special case of a more
general formulation treated using a memory function. In this
formalism the Drude-Smith equation emerges as the “critically
damped” case, with only two parameters. The behavior is
related to that of a velocity autocorrelation function of fluids
consisting of ”soft” particles such as anions and large rare gas
atoms. An expression given by Cocker et al.[11] that has two
parameters and is intended to treat systems with grain
boundaries, is another special case in this memory function
formalism. The formalism offers a systematic way of extending
the treatment to other frequencies in the frequency-dependent
electrical conductivity spectrum.
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