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Abstract: TGFf31 is a pleiotropic cytokine that exhibits a variety of physiologic and immune regulatory
functions. Although its influence on multiple cell types is critical for the regulation of numerous
biologic processes in the host, dysregulation of both TGFf31 expression and activity is frequently
observed in cancer and contributes to various aspects of cancer progression. This review focuses on
TGEFB1’s contribution to tumor immune suppression and escape, with emphasis on the influence of
this regulatory cytokine on the differentiation and function of dendritic cells and T cells. Clinical
trials targeting TGFf1 in cancer patients are also reviewed, and strategies for future therapeutic
interventions that build on our current understanding of immune regulation by TGF31 are discussed.
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1. Introduction

The transforming growth factor  (TGFf3) superfamily consists of more than 60 secreted proteins
that play critical roles in regulating diverse biological processes during embryonic development and in
adults. In particular, members of the TGFf3 subfamily, of which TGF(31 is the most well-studied isoform
in mammals, have been shown to regulate various aspects of cell proliferation, differentiation, adhesion,
migration, angiogenesis, apoptosis, survival and immune surveillance [1]. Because strict regulation
of these processes is vital to maintaining cellular homeostasis and tissue integrity, dysregulation
of TGFP1 expression and activity has significant pathologic consequences and contributes to a
number of disease states, including many cancers [2]. This review focuses on the role of TGFf1
dysregulation in cancer-associated immune suppression and highlights how our current understanding
of TGFfB1-mediated tumor immune escape is driving therapeutic interventions to target this pathway
in the treatment of cancer.

2. TGFf(1 Expression and Signaling

TGFf1 expression has been observed in a variety of cell types and may be driven by various
stimuli that include growth factors, hormones, cytokines, interaction with apoptotic cells and TGFf31
itself [3-8]. Transcriptional activation of the Tgfb1 gene is mediated by signaling through the
RAS/MAPK, PI3K or PKC signaling pathways [9-11], and the androgen receptor, as well as AP-1,
NFkb, Spl and STAT3 transcription factors have all been shown to bind to promoter elements within
this gene and induce its expression [3,4,12-16]. TGFf1 is initially translated as a latent precursor
protein that must undergo extensive processing before becoming active. Details of this processing
have recently been reviewed in depth elsewhere [17]. In short, proteolytic cleavage of homodimerized
pro-TGFf1 results in mature TGF31 peptide that is coupled to latency associated peptide (LAP).
This small latent complex associates with latent TGF( binding protein (LTBP) to form a large latent
complex that is secreted into the extracellular space. Bioactive TGF{31 protein is produced when
the large latent complex and LTBP are cleaved from the mature protein in acidic environments or
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by a variety of mediators that include thrombospondin-1, integrins, reactive oxygen species and
various proteases.
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Figure 1. Summary of TGFP1 expression and SMAD-dependent/SMAD-independent
signaling pathways.

Following its activation, TGF(1 initiates signaling in a target cell (Figure 1) by binding as
a homodimer to type II TGFf receptors (TGFBRII), constitutively-active serine/threonine kinase
receptors that undergo a conformational change upon ligand binding that enables recruitment of
type I TGEf receptors (TGFRRI). Phosphorylation of TGFBRI by TGFBRII within a heterotetrameric
complex then activates downstream signaling events, which can involve both SMAD-dependent and
SMAD independent pathways. In SMAD-dependent signaling, phosphorylated TGFBRI recruits
and phosphorylates the receptor-activated SMADs (R-SMADs), SMAD2 and SMAD3, which in
turn interact with a co-SMAD known as SMAD4. This heterotrimeric complex then translocates
to the nucleus, where it interacts with various co-activator/co-repressor proteins to regulate the
expression of target genes, and cell type-dependent responses to TGFf31 signaling are influenced by
the particular SMAD cofactors that associate with the R-SMAD/co-SMAD complex in specific cell
types [18]. Additionally, SMAD-dependent TGFf31 signaling can also result in epigenetic regulation of
gene expression. One recent study suggests that SMAD?2 is able to silence gene expression through
recruitment of DNA methyltransferases to promoter regions of target genes [19], and others have
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shown that TGF1-SMAD signaling can promote histone acetylation and chromatin remodeling [20,21].
Finally, SMAD-independent signaling through the TGF3RI/II receptor system can be achieved through
activation of the RAS/MAPK and PI3K/Akt/mTOR pathways, as well as through activation of the
Rho-like family of small GTPases. Figure 1 provides a summary of these TGF{31 signaling pathways,
which have been described more thoroughly in several recent reviews [17,18,22,23].

3. Overexpression of TGF(31 in Cancer

Originally recognized for its potent inhibition of cell growth [24,25], TGFp1 has been shown
to mediate anti-proliferative effects on many cell types by suppressing c-Myc expression [26,27]
and altering the expression and activity of cyclin-dependent kinases (CDK) and CDK inhibitors
that regulate progression through the cell cycle [28-32]. Paradoxically, despite its ability to inhibit
cell proliferation, TGFf1 is highly expressed within the tumor tissue of many cancer patients, as is
evidenced by a recent interrogation of The Cancer Genome Atlas using the cBioPortal for Cancer
Genomics [33,34], which revealed upregulation of TGF31 mRNA levels in tumors from various cancer
types (Figure 2). Several other independent studies have also reported elevated TGF[31 expression
within tumor tissue or plasma of patients with various cancers. Many of these studies have correlated
increased TGFp1 expression levels with advanced tumor stage and diminished patient survival,
and elevated expression of TGFp1 in these patients is associated with several specific aspects of
tumor progression that include epithelial-mesenchymal transition (EMT), angiogenesis, tissue invasion
and metastasis [35—43]. Importantly, increased TGFf31 levels in cancer may arise not only from
enhanced expression of this cytokine by tumor cells themselves, but also by recruitment into the
tumor microenvironment of TGFf1-producing cancer-associated cells that include stromal fibroblasts,
tumor-associated macrophages, dendritic cells, and immature myeloid cells [44-47]. The dichotomy
of TGFf31’s anti-proliferative yet pro-tumor activities can be explained by the acquisition of tumor
cell resistance to the negative regulatory effects of this cytokine during tumor progression. Indeed,
decreased expression of TGFBRI/II receptors or mutations in these proteins that abrogate TGF(31
signaling in tumor cells have been observed in many cancer types [48-53]. Similarly, tumor cells
may escape growth inhibition by autocrine/paracrine TGFf1 signaling through alterations to SMAD
signaling components. Mutations and deletions of genes encoding SMAD proteins have been observed
in some cancer cells [54-57], while others have been shown to exhibit post-translational modifications
to SMAD proteins that promote their cytoplasmic retention and degradation [58,59]. Still other tumor
cells have been reported to overexpress the SMAD? inhibitory SMAD (I-SMAD) that competitively
inhibits TGFf1-mediated SMAD signaling [60,61]. Any of these alterations to TGF31 signaling
pathway components can shield tumor cells from the growth inhibitory effects of TGF31 while still
allowing the tumor-promoting activities of this cytokine to be triggered in other cells within the milieu
of the tumor microenvironment. Moreover, tumor cells that ultimately escape SMAD-dependent
growth inhibitory signals from TGFf31 do not necessarily become totally unresponsive to this cytokine;
rather, many tumors evolve to shift TGFf1 signals along pro-oncogenic pathways. In this light,
a recent microarray analysis of gene expression in a TGFB1-treated lung epithelial cell line versus
a TGFp1-treated lung adenocarcinoma cell line revealed differential regulation of gene expression
by this cytokine in normal versus tumor cells, and the unique induction of several specific genes
with tumor-promoting function by TGFf1 in tumor cells was impaired by multiple MAPK pathway
component inhibitors [62]. Similarly, other studies have shown that retention of SMAD-independent
TGFf1 signaling in late-stage tumors contributes to their progression by promoting EMT, loss of
cell adhesion and increased migration/invasion [63]. Therefore, the combination of altered TGFf31
signaling within tumor cells and traditional TGF31 signaling within other cell types in the tumor
microenvironment results in pleiotropic effects by this cytokine that create a “perfect storm” ideally
suited for tumor progression. In addition to its promotion of several of the cancer hallmarks described
above (which have been reviewed extensively in many of the articles previously cited), TGFf1 has
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also been shown to compromise the function of several cells involved in anti-tumor immune responses
and, therefore, contributes significantly to tumor immune escape.
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Figure 2. TGFp31 mRNA upregulation in tumor samples as determined by RNA Seq V2 RSEM (z-score
threshold = 2.0). Results were obtained from an interrogation of TCGA, provisional data on 5 June 2016
and are based on data generated by the TCGA Research Network: http://cancergenome.nih.gov/.

4. TGFfA1 in Tumor Immune Suppression and Escape

4.1. TGFP1 Influence on the Function of Dendritic Cells and Their Hematopoietic Precursors

Denderitic cells (DC) are a population of innate immune cells derived from both lymphoid and
myeloid progenitors that play key roles in regulating the activity of other immune cells, particularly
T lymphocytes. Following their differentiation from hematopoietic precursors in the bone marrow,
DC take up residence in both lymphoid and peripheral tissues, where they are involved in immune
surveillance. As immature cells in the steady state, DC are highly phagocytic and sample antigen
from various sources, though presentation of antigen by immature DC to T lymphocytes results in
either immunologic ignorance or tolerance to such antigen [64-66]. On the other hand, following
the encounter with various mediators that may include pathogen- or danger-associated molecular
patterns, inflammatory stimuli and CD40L, immature DC become mature, activated cells that acquire
potent immune stimulatory functions, which arise from their upregulation of antigen:MHC complexes,
costimulatory molecules, “signal 3” cytokines and chemokines, all of which are involved in the
activation and recruitment of T cells and other immune effectors into an immune response [67,68].

TGFf1 is known to influence DC differentiation and function in a number of ways (Figure 3).
In vitro analyses of both bone marrow- and monocyte-derived DC have shown that TGF@1 can
inhibit the development of DC from hematopoietic precursors, and those DC that do develop in
the presence of TGFfp1 retain an immature phenotype characterized by low MHC class II and
costimulatory molecule expression and poor T cell stimulatory activity [69-71]. Others have shown
that TGFP1 alters the differentiation program of DC precursors, leading to the development of
myeloid-derived suppressor cells (MDSC) [72,73] that are known to promote tumor outgrowth through
a variety of mechanisms [74,75]. In addition to its impact on the differentiation of hematopoietic
precursors into DC, TGFf1 has also been shown to interfere with the maturation and activation
of fully-differentiated DC, as well. It has been shown to block the expression of the costimulatory
molecules CD80 and CD86, as well as the “signal 3” cytokine IL-12 in in vitro-generated Langerhans
DC [76]. Furthermore, studies using transgenic mouse models have shown the tolerogenic effects of
TGFP1 on DC in vivo, as well. For example, mice expressing a DC-restricted, CD11c promoter-driven
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dominant negative TGFBRII receptor that lacks the kinase domain necessary for signal transduction
produce DC that are resistant to TGF(1 tolerization, resulting in aberrant, DC-dependent autoimmune
T cell activation [77]. Similar findings have been reported in double transgenic mice expressing Cre
recombinase under control of the CD11c promoter and a loxP-flanked Tgfbr2 gene. Inducible knockout
of TGFBRII specifically in DC of these mice leads to severe autoimmunity that is partially attributed
to the inability of DC to support regulatory T cell (Treg) differentiation and expansion [78]. With
specific regard to tumor-derived TGFf1, recent work from our laboratory has shown that TGFf31 in
melanoma tumor-conditioned media also alters the maturation and activation of fully-differentiated
tissue-resident DC. Although these tumor-altered DC could still activate CD8+ T cells in an ex vivo
setting, they exhibited modified cytokine and chemokine expression profiles that correspond to a
pro-tumorigenic phenotype. This phenotype could be partially reversed by Tgfb1 gene silencing in
melanoma cells prior to ex vivo culture of tissue-derived DC in tumor-conditioned media. Of particular
note among the alterations to DC function observed in our model, melanoma-derived TGF{31 promoted
DC secretion of CXCL1, a known macrophage chemoattractant, and enhanced the expression of this
chemokine by lung-resident DC in mice bearing lung metastatic melanoma lesions correlated with
an increase in M2-like macrophages at this site [79]. Recent findings from several other groups have
also shown that TGFB1 induces tumor-promoting functions in DC. For instance, Belladonna et al.
demonstrated that TGFf31 promotes indoleamine 2,3-dioxygenase (IDO) expression and tolerogenic
activity in both CD8— and CD8+ murine DC subsets [80], and IDO-producing regulatory DC play
critical roles in anti-tumor immune suppression in various cancer types [81]. Alternatively, studies in a
murine ovarian cancer model have shown that tumor-derived TGFf1 can induce PD-L1 expression on
DC that suppress T cell proliferation [82], and in patients with highly aggressive triple negative breast
cancer, TGFf31 has been shown to induce regulatory plasmacytoid DC that exhibit diminished type
I TEN production and that promote expansion of CD4+ Tregs [83,84]. Collectively, these deleterious
effects of TGF1 on DC development and function significantly compromise the quality of anti-tumor
immune responses and can be a major contributing factor to tumor immune escape.
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Figure 3. Overview of mechanisms by which tumor-derived TGFf1 may influence the differentiation
and function of DC and their precursors.
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4.2. TGFB1 Influence on Tumor-Associated Macrophages and Neutrophils

In addition to DC, other immune cell populations of myeloid origin are also known to be
influenced by TGF31. In particular, macrophages exposed to TGF(31 have been shown to acquire
an M2-like phenotype characterized by a number of tumor-promoting functions, including the
ability to promote angiogenic activity, suppress T cell proliferation and induce CD4+ FOXP3+ Treg
differentiation [85-88]. Importantly, several clinical studies have reported that patient tumors are
often infiltrated by a large number of macrophages, particularly those exhibiting an anti-inflammatory,
immune suppressive M2-like phenotype, and such accumulation is a negative prognostic indicator in
cancer patients [89-93]. Similarly, TGF31 has been suggested to polarize tumor-associated neutrophils
(TAN) from an N1- to an N2-like phenotype, as the blockade of TGFf31 in several murine tumor models
enhances cytotoxic activity and proinflammatory cytokine production by tumor-infiltrating neutrophils,
whereas the depletion of neutrophils in the context of TGF1-expressing tumors diminishes tumor
outgrowth and is associated with enhanced intratumoral CD8+ T cell activation [94]. As seen with
M2-like macrophage accumulation within tumors, high levels of tumor-associated neutrophils in cancer
patients are also associated with disease progression and poor survival [95,96]. Moreover, not only are
these pro-tumor immune populations induced by TGF31, but at least in the case of tumor-associated
macrophages (TAM), these cells can become potent producers of TGF31 themselves [97,98], thus
further contributing to the immunosuppressive and tumor-promoting effects of this cytokine within
the tumor microenvironment during cancer progression.

4.3. TGFB1 Influence on T Cells

Because of their ability to recognize highly specific antigens on the surface of a target cell,
T lymphocytes have the potential to serve as potent immunologic effectors against tumor cells.
Indeed, studies reporting increased tumor incidence in RAG™/~ mice and mice deficient in the
cytolytic mediator perforin highlight the role of T lymphocytes in immune surveillance against
tumors [99-101]. Similar reports of increased tumor incidence in immunocompromised patients
and transplant patients receiving immunosuppressive drug therapy [102,103], in conjunction with
observations of spontaneous tumor regression in patients exhibiting natural or therapy-induced
anti-tumor T cell responses [104,105], have offered support for the critical role of T cells in tumor
eradication in humans, as well. However, despite the ability of T cells to eradicate tumors in some
cases, many cases of tumor progression are associated with the induction of tumor-specific T cell
dysfunction [106-110], thus highlighting the significance of T cell suppression as a contributing factor
to tumor immune escape.

TGFB1 is a well-characterized regulator of T cell differentiation and function. Transgenic
mouse models that employ cell type-specific promoters to restrict the expression of a dominant
negative TGFBRII receptor to CD4+ or CD8+ T cells have enabled in vivo analyses of the effects
of TGFf1 on T cells and have revealed that this cytokine directly inhibits T cell proliferation and
activation of Th1/cytotoxic differentiation programs, while at the same time promoting the survival of
Tregs [111,112]. In the context of the tumor microenvironment, therefore, various sources of TGF{31
may contribute to T cell dysfunction and ultimately limit the efficacy of anti-tumor immune responses
mediated by these cells. To this point, in a murine model of prostate cancer, conditional knockout
of TGFBRII in adoptively-transferred tumor-specific CD8+ T cells resulted in reduced apoptosis,
increased proliferation and effector activity and delayed induction of dysfunction in these cells as
compared to adoptively-transferred cells in which TGF{31 signaling was not abrogated [113]. Although
the source of TGF(31 was not investigated in this study, others have shown that both tumors and
tumor-associated cells contribute to TGFf31-mediated anti-tumor T cell dysfunction. For instance,
in the EG7 murine thymoma tumor model, membrane-bound TGF{1 expressed on tumor apoptotic
bodies has been shown to inhibit anti-tumor cytotoxic T lymphocyte (CTL) responses through the
induction of CD8+ T cell anergy, while at the same time promoting the development of IL-10-producing
CD4+ Tregs that inhibit CD8+ T cell proliferation and differentiation into CTL [114]. Anti-tumor
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T cell responses have also been shown to be inhibited by TGFp1 derived from cells of myeloid
origin [45,115]. With regard to CD4+ Tregs, TGF{31 is known to promote the differentiation of these
cells through induction of FOXP3 expression [116], and various tumor-associated cell types that include
mesenchymal stem cells, myeloid-derived suppressor cells (MDSC), and DC have all been shown to
produce TGFf31 and induce either the proliferation or differentiation of Tregs [46,117-119]. Finally,
not only does TGFf31 contribute to the development of Tregs, but Tregs themselves suppress T cell
function through TGFp1 [120], and blockade of TGFf1 signaling in CD8+ T cells has been shown to
prevent Treg-mediated suppression of anti-tumor immunity in a murine colon carcinoma model [121].

In addition to inducing the differentiation of CD4+ T cells into immunosuppressive Tregs, TGF[31
can also act in concert with IL-6 to promote CD4+ T cell differentiation along a Th17 pathway [122].
Although many studies have demonstrated anti-tumor functions of Th17 cells (reviewed in [123]),
others have shown that Th17 cells exhibit pro-tumor functions in certain contexts. In both the B16
melanoma and MB49 bladder carcinoma murine tumor models, IL-17 produced by CD4+ T cells
activated STAT3 in both tumor and stromal cells, leading to the expression of both anti-apoptotic
and pro-angiogenic proteins within the tumor microenvironment [124]. In the EG7 murine thymoma
model, IL-17 is required for the development and pro-tumor functions of MDSC [125]. IL-17 also
enhances the proliferation of human colorectal cancer cell lines in vitro, and Th17 cells are enriched in
tumor-infiltrating leukocyte (TIL) populations of colorectal cancer patients [126]. Likewise, in another
study with multiple myeloma patients, the number of Th17 cells was increased in both the blood and
bone marrow, and IL-17 was shown to stimulate the growth of human multiple myeloma cell lines
in vitro and in a murine xenograft model in vivo [127]. Other clinical studies have revealed that Th17
cell infiltration and IL-17 expression levels in tumors are associated with tumor progression and poor
survival in patients with gastric cancer and hepatocellular carcinoma [128,129]. Therefore, the influence
of TGF(1 on helper and cytotoxic T cell differentiation and function, which is summarized in Figure 4,
can not only impede the anti-tumor effector functions mediated by these cells, but it can also confer
tumor-promoting activity in some T cell populations that further drives tumor growth and metastasis.
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Figure 4. Summary of the mechanisms by which TGF31 derived from tumors and tumor-associated
cells may influence the differentiation and function of CD4+ and CD8+ T lymphocytes. TADC =
tumor-associated dendritic cell, TAM = tumor-associated macrophage, MSC = mesenchymal stem cell,
MDSC = myeloid-derived suppressor cells, CTL = cytotoxic T lymphocyte, Treg = regulatory T cell.
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4.4. TGFB1 Influence on Natural Killer Cells

Like effector CTL, natural killer (NK) cells may also serve as potent mediators of anti-tumor
immunity. Instead of responding to specific tumor antigens as CTL do, NK cells instead respond
to targets that have either downregulated MHC class I molecules or upregulated stress-associated
markers, characteristics often exhibited by cancer cells during tumor progression [130]. However,
in addition to its suppressive effects on the cytotoxic activity of CD8+ T cells, TGF{31 has similarly been
shown to inhibit cytotoxic effector functions in NK cells, as well. In this regard, in a murine model
of liver cancer TGFB1 expressed on the membrane of MDSC inhibited expression of the activating
receptor NKG2D on hepatic NK cells, suppressed NK cell IFNYy secretion and cytotoxicity and rendered
NK cells anergic to activating stimuli [131]. TGFf1 has also been implicated in STAT3-dependent
suppression of NK cell cytotoxic activity in a murine model of hepatocellular carcinoma [132], and it is
partially responsible for the downregulation of NKG2D expression and cytolytic activity by NK cells
in an orthotopic model of head and neck squamous cell carcinoma [133]. One group has shown
that TGFf1-mediated suppression of NK cell cytolytic activity is attributed to its induction of the
microRNA miR-183, which silences the expression of the DAP12 adapter protein required to transmit
activating signals for lytic granule mobilization [134]. Most recently, Viel et al. have shown that
TGEFp1 signaling in both murine and human NK cells inhibits their activation by repressing the mTOR
pathway and that deletion of TGFBRII on NK cells restores mTOR signaling and promotes their
ability to limit metastasis in multiple murine tumor models [135]. Importantly, these findings in
preclinical settings have been supported by studies involving cancer patients, as well. In both lung
and colorectal cancer patients, elevated plasma TGFf1 levels correlated with decreased NKG2D
expression on freshly-isolated NK cells, and downregulation of NKG2D on NK cells that were
derived from healthy donors and subsequently cultured with plasma from cancer patients could
be prevented by the addition of neutralizing anti-TGFf31 monoclonal antibodies to the ex vivo
cultures [136]. Likewise, TGFf1 expression levels by tumor cells in patients with advanced gastric
adenocarcinoma are inversely correlated with the cytolytic activity of NK cells isolated from the ascites
and peripheral blood of these patients [137]. Taken together, these results demonstrate that TGF{31 is a
key immunosuppressive factor that confers tumor cell resistance to NK cells. In conjunction with the
aforementioned discussion of TGFf31’s immunosuppressive effects on CTL, these findings indicate that
TGFf1 is capable of compromising both of the major cytolytic mediators associated with anti-tumor
immune responses, and its influence on other cells of the immune system ultimately contributes not
only to the dysfunction of these cytolytic effector cell populations, but also to the overall promotion of
tumor growth and metastasis.

5. Strategies for Interfering with TGF31-Mediated Suppression of Anti-Tumor Immunity

With the emergence of data documenting the impact of TGF{31 on the activation and function of
various immune cell populations in both preclinical models and cancer patients, significant efforts
have recently been made on developing therapeutic strategies for interfering with TGFf31-mediated
suppression of anti-tumor immune responses. Several approaches that either block ligand-receptor
interactions or inhibit intracellular signaling cascades have been employed in a non-specific manner
to systemically block TGFf1 from influencing the behavior of target cells bearing receptors for this
regulatory cytokine. Administration of a TGFfRI kinase inhibitor augmented the immunogenicity
and anti-tumor efficacy of adenoviral vector-based vaccines in multiple murine lung tumor models,
promoting increased tumor infiltration of macrophages, NK cells and CD8+ T cells [138]. Similar
therapeutic benefits were observed in multiple murine mesothelioma tumor models following
administration of a soluble TGFBRII chimeric protein designed to neutralize TGF31 (and TGFpIII)
and thereby abrogate its signaling in target cells. Treatment of mice bearing established mesothelioma
tumors with this chimeric “decoy” receptor delayed tumor outgrowth, and this control was associated
with improved anti-tumor CD8+ T cell responses; specifically, mice treated with this soluble
TGFBRII protein displayed enhanced cytolytic activity in splenic CTL and increased CD8+ T cell
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infiltration of tumors, whereas no therapeutic benefit was observed in mice depleted of CD8+ T
cells prior to treatment [139]. Neutralization of all three TGFf isoforms via administration of
the 1D11.16 monoclonal antibody has also been shown to significantly enhance the efficacy of a
prophylactic irradiated tumor vaccine in the CT26 colorectal cancer model, and like the aforementioned
mesothelioma studies, the therapeutic benefit of this treatment was dependent on CD8+ T cells,
as well [140]. Still another approach involving a fusion protein known as FIST, which consists of the
soluble extracellular domain of TGFBRII linked to the immunostimulatory cytokine IL-2, has been
shown to inhibit both pancreatic cancer and B16 melanoma outgrowth; while this inhibition is likely at
least partially attributable to the anti-angiogenic effects of FIST, it is also associated with enhanced
immune cell recruitment to tumor sites; and a soluble factor derived from NK cells was implicated in
FIST-associated tumor control [141]. Additionally, as an alternative to these approaches that interfere
directly with TGF1 or the signaling mediated by this protein, it is also possible to silence expression
of the Tgfb1 gene so that the protein cannot be synthesized at normal levels. Such an approach has
been implemented successfully in the B16 melanoma model, as administration of TGFB1 siRNA in
conjunction with a DC vaccine significantly enhanced the control of this tumor and was associated
with a decrease in Tregs at the tumor site [142].

Despite the promise of the aforementioned approaches and similar strategies that act to
systemically block TGF(1 signaling, because of the pleiotropic regulatory activities of TGFf31, there is
concern that long-term systemic therapies targeting this pathway might have unintended and
deleterious side effects [143-145]. Recently, advances in genetic engineering have enabled creative
strategies to overcome this limitation and disrupt TGFf1 signaling in specific cell populations,
and several immunotherapeutic maneuvers have been developed with the aim of preventing
TGFp1-mediated suppression of either: (1) endogenous immune cell populations in the host;
or (2) exogenous cells delivered as part of anti-cancer immunizations. For instance, TGFf31 resistance
has been introduced specifically into CD8+ T cells ex vivo by infection with a retrovirus encoding a
dominant negative TGFBRII, and adoptive transfer of these T cells into tumor-bearing hosts led to
significant reduction in primary tumor size and pulmonary metastases in the TRAMP-C2 transgenic
adenocarcinoma of the mouse prostate model [146-148]. Improved anti-tumor CTL activity has
also been observed in adoptively-transferred dominant negative TGFBRII-expressing T cells in
a murine medulloblastoma tumor model [149]. Interestingly, tumor antigen-specific CD4+ and
CD8+ T cells retrovirally transduced to express the dominant negative TGFBRII each provided
enhanced tumor control when transferred into B16 melanoma-bearing mice, but no therapeutic
benefit resulted when adoptively-transferred T cells had been transduced with retrovirus encoding
soluble “decoy” TGFRRII proteins that could neutralize TGF31 signaling not only in T cells,
but also in bystander cell populations [150]. These findings underscore the benefits of abrogating
TGFp1 signaling specifically in T lymphocytes as opposed to multiple targets in an undefined way,
particularly as non-specific neutralization of TGF(31 might interfere with its growth inhibitory effects
on tumor cells that have not yet evolved to escape anti-proliferative signals conferred by TGFf31.
Moreover, the promise of inducing TGFf31 resistance specifically in T cells is further highlighted by
preclinical studies using a severe combined immunodeficient SCID xenograft model of Epstein-Barr
virus (EBV)-positive lymphoma, which have revealed that EBV-specific CTL derived from patients
and engineered to express dominant negative TGFBRII also confer enhanced tumor protection as
compared to TGFf1-sensitive CTL [151]. Importantly, concerns about aberrant lymphoproliferation of
TGFB1-resistant CTL have been addressed in a non-tumor murine model using human papillomavirus
E7-specific CTL, and spontaneous proliferation of dominant negative TGF3RII-engineered CTL did
not occur in the absence of antigenic stimulation [152].
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Specific ablation of TGF[31 signaling has also been achieved in DC that have been utilized for the
purpose of cancer vaccination. Introduction of the dominant negative TGFBRII into DC renders these
cells resistant to TGF1-mediated suppression, and immunization of mice with tumor lysate-pulsed
DC engineered in this way led to robust anti-tumor CTL responses that inhibited tumor growth
and enhanced the survival of mice bearing TRAMP-C2 prostate tumors [153]. Nearly identical
results were reported when dominant negative TGFRII-expressing DC were used to immunize mice
bearing renal carcinoma metastases in the lungs [154]. As an alternative to retroviral transduction
as a means of introducing TGF{1 resistance in DC, siRNA-mediated gene silencing of the TGFf
receptor in exogenous bone marrow-derived DC also significantly improved the immunogenicity
of these cells in a murine model of cervical cancer expressing the HPV-16 E7 antigen [155]. Recent
work has also shown potential promise for the targeting of T¢fb1 (and other genes) in endogenous
tumor-associated DC. Using nanocomplexes encapsulating miR-155 miRNA, Cubillos-Ruiz et al.
demonstrated that preferential engulfment of these complexes by tumor-associated DC in vivo led
to a reprogramming of DC function from one of immunosuppression to one of immune stimulation
that in turn enhanced anti-tumor T cell effector function and improved the control of established
ovarian carcinoma [156]. miR-155 delivery to tumor-associated DC in this model led to several changes
in the transcriptome of these cells, including the silencing of Tgfb1 and other genes involved in the
TGFp1 signaling pathway. While these changes are likely not solely responsible for the reversal of DC
function in this setting, these results highlight the potential for specific targeting of DC in situ, and
future advances in our understanding of both gene regulation and cell type-specific delivery methods
will undoubtedly allow scientists to fine-tune approaches for interfering with TGFf31 production by,
or signaling within, particular cell populations. Moreover, though it has yet to be explored with
respect to TGFf31’s influence on anti-tumor immune responses, advances in genome editing strategies,
such as CRISPR-Cas9 approaches that can be tailored to target gene function at the level of DNA,
offer exciting promise for the permanent disruption of genes in specific cells and, therefore, might
have an advantage over gene silencing approaches that confer only a temporary diminution in target
gene expression. Particularly in the context of exogenous DC or CTL used for cancer vaccination
and adoptive transfer therapies, it is appealing to speculate that permanent disruption of the Tgfbr2
gene by genome editing might further improve the immunogenicity of these cells as compared to
cells altered by less permanent gene silencing approaches. Such genome editing would also likely
carry advantages over viral vector-based methods of introducing into these immune cell populations
a dominant negative TGFp receptor, which can confer permanent resistance to TGF31 signaling,
but which may allow for random integration of viral vectors into the genome and functional disruption
of unintended genes or the expression of viral antigens in transduced cells that ultimately flag them
for destruction by the immune system, thus preventing any long-term immunologic benefit.

6. Clinical Trials Targeting TGFf{1 in the Context of Cancer Inmunotherapy

The accumulation of data over the last 30 years that TGF1 plays several key roles in the
progression of cancer and increasing evidence from animal and preclinical studies demonstrating the
anti-tumor efficacy of many strategies that interfere with TGFf1 activity have together made TGFf31 an
attractive target for cancer therapy in patients. Indeed, several TGF1 pathway inhibitors have been or
are currently being tested in clinical trials for various cancer types. These inhibitors include monoclonal
antibodies to TGF31 or TGFf3 receptors that aim to prevent ligand-receptor interactions, TGF31 peptide
inhibitors and small molecule inhibitors that aim to block TGF{31 signal transduction at the intracellular
level. Clinical trials utilizing these inhibitors have recently been reviewed elsewhere [157]. Only one
of these inhibitors (GC1008, a monoclonal pan-TGFf neutralizing antibody otherwise known as
fresolimumab) has been evaluated for its impact on immune cell populations in cancer patients, and it
was shown to have no impact on Treg frequency or the expression of activation markers on CD4+
T cells, CD8+ T cells or NK cells in patients with malignant pleural mesothelioma (MPM). Although
this study did demonstrate increased levels of serum antibodies that could react with MPM tumor
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lysates (but that could not bind live MPM cell lines) following treatment, the number of patients
ultimately enrolled in the study was limited due to discontinuation of antibody development for
oncology indications [158]. While some TGF{1 inhibitors have shown promise in early-phase trials,
others have also been abandoned [157]. As alluded to in the previous section, though, strategies that
aim to specifically target TGF1 signaling in immune cell populations might be more advantageous
than TGEp pathway inhibitors that block signaling systemically, and several ongoing clinical trials are
currently incorporating such strategies into novel cancer immunotherapies (Table 1).

Table 1. Ongoing cancer clinical trials targeting TGF1 to improve immunotherapy. Clinical trial
information obtained from ClinicalTrials.gov.

Trial Identifier Description of Therapy Cancer Status

Adoptive Cell Transfer Therapies

Phase I; ongoing,

NCT00368082 LMP-specific DNR-CTL EBV+ lymphoma o
not recruiting
LMP/BARF1/EBNA1-specific . Phase I;
NCT02065362 DNR-CTL =+ lymphodepletion EBV+ nasopharyngeal carcinoma currently recruiting
NCT00889954  HER2 CAR/EBV-specific DNR-CTL Advanced stage Phase [; ongoing,
HER2+ malignancies not recruiting
NCT02379520 E6/E7-specific DNR-CTL HPV-related /HPV+ cancers Phase [; recruiting
NCT01955460 Lymphodgpletlon + DNRITTIL + Melanoma Phase I; recruiting
high-dose IL-2
Autologous Tumor Cell Vaccines
Vigil™ (FANG™) bi-shRNAfurin + Ewing sarcoma, non-small cell lung Phase I; ongoing,
NCT01061840 . . . o
GM-CSF vaccine cancer, liver cancer, thyroid cancer not recruiting
o] T™ ™) hi- ; i .
NCTO1453361 Vi8Il (FANG™™) bishRNAfurin + - 4 oo melanoma (Stage Tie/1v) ~ Thase IL ongoing,
GM-CSF vaccine not recruiting
101]T™M T™ 1 1 1 3 . 3
NCT01505166 Vigil™ (FANG™) bi shRN Afurin + Colorgctal carcinoma with Phase I1; ongoing,
GM-CSF vaccine liver metastases not recruiting

Adoptive transfer of tumor antigen-specific CTL has become one of the most promising
immunotherapies for the treatment of cancer. Because TGF[31 is known to compromise CTL effector
function, several trials have been designed to investigate whether introducing TGFp1 resistance
into adoptively-transferred CTL can boost the anti-tumor efficacy of these cells. Following up on
the promise of the preclinical studies described above, trials involving dominant negative TGFf3
receptor-expressing CTL (DNR-CTL) are currently underway for several cancers. TGFf3-resistant
CTL specific for LMP antigens of EBV are being used for adoptive transfer therapy of patients
with EBV+ lymphoma. A similar trial comparing the adoptive transfer of EBV-specific DNR-CTL
with or without chemotherapy-induced lymphodepletion is also ongoing for patients with
EBV+ nasopharyngeal carcinoma. In an approach to target multiple tumor antigens with the same
adoptively-transferred CTL, a chimeric antigen receptor (CAR) specific for the human epidermal
growth factor receptor 2 (HER2) has been introduced into EBV-specific DNR-CTL generated from
the blood of EBV seropositive patients for investigation in patients with HER2+ malignancies.
Human papilloma virus-associated cancers are also being targeted with HPV E7 antigen-specific
DNR-CTL. Finally, in contrast to the previously described approaches in which CTL are generated
from patient blood, tumor-infiltrating lymphocytes from patients with metastatic melanoma are also
being engineered to express the dominant negative TGFBRII prior to adoptive transfer therapy in
conjunction with high-dose IL-2.

Clinical trials incorporating strategies to limit TGFf1-mediated immune suppression have not
been restricted solely to adoptive T cell transfer therapies either. The Vigil™ (formerly known
as FANG™) vaccine, which consists of autologous tumor cells transfected with a plasmid vector
encoding both granulocyte-macrophage colony-stimulating factor (GM-CSF) and a bi-functional
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shRNA designed to silence expression of the furin convertase that activates both TGFf31 and TGFf32, has
already been validated in a phase I trial involving patients with various late-stage cancers [159]. In this
trial, the Vigil™ (FANG™) vaccine was well tolerated with minimal adverse events, and the expression
of TGFB1 and TGFp2 was decreased 93.5% and 92.5%, respectively. Survival was significantly
enhanced in patients receiving >4 vaccines, and 50% of this group’s patients whose PBMC were
tested for reactivity against autologous tumor cells showed an increase in IFNy-producing cells by
Enzyme-Linked ImmunoSpot ELISPOT analysis. Similar immunologic and clinical benefits from
this vaccine have since been reported in follow-up studies [160,161] and in a phase I trial involving
patients with advanced Ewing sarcoma [162,163]. Although the exact mechanism of improved immune
reactivity achieved by Vigil™ (FANG™) vaccination is less clear than DNR-CTL adoptive transfer
therapies in which TGFf resistance is introduced specifically into T cells, it is likely that indirect TGF
knockdown via this approach diminishes the suppression of DC, whose recruitment to and activation
at the vaccination site is also enhanced by GM-CSF secreted by the engineered autologous tumor cells.
By employing autologous tumor cells that have the potential to promote immune reactivity against
several patient-specific tumor antigens, the “triad” functionality of Vigil™ (FANG™) vaccination is
achieved, creating possible advantages over adoptive cell transfer therapies that target only a single
tumor antigen and that are restricted to only a subset of patients whose tumors test positive for such
a targeted antigen. Based on the promise of the documented phase I trials thus far, other phase 1/1I
Vigil™ (FANG™) trials are currently in progress for patients with melanoma, colorectal carcinoma
and various other advanced solid tumors.

7. Conclusions and Future Perspectives

Since the discovery of TGF1 more than 30 years ago, significant research efforts have been
focused on understanding the biology of this potent regulatory cytokine. During this time, much has
been learned about TGF31’s role in regulating a diverse array of physiologic processes, both in the
steady state and in the development of disease. Its dysregulation in cancer specifically has emerged as
a major driver of tumor progression, and TGFf31 is now known to influence several hallmarks of cancer
that include angiogenesis, tissue invasion, metastasis and immune suppression. In particular, our
understanding of TGFf1-mediated immune suppression in cancer has provided significant insights
into tumor immune escape and has paved the way for therapeutic strategies that aim to improve the
efficacy of immune-based cancer treatment modalities. Many of these strategies have shown promise in
preclinical models and even in early clinical trials, particularly as technologies have emerged to modify
TGF1 activity in specific cell populations. As we continue to learn more about the pleiotropic activities
of TGFf1 and the context-dependent nature of these activities within the tumor microenvironment,
and as new advances in genetic engineering and genome editing continue to emerge, novel approaches
for both therapeutic delivery and TGFf31 targeting are likely to improve the quality of anti-tumor
immune responses in cancer patients. Data obtained from ongoing/future clinical trials and new
preclinical studies will also be important for (1) gaining insights into factors that regulate the efficacy
of TGFp1-targeted therapies and (2) identifying patient populations most likely to benefit from such
therapies. Moreover, an improved understanding of factors that limit the efficacy of TGF1-targeted
regimens in some patients might also suggest combinatorial approaches for therapy that may improve
treatment outcome for cancer patients in the future.
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