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Time-dependent traits are often subject to censorship, where instead of precise
phenotypes, only a lower and/or upper bound can be established for some of the
individuals. Censorship reduces the precision of phenotypes but can represent
compromise between measurement cost and animal ethics considerations. This
compromise is particularly relevant for genetic evaluation because phenotyping
initiatives often involve thousands of individuals. This research aimed to: 1)
demonstrate a data augmentation approach for analysing censored phenotypes, and
2) quantify the implications of phenotype censorship on estimation of heritabilities and
predictions of breeding values. First, we simulated uncensored phenotypes, representing
fine-scale “age at puberty” for each individual in a population of some 5,000 animals across
50 herds. Analysis of these uncensored phenotypes provided a gold-standard control. We
then produced seven “test” phenotypes by superimposing varying degrees of left, interval,
and/or right censorship, as if herds were measured on only one, two or three occasions,
with a binary measure categorized for animals at each visit (either pre or post pubertal). We
demonstrated that our estimates of heritabilities and predictions of breeding values
obtained using a data augmentation approach were remarkably robust to phenotype
censorship. Our results have important practical implications for measuring time-
dependent traits for genetic evaluation. More specifically, we suggest that data
collection can be designed with relatively infrequent repeated measures, thereby
reducing costs and increasing feasibility across large numbers of animals.
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INTRODUCTION

Maximizing the number of individuals contributing phenotypes to an analysis is particularly
important in genetic evaluation and selection. Accuracy of evaluation and selection intensity are
two key drivers of genetic improvement in a population (Rendel and Robertson, 1950). For any given
trait, the accuracy of an individual’s estimated breeding value (EBV) will improve as more of its
immediate descendants have phenotypes measured. Response to selection depends on the EBV
superiority of the individuals that are selected to become parents (Rendel and Robertson, 1950). In
selection schemes that include individual phenotypes on selection candidates, selection intensity
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increases as more animals have phenotypes measured. However,
precise measurement of phenotypes across large numbers of
individuals can be problematic, especially when they are
expensive to measure, require invasive procedures and/or
measures must be repeated over time. Censored phenotypes
are easier and cheaper to obtain, as fewer, and/or less specific
observations are required. It follows that where resources are
limited, the strategic use of censorship can enable researchers to
phenotype considerably more individuals.

There are several situations where animal breeders deliberately
censor phenotypes. First, when a continuous trait, such as
shoulder height, is measured using ordinal categories (for
example a score of 1–9) instead of the underlying continuous
variable. This type of censoring of continuous phenotypes makes
them easier and faster to measure. Kizilkaya et al. (2014) reported
that although EBV accuracy was compromised by this approach,
it could be overcome by roughly doubling the number of animals
phenotyped. A second situation is when a time-dependent trait is
measured at relatively infrequent intervals. For example, Fortes
et al. (2012) measured puberty status at intervals of four to
6 weeks, in preference to sustaining the cost and ethical issues
of daily measures. In addition to interval censoring, left and right
censoring are often introduced as a means to reduce observations.
Left censoring occurs when the observation window begins after
some animals have already expressed their phenotype, whereas
right censoring occurs when animals express their phenotype
after the observation window closes. Longevity is a phenotype
that is subject to right-censoring, because individuals that are still
alive at the time of data collection will only have a lower bound
observation (Ducrocq et al., 1988).

Where time-dependent traits, such as age of puberty, are
subject to left and interval censoring, individuals are often
assigned a phenotype based on their age when they were first
observed to have reached the threshold criterion (for example,
Fortes et al., 2012). That logic cannot be applied to right
censoring, as there is essentially no upper bound on an
animal’s phenotype. A number of methods have been
developed for handling right-censored phenotypes. Two
common examples include adding an arbitrary penalty for
right-censored phenotypes, or predicting them using survival
analysis techniques. Donoghue et al. (2004) analysed
conception phenotypes by adding a 21 days penalty to right-
censored phenotypes, while Ducrocq et al. (1988) analysed
longevity phenotypes using survival analysis techniques such
as the Cox proportional hazard model and the Weibull model
to predict right-censored phenotypes. A data augmentation
method (Tanner and Wong, 1987), where the phenotypes of
any censored individuals are sampled from a truncated predictive
distribution, provides an alternative approach for handling
censored data. Donoghue et al., (2004) compared penalty and
data augmentation approaches in their analysis of right-censored
conception phenotypes and found that the results were similar.

It is likely that left, right and interval censorship of time-
dependent traits may compromise the accuracy of EBVs. That
said, high EBV concordance reported across varying degrees of
right-censoring (Guo et al., 2001; Donoghue et al., 2004) indicates
that this compromise may be minimal. It is difficult to investigate

the implications of phenotype censorship for traits that are
commonly left, interval and right-censored, such as age of
puberty, because the cost of obtaining precise phenotypes for
an “uncensored” comparison is prohibitive. Instead, we have
simulated precise phenotypes, representing the trait “age at
puberty” (AGEP) and then applied a range of censorship
scenarios to these phenotypes. These results can be used to
make inferences about time-dependent traits that are
challenging to measure precisely.

The aims of this study were to: 1) demonstrate a data
augmentation approach for analysing left, interval and right-
censored data, and 2) quantify the implications of varying
phenotype censorship on estimates of heritabilities and
predictions of EBVs, using a categorical, time-dependent trait.
Our hypothesis was that the heritability and EBV rankings would
be robust to phenotype censorship.

METHODS

Simulated Phenotypes
We used the software XSim (Cheng et al., 2015), implemented in
Julia (Bezanson et al., 2017) to simulate precise phenotypes
representing the trait AGEP. The phenotypes were simulated
using real single-nucleotide polymorphism (SNP) genotype data
(Weatherbys Versa 50 k SNP array) from 4,935 Holstein-Friesian,
Holstein-Friesian cross Jersey cows. These 4,935 cows were born
in 2018 and represent around 260 sires. We carried out quality
control on these SNP genotypes prior to our simulation,
disregarding unmapped SNP, as well as 2,120 SNP with minor
allele frequency <1%. This left around 47,000 SNP included in our
analyses. We simulated a phenotype that represented AGEP, by
specifying a genetic variance of 297 days, and heritability of 0.33
(Dennis et al., 2018). Animals were randomly assigned to one of
50 contemporary groups. The mean of each contemporary group
was sampled at random from a normal distribution, with a mean
of 342 days (Dennis et al., 2018) and a variance of 20. We
assumed AGEP to be polygenic, with 500 SNP loci spread
across the genome chosen to represent simulated additive
QTL. The resultant precise phenotypes provided data for our
“gold-standard” (GOLD) control analyses.

FIGURE 1 | An example of interval censoring for “age at puberty”. If this
animal was observed daily, it would be recorded as attaining puberty at
345 days old. However, if the herd was observed only three times (early, mid
and late), when this animal was 300, 330 and 360 days old, respectively,
its phenotype would fall within the bounds of 330–360 days.
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We superimposed varying degrees of censorship to simulate
these animals being observed at only 1, 2 or 3 herd visits for a
seasonal window during which they would have been expected
to attain puberty. In the first censored scenario, three herd
visits (early, mid and late; EML) were simulated for each herd.
The mid observation was on the day where 50% of the herd had
attained puberty, and the early and late observations were
20 days either side of that day. This timing resulted in an even
number of animals with left, interval and right censoring. In

the second to fourth censored scenarios, herd visits were
restricted to just the early and mid (EM), the mid and late
(ML), or the early and late (EL) visits. In the fifth to seventh
censored scenarios, there was only one visit to each herd, with
an early only (E), a mid only (M) or a late only (L) visit. Under
censorship, the continuous variable GOLD was unobserved.
Instead, the phenotype for each animal was only known to fall
within a lower and/or upper bound (Figure 1).

Data Augmentation
We used a Markov-chain Monte Carlo (MCMC) technique
that included data augmentation (Tanner and Wong, 1987) to
obtain posterior distributions for variance parameters and
EBVs from censored phenotypes. The unobserved
continuous variables representing the actual age that each
animal attained puberty was treated as an unknown variable
(hereinafter referred to as liabilities) whose value must fall
between a known upper and lower bound. Plausible AGEP
phenotypes were repeatedly sampled from a truncated
predictive distribution for each animal. The sampled
phenotypes were continuous variables representing a
plausible value for each animal’s AGEP, even though the
observations on which they were based were binary (pre- or
post-pubertal on a given herd visit). The mean and variance of
these predictive distributions were determined by the
simultaneous sampling of fixed herd effects and marker
effects (mean) and residual variance (variance) within a
single site Gibbs sampling approach. The truncation points
for each predictive distribution were the known upper and/or
lower bounds for each animal. This MCMC approach
produced a posterior distribution of AGEP phenotypes for
each animal (Figure 2).

Model Equation
We fitted a mixed linear model using Bayesian methodology
via single-site Gibbs sampling to construct a Markov chain of
plausible values of unknowns. The model included random
marker effects using BayesC priors (Garrick et al., 2014).
Briefly, marker effects were assumed to follow a mixture
distribution where their effects were either zero, with prior
probability Pi = 0.99, or independently normally distributed
with mean 0 and constant variance, with prior probability (1-
pi). Given the mixture prior, at each iteration of the Gibbs
sampler effects for about 470 markers were sampled from the
non-zero distribution to collectively explain the breeding value
or genetic component of the phenotypic differences between
the 5,000 animals in our simulated dataset. We sampled the
AGEP phenotypes conditional on the current sample values
for all the effects in the linear model, and then fitted the linear
model conditional on the sample of AGEP phenotypes, and
so on.

The resultant MCMC samples of effects represented fixed
herd effects, marker effects, and variance parameters. Matrix
representation of the linear marker effects model equation is:

y � Xb +Ma + e (1)

FIGURE 2 | An example of the Markov-chain Monte Carlo (MCMC)
sampled phenotypes for a single animal with a left- (A) or interval- (B)
censored phenotype. Left censoring occurs where an animal has attained
puberty on or before the first herd visit (i.e., sampled phenotypes are
truncated by the age of the animal on the first visit). Interval censoring occurs
when an animal reaches puberty between two visits (i.e., sampled phenotypes
are truncated by the age of the animal on the flanking visits.
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where y is a vector of phenotypes (one phenotype per study
animal), b is a vector of herd effects, a is a vector of additive
marker effects. The vector e represents residuals
corresponding to each of the phenotypes. The residuals are
assumed to be independently normally distributed, with
homogeneous residual variance. The incidence matrix X
relates each phenotype record to relevant fixed herd effects.
The covariate matrix M relates each phenotype record to the
number of one of the alleles at each SNP marker. The matrixM
has a column for each SNP marker, and a row for each
phenotype.

In all analyses, the unknowns include the vectors b and a and
the scalars representing genetic and residual variances. Where
phenotypes are censored with known lower or upper bounds, the
vector y is also unknown, except for the bounds on each
observation.

Software and Solver
We used command line bash scripts and Julia (Bezanson et al.,
2017) packages CSV, StatsPlots, and DataFrames to pre-
process observation data into the vectors representing
control or censored phenotypes. We performed the genetic
analyses using the JWAS package (Cheng et al., 2018). The
MCMC comprised 50,000 samples, with the first 10,000
samples disregarded as a burn-in and then every 10th
sample of the MCMC was retained. The Julia environment
was used to post-process the results. We produced credibility
intervals for genetic variance, residual variance, and
heritability for the 5% (lower bound) and 95% (upper
bound) percentiles based on all post-burn in samples. We
used two methods to test for evidence of non-convergence of
our MCMC chains. First, we undertook the diagnostic test
described by Geweke (1992), and second, we observed trace
plots to visually assess the convergence of posterior means of
each parameter.

Comparisons Across Censorship Scenario
We used Pearson’s correlation coefficient to quantify the extent of
re-ranking between EBVs obtained from each of our censorship
scenarios. Correlations of EBVs included all animals with
simulated phenotypes (n = 4,935).

RESULTS

Correlations between the posterior mean of MCMC phenotypes
sampled for each animal and the control (GOLD) phenotype
were strong and positive across all censorship scenarios (Table 1).
Strong correlations were observed between EBVs estimated using
phenotype bounds from each censorship scenario and EBVs
estimated using GOLD phenotypes (Table 1). Unsurprisingly,
these correlations decreased as censorship increased. Where the
censorship scenario included at least two herd visits (EML, EM,
ML, or EL), correlations between the GOLD and estimated
phenotypes ranged from 0.90 to 0.95 and those between EBVs
ranged from 0.92 to 0.96.Where the censorship scenario included
just one herd visit (E, M or L), correlations between the GOLD
and estimated (i.e., censored) phenotypes ranged from 0.81 to
0.85 and those between EBVs ranged from 0.85 to 0.88.

Correlations between the posterior means of sampled
phenotypes from the EML censorship scenario and other
censored scenarios ranged from 0.86 to 0.98 (Table 1).
Likewise, correlations between EBVs from the EML censorship
scenario and EBVs from the other more censored scenarios were
all strong and positive, ranging from 0.88 to 0.96 (Table 1).

The posterior mean for the heritability of AGEP estimated
using GOLD phenotypes was 0.29 (Table 1). The posterior mean
of estimated heritabilities for different censorship scenarios also
tended to be around 0.29 with 90% credibility intervals ranging
from 0.22 to 0.34.

DISCUSSION

We determined that a data augmentation approach to analysing
left-, interval- and right-censored data resulted in precisely
estimated phenotypes for a time-dependent categorical trait,
using simulated AGEP phenotypes as a case study. The extent
of animal re-ranking, indicated by comparing correlations
between censored phenotypes and their precise phenotypes
(control), was relatively low even under extreme censorship
scenarios, where animals only had a single observation.
Furthermore, EBVs were robust to phenotype censorship and
animal rankings were largely consistent with our gold standard

TABLE 1 | Comparison across censorship scenarios for simulated “age at puberty” phenotypes. Correlations between phenotypes (n = 4,935) (white shading, below
diagonal), correlations between EBVs (n = 4,935) (grey shading, above the diagonal), and heritabilities with 90% credibility intervals (bold, on the diagonal). In the control
scenario (GOLD), the phenotypes represented those that would be obtained when animals were observed daily. Censored scenarios simulate if animals in a herd were
observed at either one, two or three visits. In the first censored scenario, three herd visits (early, mid and late; EML) were simulated for each herd. In the second to fourth
censored scenarios, herd visits were restricted to just the early andmid (EM), mid and late (ML), or early and late (EL) visits. In the fifth to seventh censored scenarios, herd
visits were restricted to one per herd, with an early only (E), a mid only (M) or a late only (L) visit. 90% credibility intervals did not exceed 0.02 for any of the correlations.

GOLD EML EM ML EL E M L

GOLD 0.29 (0.26,0.31) 0.96 0.92 0.93 0.94 0.85 0.88 0.85
EML 0.95 0.30 (0.27,0.33) 0.96 0.96 0.98 0.89 0.91 0.88
EM 0.90 0.95 0.29 (0.26,0.33) 0.93 0.91 0.92 0.95 0.78
ML 0.91 0.95 0.90 0.29 (0.26,0.33) 0.91 0.80 0.95 0.91
EL 0.93 0.98 0.90 0.90 0.30 (0.27,0.33) 0.90 0.83 0.89
E 0.81 0.86 0.9 0.71 0.88 0.27 (0.22,0.32) 0.80 0.72
M 0.85 0.90 0.95 0.94 0.80 0.73 0.29 (0.25,0.34) 0.79
L 0.81 0.86 0.70 0.90 0.88 0.58 0.72 0.27 (0.22,0.32)
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control scenario. In particular, the correlations between control
EBVs and EBVs from any censored scenario where there were at
least two visits per herd were greater than 0.90. We also
determined that heritability estimates were relatively
unaffected by phenotype censoring; across both control and
censored scenarios, heritabilities tended to be around 0.29.
Previous studies focusing on the implications of right
censoring also indicated concordance of EBVs across varying
degrees of censorship (Guo et al., 2001; Donoghue et al., 2004)
and that a data augmentation approach produced minimal
differences in variance parameters compared with uncensored
phenotypes (Sorensen et al., 1998; Donoghue et al., 2004).
Together, these outcomes support our hypothesis that
heritabilities and EBVs can be robust to phenotype censorship.
In the analysis presented here we have fit SNPs directly using a
marker effects model. That said, our data augmentation approach
can be extended to a wide range of models including those
analyses where a genomic or pedigree relationship matrix is
used to describe the variance-covariance matrix between
individuals.

Intentional phenotype censorship is useful for reducing cost
and/or animal welfare concerns associated with phenotype
collection. This is especially true for time-dependent traits,
where repeated measurements are required to produce precise
phenotypes. The trait AGEP provides a good case study as all
animals begin pre-pubertal and, over time, reach sexual maturity
and become post-pubertal. The timing of puberty varies between
individuals and is influenced by a range of genetic and
environmental factors. Puberty status can be determined
through behavior monitoring, ovarian ultrasonography and/or
blood testing for plasma progesterone concentrations (Morris
et al., 2000; Macdonald et al., 2007; Handcock et al., 2021);
however, these measurements are labor intensive and therefore
costly, in addition to being somewhat invasive, potentially
compromising animal welfare or raising ethical issues. Hence,
although daily observations would yield a precise phenotype,
AGEP is often measured using as few observations as possible,
resulting in censored phenotypes (Hickson et al., 2011; Fortes
et al., 2013; Handcock et al., 2021). Here, our censored scenarios
simulated relatively infrequent herd visits around the time that
animals would be expected to attain puberty. Our results provide
support for the strategic use of phenotype censoring, indicating
that the effects on heritabilities and EBVs may be inconsequential
for a time-dependent trait like AGEP and other commonly
censored traits, such as longevity and/or other fertility
phenotypes.

The current analysis has not exhaustively considered the
implications of timing of observations. We timed our
simulated herd visits to obtain about 25% of animals with left,
interval E to M, interval M to L and right censoring using
knowledge of the median AGEP for each herd. In reality, that
information is not available in advance to plan the timing of
observations. As fewer herd visits are undertaken, timing may
becomemore important. For example, if there is only one visit per
herd, and it occurs earlier or later than the day of median AGEP
there will be less variation among observations. In the worst case,
all animals may be yet to reach puberty, or all animals may be post

pubertal. Their phenotypes would not add value to genetic
analysis, as any animal effects would be entirely confounded
by the herd effect. We have investigated the implications of visit
timing within the bounds of our visit schedule. For example, our
E scenario represents a single early visit, while our L scenario
represents a single late visit. Our results indicate strong
correlations between EBVs produced by all three scenarios
with two herd visits. Therefore, when there are at least two
visits, the timing is less important. Conversely, the correlations
between EBVs produced by our three single visit scenarios are
slightly weaker, indicating that when there is only one herd visit,
animal selection decisions may be materially altered depending
on visit timing. Further investigation is required to quantify the
accuracy of EBVs produced using phenotypes from different visit
timing before a recommendation on optimal timing can be made
for a specific trait. If a visit was earlier than desirable, and most if
not all animals were pre pubertal, there is still the option of
visiting again to capture more information. A similar option is
not available if a visit was later than desirable.

Based on the case study presented here, we conclude that
heritability and EBV estimations for categorical, time-dependent
traits are likely to be robust to left- interval- and right-censorship
of phenotypes. In regard to the design of phenotyping strategies
for specific traits, further simulation may be warranted. We
assumed that once an animal attained puberty, she would be
observed as pubertal thereafter with little measurement error.
However, in reality, a trait like age at puberty could incur a
relatively high incidence of false negative measures (where the
animal has reached or exceeded the threshold but is observed to
be under threshold). The extent of errors in allocating a
phenotype to an animal would have implications on optimal
measurement design. Further, we investigated only a single trait
heritability, but the simulation could be applied to phenotypes
with varied heritabilities, such that the implications of censorship
on very low or very high heritability traits might also be
quantified.
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