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Abstract

Constrained independent component analysis (CICA) is capable of eliminating the order ambiguity that is found in the
standard ICA and extracting the desired independent components by incorporating prior information into the ICA contrast
function. However, the current CICA method produces constraints that are based on only one type of prior information
(temporal/spatial), which may increase the dependency of CICA on the accuracy of the prior information. To improve the
robustness of CICA and to reduce the impact of the accuracy of prior information on CICA, we proposed a temporally and
spatially constrained ICA (TSCICA) method that incorporated two types of prior information, both temporal and spatial, as
constraints in the ICA. The proposed approach was tested using simulated fMRI data and was applied to a real fMRI
experiment using 13 subjects who performed a movement task. Additionally, the performance of TSCICA was compared
with the ICA method, the temporally CICA (TCICA) method and the spatially CICA (SCICA) method. The results from the
simulation and from the real fMRI data demonstrated that TSCICA outperformed TCICA, SCICA and ICA in terms of
robustness to noise. Moreover, the TSCICA method displayed better robustness to prior temporal/spatial information than
the TCICA/SCICA method.
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Introduction

Independent component analysis (ICA) is a data-driven method

that can recover a set of maximally independent sources from

observed multivariate data without using any prior information

[1,2,3]. Functional magnetic resonance imaging (fMRI) is a widely

used noninvasive neuroimaging technique that measures hemo-

dynamic responses to reveal the functions of the brain. ICA has

gained increasing acceptance in the functional imaging research

community [4,5,6] since McKeown [7] first proposed the

application of spatial ICA in fMRI data analysis. In contrast to

the complementary univariate general linear model (GLM)

method, which is performed on a voxel-by-voxel basis [8], the

ICA method is able to extract multiple brain networks that are

engaged in various elements of cognitive processing without any

prior knowledge. This ability makes ICA an increasingly attractive

exploratory tool to study functional brain networks either at rest

[9] or during a cognitive task [10].

Although ICA is not dependent on any prior information, some

previous studies have suggested that the performance of ICA can

be improved by incorporating prior temporal information [3,11].

Of note, both the variances and the order of the independent

components (ICs) that are estimated by the standard ICA are

arbitrary. The order indetermination in ICA leads to the problem

of target component selection. Additional prior information can

contribute to the solution to this problem, even if the prior

information was incomplete. Luo et al. (1999) first proposed a

principal independent component analysis concept that could

extract objective independent components directly by introducing

some asymmetric information to the network [12]. The con-

strained independent component analysis (CICA) that was

proposed by Lu and Rajapakse (2000, 2005) could automatically

extract the desired components in a predefined order and reduce

the computational cost by introducing constraints into the classical

ICA [13,14]. CICA considers only one type of prior information to

produce constraints that can act on either the source matrix [14]

or the mixing matrix [15]. For fMRI data analysis, CICA was

adopted to extract temporally independent components that were

related to the task by using temporal constraints on the source

matrix without separating all of the sources [14]. Lin (2010)

applied CICA to estimate the desired spatially independent

components from fMRI data using spatial constraints on the

sources matrix [16]. To improve the convergence of CICA,

learning-rate-free CICA algorithms were proposed by Wang

(2011) and were applied to separate spatially independent

components from fMRI data using temporal constraints on the

mixing matrix [17]. Rasheed (2009) proposed the constrained

spatiotemporal ICA that used two cascaded CICA stages, one for
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each domain, to determine the maximally independent yet desired

sources in both the spatial and temporal domains [18]. A priori

information that was available in the spatial/temporal domain was

fed to the first CICA stage, and the output of the first CICA stage

was added to the second CICA stage as the constraint.

In spite of the available temporal and spatial prior information

in the fMRI data, these previous studies on CICA only included

one type of prior information (temporal/spatial) as constraints,

which can increase the dependency of CICA on the accuracy of

the prior information. It is impossible in most applications to

obtain accurate prior temporal or spatial information in fMRI

data before ICA processing. This situation is particularly the case

for the prior spatial information of fMRI data. Moreover, how the

accuracy of this prior information affects the performance of

CICA remains unknown. Accordingly, it is important to investi-

gate how to reduce the dependency of CICA on the accuracy of

prior information.

Based on the above considerations, this study aimed at

exploring a method to reduce the impact of the accuracy of prior

information on CICA and to improve CICA performance. The

temporally and spatially constrained ICA (TSCICA) method was

proposed by introducing dual constraints into ICA within the

framework of CICA. Although spatially/temporally independent

components can be identified using a spatial/temporal ICA from

fMRI data, the spatial ICA is much more widely used than the

temporal ICA [19]. Therefore, the spatial ICA was used for

TSCICA in the current study, although the temporal ICA is also

suitable for use in TSCICA. The basic idea of TSCICA was to

simultaneously incorporate the temporal constraints on the mixing

matrix and the spatial constraints on the source matrix into the

spatial ICA. Using simulated and real fMRI experiments, we

compared TSCICA with GLM, ICA, the temporally CICA

(TCICA) method, which introduced temporal constraints on the

mixing matrix, and the spatially CICA (SCICA) method, which

introduced spatial constraints on the source matrix. The results

from both the simulated and real fMRI experiments demonstrated

that TSCICA outperformed TCICA, SCICA and ICA.

Theory

Constrained ICA
The spatial ICA model that is typically applied to fMRI data

can be expressed as:

X~AS, ð1Þ

where X is the K6V observed fMRI signal data. K is the number

of scans, whereas V is the number of voxels. A is the K6C matrix

and S is the C6V source matrix, where C is the number of total

independent components. Each row of matrix S represents one of

the spatially independent components, and each column of matrix

A represents the time course of the corresponding independent

component. The standard ICA algorithm aims to find a C6K

unmixing matrix W such that the output Y = ½y1,y2,:::yC �T~WX
provides estimates of all of the source signals. Before ICA

processing, the data are whitened by a standard principal

component analysis (PCA) as follows:

X̂X~BX: ð2Þ

The M6K matrix B in Eq. (2) is called the whitening matrix and

can be easily determined through the following formula:

B~D{1E, ð3Þ

where D is the M6M diagonal matrix of the M largest eigenvalues

of the covariance matrix of the input data E{XXT}a, and E is the

M6K transposed matrix of the M eigenvectors that correspond to

the M eigenvalues in matrix D. Thus, the whitened data X̂X
becomes M6V. Both FastICA and Informax ICA algorithms have

been widely used in fMRI data analyses [20,21,22].

CICA is able to extract the desired source signals only by

incorporating prior information into the contrast function in the

form of inequality constraints and equality constraints. The CICA

method is modeled as the following constrained optimization

problem [13,14]:

maximize J(Y),

subject to g(Y : W)ƒ0 and h(Y : W)~0:
ð4Þ

Similar to the FastICA algorithm, the contrast function J(Y) of

CICA is set as negentropy. In general, we can obtain the following

approximation:

J(Y)~
Xn

i~1

ri½Eff (yi)g{Eff (n)g�2, ð5Þ

The components of output Y = ½y1,y2,:::yn�T are mutually

independent and correspond to n (,C) sources mixed in the

observations, ri is a positive constant, and n is a Gaussian variable

with zero mean and unit variance. f(?) is a non-quadratic function,

such that

f1(y)~log(cosh(a1y)=a1), ð6Þ

f2(y)~exp({a2y2=2)=a2, ð7Þ

f3(y)~y4=4, ð8Þ

where 1#a1#2 and a2<1.

g(Y: W) = [g1(y1: w1), g2(y2: w2), gp(yp: wp)]T includes p inequality

constraints, and h(Y: W) = [h1(y1: w1), h2(y2: w2), hq(yq: wq)]T

includes q equality constraints. The constraints g(Y: W) and h(Y:

W) can act on either the mixing matrix or the source matrix. The

CICA algorithm uses p inequality constraints g(Y: W) and q

equality constraints h(Y: W) of either the temporal or spatial

information to constrain J(Y) and uses Lagrange multipliers [23]

to search for the optimal solution.

Temporally and spatially constrained ICA
The proposed TSCICA method was provided within the

framework of CICA. Suppose we want to extract n (n$1) sources

of interest from C (C.n) total source signals. The spatial reference

signals Rs~½rs1,rs2:::,rsn� and the temporal reference signals

Rt~½rt1,rt2:::,rtn� can be constructed from the prior spatial and

temporal information of the n sources of interest. For an ideal

separation AW = I and assuming that R
0

t~½r
0

t1,r
0

t2:::,r
0
tn� is the

transformation of Rt into the unmixing space, Rt’ can be expressed

as:

TSCICA of fMRI Data Analysis
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R
0
t~(BRt)

{1 ð9Þ

The proposed TSCICA method can be formulated in the

framework of CICA.

maximize J(Y)~
Xn

i~1

ri½EfG(yi)g{EfG(n)g�2, ð10Þ

subject to g1(Y,Rs)ƒ0, ð11Þ

g2(W,R
0
t)ƒ0, ð12Þ

h(Y)~0, ð13Þ

where g1(Y,Rs) = [g11(y1,rs1),g12(y2,rs2),…g1n(yn,rsn)]T includes n

inequality spatial constraints, and g2(W,R
0
t)~½g21(w1,r

0
t1),

g22(w2,r
0
t2),:::g2n(wn,r

0
tn)� includes n inequality temporal con-

straints. g1i(yi,rsi) and g2i(wi,r
0
ti) can be expressed as

g1i(yi,rsi)~e1i(yi,rsi){j1iƒ0 (i = 1,…,n) and g2i(wi,r
0
ti)~

e2i(wi,r
0
ti){j2iƒ0, where e1i(yi,rsi) is the closeness measure

between the output yi and the spatial reference rsi, and e2i(wi,r
0
ti)

is the closeness measure between the output wi and the temporal

reference r
0
ti. j1i(j2i) is a threshold that distinguishes the desired

output yi(wi) from the other outputs. Moreover, the equality

constraint h(Y) is added to ensure that the contrast function J(Y)
and the weight vector w were bounded, e.g., h(Y) =

[h(y1),h(y2),…h(yn)]T and h(yi)~Efy2
i g{1~0 [13,14]. Com-

pared with the model (4) of CICA, TSCICA added two types of

inequality constraints including g1(Y,Rs) and g2(W,R
0
t) into the

model. Based on the constraints of the equation (11)–(13),

TSCICA can estimate the optimal solution of equation (10) using

Lagrange multipliers. The corresponding augmented Lagrange

function L of TSCICA is given by:

L~J(Y){G1(Y,Rs,m1){G2(W,R
0
t,m2){H(Y,l), ð14Þ

where

G1(Y,Rs,m1)~
1

2c1

Xn

i~1

½max2fm1izc1g1i(yi,rsi),0g{m2
1i�, ð15Þ

G2(W,R
0
t,m2)~

1

2c2

Xn

i~1

½max2fm2izc2g2i(wi,r
0
ti),0g{m2

2i�, ð16Þ

H(Y,l)~li

Xn

i~1

½E(y2
i ){1� ð17Þ

G1(Y,Rs,m1) and G2(W,R
0
t,m2) transform the original inequality

constraints of the spatial and temporal reference signals into

equality constraints; and m1 = [m11, m12,…, m1n], m2 = [m21, m22, …,

m2n], and l1 = [l11, l12,…l1n] are the vectors of positive Lagrange

multipliers that correspond to the spatial inequality, temporal

inequality, and equality constraints. c1 and c2 are the penalty

parameters.

A Newton-like gradient method can be used to solve this

optimization problem [13]:

Wkz1~Wk{g+WL=+2
WL, ð18Þ

where +W and +2
W indicate the first and second derivatives,

respectively, g is the learning rate, and k is the iterative step. The

gradient of L(W,m1,m2,l) is given by:

+WL~+WJ{+WG1{+WG2{+WH, ð19Þ

where the matrix +WJ(Y) = [+w1
J(Y),+w2

J(Y),… +wn J(Y)]T

denotes the gradient of J(Y) with elements

+wi
J(Y)~�rriEfX̂Xdfyi

(yi)=dyig. �rri is the constant term and can

be expressed as �rri~ri(Eff (yi)g{Eff (n)g). The term

+WG1(Y,Rs,m1) = [+w1
G1, +w2

G1, …+wn G1]T denotes the gradi-

ent of G1(Y,Rs,m1) with element +wi
G1(Y,Rs,m1)~

m1iEfX̂Xdg1i(yi,rsi)=dyig=2, and +WG2(W,R
0
t,m2) = [+w1

G2,

+w2
G2,…+wn G2]T denotes the gradient of G2(W,R

0
t,m2) with

element +wi
G2(W,R

0
t,m2) = m2iEfdg2i(wi,r

0
ti)=dwg=2. The last

term is +WH(Y,l) = [+w1
H1,+w2

H1,…,+wn H1] with elements

+wi
H(Y,l)~liE(X̂Xyi). The +2

WL can be obtained using the

following equation:

+2
WL~

Rxx

X

i

½riEfd2f (yi)=dy2
i g{m1iEfd2g1i(yi,rsi)=dy2

i g=2

{m2iEfd2g2i(wi,r
0
ti)=dw2

i g=2{li�,

ð20Þ

where Rxx = E{X̂XX̂XT}. The optimum multipliers m1, m2 and l are

iteratively updated based on following equation:

m1(kz1)~max(0,m1kzc1g1(Yk,Rs)), ð21Þ

m2(kz1)~max(0,m2kzc2g2(Wk,R
0
t)), ð22Þ

lkz1~lkzch(Yk), ð23Þ

where W can be initialized as a random matrix. At each iteration

step, wi can be centered and normalized using the following

equation to simplify the calculation and to improve the stability of

the algorithm:

wi
�~wi=DDwi DD, ð24Þ

where wi
� denotes the new value of wi. Additionally, the weight

vectors are decorrelated at each step using the following equation

to prevent different components from converging to the same

solution [21,22]:

W~(WWT ){1=2W: ð25Þ

The procedure of TSCICA is listed as follows:

Center and whiten the observed signal X;

Initialize c1, c2, j1, j2 and l;

Initialize W as a random matrix. Center and normalize each

row vector of W;

For the kth iterative step:

Update W using equations (18), (19) and (20).

TSCICA of fMRI Data Analysis
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Center and normalize wi using Eq. (24), and decorrelate the W
matrix using Eq. (25).

Update j1, j2, l using Eqs. (21), (22) and (23).

Repeat the above steps until either g1(Y) or g2(W),0 and

||DW||,1024.

When the iteration stops, the interested ICs can be obtained

according to Y = WX.

Materials and Methods

1. Ethics statement
The human fMRI experiment conducted in this study was

approved by the Institutional Review Board of Beijing Normal

University (BNU) Imaging Center for Brain Research, National

Key Laboratory of Cognitive Neuroscience. All of the subjects

gave written informed consent according to the guidelines set by

the MRI Center of Beijing Normal University.

2. Simulation
The simulated fMRI data were generated to illustrate the

robustness and the feasibility of the proposed TSCICA method.

To investigate the impact of the accuracy of prior information on

the ICA’s estimation, the performance of TSCICA was compared

with TCICA and SCICA under conditions of different prior

temporal and spatial information.

The dimension of each simulated dataset were reduced by PCA,

with 99.9% of the total variance of the mixed signals retained

before TSCICA, TCICA, SCICA and ICA, to ensure that all the

informative components were included [16]. The nonlinear

function f(?) used equation (6), and the constant r in equation

(10) was set to 1 [17]. For the TSCICA, TCICA and SCICA

methods, the learning rate g was set to 0.98k, where k is the

iteration count. Generally, the learning rate g was set as a fixed

value. To reduce the computational cost and to ensure a stable

convergence, we set the learning rate as an alterable value that

reduced with an increasing iterative step. Based on the parameter

setting in the previous study [17], the spatial penalty parameter c1

was set to 0.164(k21), and the Lagrangian multipliers m1 and l
were initialized to 1 in this study. Moreover, the Lagrangian

multiplier m2 was also initialized to 1 and the temporal penalty

parameter c2 was set to 0.264(k21). The use of this value for c2 was

validated in the following simulation. The correlation was used

such that e(yi, rsi) = -E{yirsi} and e(wi,r
0

ti) = -E{wir
0

ti}. The threshold

j1 (j2) was initialized to 0.9 and was adjusted according to the

correlation coefficient of the estimated yi(wi) and rsi (r
0
ti) during each

iteration. The spatial penalty parameter and the Lagrangian

multiplier of SCICA were the same as m1 and c1 of TSCICA. The

temporal penalty parameter and the Lagrangian multiplier of

TCICA were the same as m2 and c2 of TSCICA. The termination

criteria were set to ||Dw||,1024 for FastICA, ||Dw||,1024

combined with g1(y),0 for SCICA, and ||Dw||,1024 combined

with g2(w),0 for TCICA. Moreover, the termination criteria for

TSCICA were set to be either g1(y) or g2(w),0 and ||Dw||,1024.

A maximum of 200 iterations was allowed for each ICA

decomposition run of each method. When an algorithm did not

meet the convergence criteria as described, a new decomposition

run was started. The target IC was transformed into a Z-score.

The core FastICA algorithm was downloaded from the internet

(http://www.cis.hut.fi/projects/ica/fastica/). TSCICA, TCICA

and SCICA were developed using the programming language

Matlab (Mathworks, Natick, MA, USA), which was based on the

FastICA algorithm. The matlab codes of TSCICA algorithm can

be downloaded from the website (http://cist.bnu.edu.cn:8080/

infolab/files/TSCICA.rar).

The receiver operation characteristic (ROC) analysis [24] was

applied to compare the spatial detection power of the different

methods. The relation between the false positive ratio (FPR) and

the true positive ratio (TPR) can be drawn as a ROC curve. The

area under the curve can be used to evaluate the accuracy of the

method. A larger area under the curve indicates that the method is

more accurate.

Generation of temporal and spatial references. To

investigate the robustness of the proposed method to the accuracy

of the temporal reference, a set of temporal references, which were

composed of 10 time courses that were derived from the

convolution of the experimental paradigm with the hemodynamic

response function (HRF), were generated. The HRFs that underlie

the ten temporal references were determined by seven parameters

of the spm_hrf function in the software SPM8 (Statistical

Parametric Mapping, http://www.fil.ion.ucl.ac.uk/spm/

software/). The seven parameters of the HRF varied across the

ten temporal references. The temporal accuracy of each reference

was measured using the correlation coefficient (CC) between the

temporal reference and the true fMRI response that was added to

the ROI. The correlation coefficients of the 10 temporal

references varied from 0.5 to 0.95, with an increment of 0.05.

Moreover, two sets of spatial templates were generated as different

spatial references. The activated/nonactivated voxels in the

templates were defined as one/zeros. It was assumed that N

represents the number of voxels in the ROI in Fig. 1A, X

represents the number of voxels that were in both the activated

regions in the spatial reference and the ROI, and Y represents the

number of voxels that were in the activated regions in the spatial

references but not in the ROI. We defined the spatial overlap rate

as X/N and the error rate as Y/N. The first set of spatial

references was generated to investigate the robustness of the

proposed method to the noise magnitude/spatial overlap rate and

to determine the penalty parameter. This set of references were

composed of 10 spatial templates that had a zero error rate and

different overlap rates that varied from 1% to 10%, with an

increment of 1%. Fig. 1B displays a spatial reference that

contained the 10% overlap rate. The second sets of spatial

references were generated to investigate the robustness of the

proposed method to the spatial error rate. This set was composed

of 100 spatial templates that had different overlap rates that varied

from 1% to 10%, with an increment of 1%, and different error

rates that varied from 1% to 10%, with an increment of 1%. Here,

we called the temporal reference set TRef, with the first and

second sets of spatial references called SRef1 and SRef2,

respectively.

Robustness to the noise magnitude. Simulated datasets

with different contrast-to-noise ratio (CNR) were generated using

the SimTB toolbox (http://mialab.mrn.org/software/simtb/

index.html) [25]. Each dataset contained 2006200 voxels. It was

assumed that the simulated experiment included one task and that

the task induced one task-related spatial component. The entire

session lasted 270-s and consisted of four 30-s task blocks that

alternated with five 30-s rest blocks. The region of interest (ROI)

was predefined in the SimTB toolbox (see Fig. 1A). The simulated

fMRI response that was added to the ROI was derived from a

convolution of the stimulus paradigm using the HRF. The HRF

was created by the spm_HRF function using the default

parameters. Rician noise was added to each dataset relative to a

specified CNR [26]. A CNR was defined as ŝss=ŝsn, where ŝss is the

temporal standard deviation of the true signal and ŝsn is the

temporal standard deviation of the noise [25]. The CNR of the

simulated datasets varied from 0.01 to 0.21, with an increment of
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0.02. For each CNR level, ten simulated datasets were generated.

Thus, 110 simulated datasets were produced in this experiment.

Two temporal references with high accuracy (CC = 0.8) and low

accuracy (CC = 0.6) from TRef and two spatial references with

high spatial overlap rate (8%) and low overlap rate (3%) from

SRef1 were considered. TSCICA/SCICA/TCICA was applied to

each dataset 4 times to automatically extract the desired task-

related component. For each application, one spatial reference

with a high/low spatial overlap rate was used as a spatial

constraint of TSCICA and SCICA, and one temporal reference

with high/low accuracy was used as a temporal constraint of

TSCICA and TCICA. For each dataset, SCICA was performed 2

times using the same spatial reference, and TCICA was performed

2 times using the same temporal reference. The ROC area was

recorded after each application. Additionally, each dataset was

processed by FastICA 4 times. To identify the task-related

component that was separated by FastICA, the temporal

correlation between the time course of each component and one

temporal reference with high/low accuracy was calculated. The

component with the highest temporal correlation coefficient was

selected. Thus, the temporal reference with high/low accuracy

was used 2 times to identify the task-related component of each

dataset for the 4 FastICA applications. Meanwhile, the ROC area

was obtained for each TSCICA/SCICA/TCICA/FastICA appli-

cation. To examine the impact of the noise level on TSCICA,

SCICA, TCICA and FastICA, the mean values were calculated

for 40 ROC areas at each noise level. The 40 ROC areas of

TSCICA, SCICA and TCICA were obtained from 10 datasets64

TSCICA/SCICA/TCICA applications for each CNR. The

nonparametric Wilcoxon [27] tests for paired samples were

performed to further compare the difference in the ROC area

between TSCICA and SCICA/TCICA/FastICA at each noise

level.

Moreover, the target component that was extracted from one

simulated dataset with a CNR equal to 0.03 by each ICA method

was transformed into Z score. A spatial reference with an overlap

rate that was equal to 2% was used in TSCICA and SCICA, and a

temporal reference with a correlation coefficient that was equal to

0.9 was used in TSCICA and TCICA. To map the spatial

activation of the target components, the voxels with a Z score that

was higher than 2 were considered activated [7].

and spatial error rate. 

with different CNRs were generated using the identical method

To investigate the effect of the spatial overlap rate/temporal

accuracy on TSCICA, TCICA and SCICA, each method was

applied to each dataset 100 times to automatically extract the

desired task-related component. For each application, one spatial

reference from SRef1 was used as a spatial constraint of TSCICA/

SCICA, and one temporal reference from TRef was used as a

temporal constraint of TSCICA/TCICA. For each dataset,

Figure 1. Pre-defined regions and the simulated fMRI response. (A) The predefined ROI for the simulated datasets including one task-related
component. (B) One spatial reference with a 10% overlap rate applied to the simulated datasets including one task-related component. (C) The
predefined ROI1 and ROI2 of the simulated datasets including two task-related components. (D) The simulated fMRI response added to the two ROIs.
Solid line corresponds to the time course added to ROI1 and dotted line corresponds to the time course that was added to ROI2. (E) The spatial
reference that was applied to the simulated datasets, including two task-related components. (F) The temporal reference that was applied to the
simulated datasets, including two task-related components.
doi:10.1371/journal.pone.0094211.g001
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   Robustness to spatial overlap rate, temporal accuracy

 In this experiment, 11 simulated  datasets

datasets varied from 0.01 to 0.21, with an increment of 0.02.

as the above experiment. The CNR of the 11 simulated



SCICA was performed 10 times using the same spatial reference,

and TCICA was performed 10 times using the same temporal

reference. Moreover, the mean value of 110 ROC areas at each

spatial overlap rate/temporal accuracy level was calculated. For

each spatial overlap rate, the 110 ROC areas of TSCICA, TCICA

and SCICA were obtained from 11 datasets610 TSCICA

applications with different temporal references, 11 datasets610

TCICA applications with different temporal references and 11

datasets610 SCICA applications, respectively. For each temporal

accuracy, the 110 ROC areas of TSCICA, TCICA and SCICA

were obtained from 11 datasets610 TSCICA applications with

different spatial references, 11 datasets610 TCICA applications

and 11 datasets610 SCICA applications with different spatial

references, respectively. The nonparametric Wilcoxon tests for

paired samples were performed to further compare the difference

in the ROC area between TSCICA and SCICA/TCICA_at each

spatial overlap rate/temporal accuracy.

To investigate the effect of the spatial error rate on TSCICA,

SCICA and TCICA, 100 spatial references from SRef2 with

varied spatial overlap rates and error rates were used. Moreover,

two temporal references from TRef, one with high accuracy

(CC = 0.8) and the other with low accuracy (CC = 0.6), were

considered. When the temporal reference with high accuracy was

selected, TSCICA/TCICA/SCICA was applied to each dataset

100 times to automatically extract the desired task-related

component. For each application, one spatial reference from

SRef2 was used as a spatial constraint of TSCICA/SCICA, and

the temporal reference with high accuracy was used as temporal

constraint of TSCICA and TCICA. Because TCICA did not need

spatial reference, TCICA was performed 100 times to each dataset

using the same temporal reference with high accuracy. The same

processing was performed when the temporal reference with low

accuracy was selected. The ROC area of the task-related

component was recorded. The mean value of 110 ROC areas

was calculated at each level with a specific spatial error rate and

high/low temporal accuracy. For each spatial error rate in the case

of high temporal accuracy, the 110 ROC areas of TSCICA,

SCICA and TCICA were obtained from 11 datasets610

TSCICA/SCICA applications using spatial references with

different overlap rates and the temporal reference with high

temporal accuracy and 11 datasets610 TCICA applications using

the temporal reference with high temporal accuracy, respectively.

For each spatial error rate in the case of low temporal accuracy,

the 110 ROC areas of TSCICA, SCICA and TCICA were

obtained from 11 datasets610 TSCICA/SCICA applications

using spatial references with different overlap rates and the

temporal reference with low temporal accuracy and 11 data-

sets610 TCICA applications using the temporal reference with

low temporal accuracy, respectively. The nonparametric Wilcoxon

tests for paired samples were performed to further compare the

difference in the ROC area between TSCICA and SCICA/

TCICA at each spatial error rate in the case of high/low temporal

accuracy.

Determination of the penalty parameters. In this simu-

lation, 11 simulated datasets with different CNR that were

generated in the above simulation were used. Because both

temporal and spatial constraints were used in TSCICA, two

penalty parameters, c1 acting on spatial constraints and c2 acting

on temporal constraints, had to be determined. When only one

type of constraints is used, the penalty parameter c can be set to

0.164(k21), as was the case in the previous study [17]. In our study,

we set c1 to 0.164(k21) for both TSCICA and SCICA. It is

essential for TSCICA to seek an optimal penalty parameter (c2) for

the temporal constraint. We set c2 = C64(k21) so that c1 and c2

had the same order of magnitude. C is a constant coefficient of c2.

C of the penalty parameter (c2) was varied from 0.1 to 1, with

an increment of 0.1. Given that c2 only acts on the temporal

constraint, a fixed spatial reference with a medium spatial overlap

rate (0.05) was used. For a specific value of C, TSCICA that used

different temporal reference from TRef as the temporal constraint

and the spatial reference with 0.05 overlap rate as the spatial

constraint was applied to each dataset separately to automatically

estimate the desired component. The ROC area of each TSCICA

processing was recorded. The mean of 110 ROC areas (11

datasets610 TSCICA applications) was calculated for each C.

Comparison between TSCICA and GLM. Although

TSCICA depends on both the temporal and spatial prior

information, this method still largely differs from GLM. A simple

simulated experiment was conducted to demonstrate the differ-

ences between TSCICA and GLM. It was assumed that the

simulated experiment included one task and that the task induced

two task-related spatial components. The experimental paradigm

was identical to the above simulated experiments. Two ROIs were

predefined in the SimTB toolbox (see Fig. 1C). The ROI1/ROI2

was assumed to be engaged in the first/second task-related

component. The simulated fMRI responses, which were added to

the two ROIs, were derived from a convolution of the stimulus

paradigm with the two different HRFs (see Fig. 1D). Suppose P1

and P2 represent the vector of seven parameters of the two HRFs

underlying the time courses that were added to ROI1 and ROI2.

We set P1 = [14 8 2 2 6 0 32] and P2 = [6 16 1 1 6 0 32]. The

CNR of the simulated dataset was set to 0.01.

The TSCICA method was applied to the simulated data. The

spatial reference that was added to TSCICA was assumed to

include some prior information of ROI1 (see Fig. 1E). The

temporal reference was derived from a convolution of the stimulus

paradigm with a HRF that is different from the HRF added to

ROI1/ROI2 (see Fig. 1F). The vector of seven parameters (P) of

the HRF underlying the temporal reference were set as P = [8 8 2

2 6 0 32]. The target component was transformed into Z score.

The voxels with a Z score that was higher than 2 were considered

activated. Moreover, the data were inputted into the SPM8

software for GLM analysis. A one-sample t-test was performed to

identify the brain regions that were activated by the task compared

with the rest condition. The significance level of the t-test was set

to p,0.001 without correction.

3. The real fMRI experiment
A real fMRI experiment was performed to further demonstrate

the feasibility of the proposed method and to compare the

performances of TSCICA, TCICA, SCICA and FastICA.

Participants. Thirteen volunteer participants (seven females

and six males, mean age 2362 years) participated in the fMRI

experiment. All of the subjects were right-handed and had normal

vision. The handedness of each subject was confirmed in focused

interviews using the Edinburgh inventory [28].

Imaging parameters. Brain scans were performed at the

MRI Center at Beijing Normal University using a 3.0-T Siemens

whole-body MRI scanner. A single-shot T2*-weighted gradient-

echo EPI sequence was used for functional imaging acquisition

using the parameters: TR/TE/flip angle = 2000 ms/30 ms/90u,
acquisition matrix = 64664; field of view (FOV) = 240 mm; and

slice thickness = 3.6 mm, with an inter-slice gap = 0.6 mm. Thirty-

three axial slices that were parallel to the AC-PC line were

obtained in an interleaved order to cover the entire cerebrum and

cerebellum.

TSCICA of fMRI Data Analysis

PLOS ONE | www.plosone.org 6 April 2014 | Volume 9 | Issue 4 | e94211



Experiment design. The entire session lasted 270-s and

consisted of five 30-s rest blocks, which were alternated with four

30-s task blocks. During the rest blocks, the subjects were required

to relax with their eyes open. During the task blocks, the subjects

were required to tap their thumb with their index finger according

to their own rhythm.

Preprocessing. The serial functional images of each subject

were first realigned [29], spatially normalized [30] into the

standard Montreal Neurological Institute (MNI) space and resliced

into 36364 mm3 voxels. The normalized functional images were

then smoothed using an 86868 mm3 full width at half-maximum

(FWHM) Gaussian kernel [16,31,32].

Data analysis. The temporal reference was derived from the

convolution of the design time course with the default HRF. Two

spatial references were constructed to further verify the impact of

the spatial reference signal on the results that were estimated by

TSCICA and SCICA. A tool named WFU_pickAtlas [33,34],

which allows the user to create masks by selecting different areas of

the brain, was used to generate the spatial references in our study.

The first spatial reference included the supplementary motor area

(SMA) as the ROI (see Fig. 2A). The second spatial reference

included both the SMA and the artifact ROI, which was defined

as a 27627624 mm cuboid and centered on the MNI coordinates

[210, 33, 29] (see Fig. 2B).

After preprocessing, TSCICA, TCICA, SCICA, and FastICA

were performed separately on the fMRI data from each subject.

All of the parameters for the four algorithms were identical to

those parameters that were used in the simulation. To automat-

ically extract the desired task-related component, the first/second

spatial reference was used as the spatial constraint for TSCICA

and SCICA. The temporal reference was used as the temporal

constraint for TSCICA and TCICA. Using the same criteria as

the simulation, the fMRI data of each subject were reduced by

PCA, with 99.9% of the total variance retained before the

TSCICA, TCICA, SCICA and FastICA processing. For FastICA,

the number of components varied from 26 to 36 across subjects

after PCA reduction. The task-related component estimated by

FastICA was selected based on the same criteria that were used in

the simulation. The subsequent group analysis of the task-related

component was conducted using the one-sample t-test program in

the software SPM8 to identify the brain regions that were engaged

in the task-related component.

Additionally, the GLM analysis was applied to each dataset.

The data were processed by a high-frequency filter and by global

scaling using the software SPM8. The group data were analyzed

using a random effects model. A one-sample t-test was performed

to identify the brain regions that were activated by the task

compared with the rest condition. All of the statistical results from

the four methods were corrected for multiple comparisons via a

false discovery rate (FDR) at p,0.01 [35].

Furthermore, a quantitative evaluation of the compactness of

the clusters of independent component estimation was used in this

study to compare the stability of TSCICA, SCICA, TCICA and

FastICA. The ICA estimation were repeated 20 times for each

subject and analyzed using the ICASSO software package [36] to

evaluate the cluster quality index. The cluster quality index reflects

the compactness and isolation of a cluster. It is computed as the

difference between the average intra-cluster similarities and

average extra-cluster similarities. A cluster quality index close to

1 indicates that the result is consistent and stable.

Results

1. Simulation
Robustness to noise magnitude. In this simulation, there

were ten simulated datasets for each CNR level. Moreover, Two

temporal references with high accuracy (CC = 0.8) and low

accuracy (CC = 0.6) from TRef and two spatial references with

high spatial overlap rate (8%) and low overlap rate (3%) from

SRef1 were considered.

The results of the robustness to noise are shown in Fig. 3A. It

can be seen that all methods had high spatial detection power at

the low noise levels. Moreover, TSCICA exhibited the best

detection power among the four methods at the high noise levels.

The results of the nonparametric Wilcoxon tests for paired

samples are listed in Table 1. For the CNR that was less than 0.05,

the detection power of TSCICA was significantly higher than

SCICA, TCICA and FastICA. Moreover, TSCICA showed

significantly higher detection power than TCICA when the

CNR was lower than 0.13.

Moreover, the spatial activation of the target component and

the corresponding time course extracted from one simulated

dataset (CNR = 0.03) by the four ICA methods are shown in the

Fig. S1. It can be seen that the activated map of the target

component estimated by the four ICA methods mainly located in

the predefined ROI. Moreover, the corresponding time courses

are highly correlated with the predefined temporal reference.

Among the four ICA methods, the ROC area of the target

component that was estimated by TSCICA was the highest. Thus,

TSCICA produced much less false activation than TCICA,

SCICA and FastICA.

Figure 2. The spatial references that were used in the real fMRI data. (A) The ROIs in the first spatial reference. (B) The ROIs in the second
spatial reference.
doi:10.1371/journal.pone.0094211.g002
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Robustness to spatial overlap rate, temporal accuracy

and spatial error rate. This simulation included 11 simulated

datasets with different CNRs that varied from 0.01 to 0.21, with

an increment of 0.02. For robustness to the spatial overlap rate/

temporal accuracy, ten temporal references from TRef and ten

spatial references from SRef1 were considered. For robustness to

the spatial error rate, 100 spatial references from SRef2 with

varied spatial overlap rates and error rates were used. Moreover,

two temporal references from TRef, one with high accuracy

(CC = 0.8) and the other with low accuracy (CC = 0.6), were

considered.

Fig. 4A shows the results of robustness to the spatial overlap

rate. The detection powers of TSCICA and SCICA were

increased with the increasing spatial overlap rate. Because the

TCICA method only introduced temporal constraints on the

mixing matrix, the detection power of TCICA did not vary with

the spatial overlap rate. Compared with TCICA, TSCICA

exhibited greater spatial detection power for all the spatial overlap

rates, and SCICA showed larger detection power in the case of the

spatial overlap rate that was larger than 2%. Moreover, the spatial

detection power of TSCICA was much larger than SCICA for the

low overlap rate and slightly lower for the high overlap rate.

Table 2 shows results of the nonparametric Wilcoxon tests for

paired samples. It can be seen that TSCICA displayed significantly

greater detection power than TCICA for all the spatial overlap

rates. Moreover, the detection power of TSCICA was significantly

larger than that of SCICA for the spatial overlap rate that was less

than 0.03 and significantly smaller than that of SCICA for the

overlap rate that was larger than 0.07.

The variation of the mean ROC area with the accuracy of the

temporal reference is displayed in Fig. 4B. Due to the lack of the

temporal constraint for SCICA, the accuracy of the temporal

reference did not have an impact on the detection power of

SCICA. However, the detection power of TCICA and TSCICA

increased with the increasing accuracy of the temporal reference.

The spatial detection power of TSCICA was invariably larger than

that of TCICA. Compared with SCICA, the spatial detection

power of TSCICA was larger for the temporal reference with

relatively high accuracy (CC.0.65) and lower for the temporal

reference with low accuracy. Moreover, SCICA showed much

better detection power than TCICA in most cases, except when

the temporal reference had extremely high correlation (CC.0.8)

with the true time course. The results of the nonparametric

Wilcoxon tests for paired samples are listed in Table 3. TSCICA

manifested significantly greater detection power than TCICA for

most temporal accuracies, except in the case of extremely high

temporal accuracy (CC = 0.95). In contrast to SCICA, TSCICA

showed significantly larger detection power for high temporal

accuracy (CC.0.7) and significantly smaller detection power for

low temporal accuracy (CC,0.65).

Fig. 4C and D display the variation of the mean ROC area with

the spatial error rate. In the case of the low/high temporal

accuracy, the spatial detection power of TCICA remained fixed

and that of TSCICA remained nearly fixed for all of the error

rates, whereas the spatial detection power of SCICA decreased

rapidly as the error rate increased. In contrast to SCICA,

TSCICA exhibited better detection power in most cases, except

in the case of an error rate that was less than 0.06 with a low

temporal accuracy (see Fig. 4D). Moreover, compared with

TCICA, greater spatial detection power was invariably observed

for TSCICA. For the temporal reference with high accuracy,

TSCICA exhibited better detection power at all the error rate

Figure 3. Results of the robustness to noises and determining the penalty parameters. (A) The variation of the mean ROC area with CNR
for TSCICA, TCICA, SCICA and FastICA. (B) The variation of the mean ROC area with C of the temporal penalty parameter c2. The error bar represents
the standard error of the mean.
doi:10.1371/journal.pone.0094211.g003

Table 1. Results of the nonparametric Wilcoxon tests for
paired samples in CNR condition.

Z(TSCICA-TCICA/SCICA/FastICA)

CNR TCICA SCICA FastICA

0.01 5.094* 3.576* 8.185*

0.03 5.423* 2.830* 2.783*

0.05 4.760* 1.925 2.403*

0.07 3.828* 0.903 0.687

0.09 3.283* 0.498 20.452

0.11 2.648* 0.494 20.529

0.13 1.537 0.353 20.308

0.15 0.938 20.210 0.254

0.17 0.663 0.118 0.184

0.19 0.528 0.068 20.028

0.21 0.435 20.107 0.082

Note:asterisk represents P,0.01.
doi:10.1371/journal.pone.0094211.t001
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Figure 4. Results of the robustness to spatial overlap rate, temporal accuracy and spatial error rate. (A) The variation of the mean ROC
area with overlap rates for TSCICA, TCICA and SCICA. (B) The variation of the mean ROC area with temporal reference for TSCICA, TCICA and SCICA. CC
represents the correlation coefficient between the temporal reference and the true time course. (C) The variation of the mean ROC area with error
rate in the case of a high temporal accuracy (CC = 0.8) for TSCICA, TCICA and SCICA. (D) The variation of the mean ROC area with error rate in the case
of a low temporal correlation(CC = 0.6) for TSCICA, TCICA and SCICA. CC represents the correlation coefficient between the temporal reference and
the true time course.
doi:10.1371/journal.pone.0094211.g004

Table 2. Results of the nonparametric Wilcoxon tests for
paired samples in overlaprate condition.

Z(TSCICA-TCICA/SCICA)

Overlaprate TCICA SCICA

0.01 8.628* 9.538*

0.02 8.694* 8.763*

0.03 8.726* 3.082*

0.04 8.804* 0.928

0.05 8.926* 0.030

0.06 9.006* 21.059

0.07 9.129* 22.380*

0.08 9.196* 22.635*

0.09 9.334* 22.903*

0.10 9.404* 22.875*

Note:asterisk represents P,0.01.
doi:10.1371/journal.pone.0094211.t002

Table 3. Results of the nonparametric Wilcoxon tests for
paired samples in CC condition.

Z(TSCICA-TCICA/SCICA)

CC TCICA SCICA

0.5 8.937* 24.329*

0.55 8.329* 23.876*

0.6 7.530* 22.514*

0.65 6.284* 20.663

0.7 4.989* 1.264

0.75 4.238* 2.796*

0.8 3.886* 3.584*

0.85 3.539* 3.904*

0.9 2.936* 4.321*

0.95 1.628 4.560*

Note:asterisk represents P,0.01.
doi:10.1371/journal.pone.0094211.t003
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levels, and TCICA exhibited better detection power in the case of

the error rate that was larger than 0.02, in contrast to SCICA. For

the temporal reference with low accuracy, the detection of

TSCICA and SCICA is better than TCICA at all the error rate

levels. Moreover, when the error rate was larger than 0.06,

TSCICA performed better than SCICA. Table 4 lists the results of

the nonparametric Wilcoxon tests for paired samples. In the case

of high temporal accuracy (CC = 0.8), the detection power of

TSCICA was significantly larger than TCICA and SCICA for all

the spatial error rates. In the case of low temporal accuracy

(CC = 0.6), the detection power of TSCICA was significantly

larger than TCICA for all the spatial error rates and significantly

larger than SCICA for high spatial error rates (.0.07). Moreover,

SCICA displayed significantly higher detection power than

TSCICA when the spatial error rate was less than 0.05.

Determination of the penalty parameters. This simulated

experiment used the same 11 simulated datasets with different

CNR levels as the above simulation. A fixed spatial reference with

a medium spatial overlap rate (0.05) and ten temporal references

from TRef were used.

The variation of the mean ROC area with C is presented in

Fig. 3B. The results showed that the mean values of the ROC

areas were extremely close. The mean ROC area was the greatest

when C was equal to 0.2. Thus, 0.2 was selected as the optimal c2

value in TSCICA/TCICA for both the entire simulation and the

real fMRI experiment.

Comparison of TSCICA and GLM. One simulated dataset

that contained two spatial components related to one task were

utilized in this simulated experiment. Fig. 5 shows the results of the

TSCICA and GLM methods. Because the spatial template

contained part of the regions in ROI1, the first task-related

component, whose activation map in ROI1, was separated from

the data by TSCICA. In contrast, the activated regions detected

by GLM contained both ROI1 and ROI2 that should belong to

the two different networks.

2. The real fMRI experiment
Fig. 6A shows the result of the GLM method. The brain regions

that were associated with motor execution, including the

contralateral primary motor cortex (M1), the contralateral

premotor areas (PMA), the bilateral supplementary motor areas

(SMA), and the cerebellum, were significantly activated by the

finger tapping task. The results that were estimated by TSCICA,

TCICA, SCICA and FastICA are presented in Fig. 6B–G.

TSCICA1/SCICA1 represents the TSCICA/SCICA method

using the first spatial reference and TSCICA2/SCICA2 represents

the TSCICA/SCICA method using the second spatial reference.

The activated regions that were detected by TSCICA1,

TSCICA2, and SCICA1 largely overlapped with the regions that

were estimated by GLM (see Fig. 6B, C and E). Moreover,

TCICA and FastICA detected a much smaller activation than

GLM. The inclusion of some artifacts in the second spatial

reference led to a largely different result from SCICA2 compared

with the other methods (see Fig. 6F).

The spatial correlation coefficients of the group t-map between

GLM and TSCICA1, SCICA1, TCICA, TSCICA2, SCICA2 and

FastICA were 0.6226, 0.4960, 0.4762, 0.4847, 0.2486 and 0.1915,

respectively. The results from FastICA and SCICA2 exhibited a

low correlation with the results from GLM. The spatial correlation

coefficient of the Z-score of the task-related component that was

estimated by each ICA method and the t-map of the GLM method

was calculated for each individual subject (see Fig. 7A and B). It

can be seen that the results of TSCICA were more correlated with

the group GLM result than the SCICA, TCICA and FastICA

results for most subjects, regardless of what spatial reference was

applied. Using the spatial template 2 as the spatial constraint, the

spatial correlation was slightly reduced for TSCICA and largely

reduced for SCICA. Moreover, the means and standard deviations

of the spatial correlation coefficients that were obtained from

TSCICA, TCICA, SCICA and FastICA are displayed in Fig. 7C

and D. To further examine the differences in the spatial

correlation coefficients between TSCICA, TCICA, SCICA and

FastICA, the nonparametric four paired samples Friedman test

[37] for four related samples was performed. For those samples

that indicated significant differences between the four methods,

the nonparametric Wilcoxon test for paired samples [27] was used

to further examine the difference between any two methods. The

Friedman test revealed that TSCICA, TCICA, SCICA and

FastICA exhibited significant differences for the spatial correlation

(p,0.001) using both spatial references. Moreover, the nonpara-

metric Wilcoxon test indicated that the mean spatial correlation

coefficient of the target IC that was estimated by TSCICA was

significantly larger than that of TCICA, SCICA and FastICA for

both of the spatial references (p,0.01). In contrast to SCICA, the

mean spatial correlation of TCICA was significantly lower for the

first spatial reference (p,0.01) and significantly higher for the

second spatial reference (p,0.01).

Fig. 8 shows the mean of the cluster quality indices across all

subjects of each method. To examine the difference of the stability

of the target IC estimation among all methods, the nonparametric

Wilcoxon test for paired sample was performed. It can be seen that

the stabilities of TSCICA, SCICA and TCICA were significantly

higher than FastICA (p,0.01). Moreover, the stability of TSCICA

was significantly higher than that of SCICA using the first

(p,0.01) or second (p,0.01) spatial reference.

Discussion

In this study, we proposed the TSCICA method by adding prior

spatial and temporal information into ICA within the framework

of the constrained ICA. We demonstrated the robustness and

feasibility of the method under conditions of different noise levels,

different temporal references and different spatial references. The

results from both simulated and real fMRI data confirm that

Table 4. Results of the nonparametric Wilcoxon tests for
paired samples in errorrate condition.

r = 0.8 Z(TSCICA- SCICA) r = 0.6 Z(TSCICA- SCICA)

Errorrate TCICA SCICA Errorrate TCICA SCICA

0.01 5.423* 3.497* 0.01 8.764* 23.908*

0.02 5.259* 4.975* 0.02 8.402* 23.175*

0.03 5.030* 5.147* 0.03 8.383* 22.301*

0.04 4.903* 5.534* 0.04 7.643* 22.514*

0.05 4.858* 6.028* 0.05 7.569* 20.935

0.06 4.850* 6.173* 0.06 7.428* 20.860

0.07 4.694* 6.523* 0.07 7.383* 0.354

0.08 4.521* 6.839* 0.08 7.196* 2.451*

0.09 4.395* 7.010* 0.09 7.185* 3.078*

0.10 4.198* 7.358* 0.10 7.177* 3.564*

Note:asterisk represents P,0.01.
doi:10.1371/journal.pone.0094211.t004
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TSCICA outperformed TCICA, SCICA and FastICA in most

cases.

The basic concept of ICA is to extract independent components

from data without any prior hypothesis [22]. Estimating all of the

independent components from a dataset using the traditional ICA

method can result in high computational time costs and the

requirement to select the desired components from the entire set of

arbitrarily ordered components. In contrast, the CICA method

can only extract an interesting subset of ICs if the information

available on the ICs can be formulated as reference signals. It has

been demonstrated that the CICA method outperforms the

classical ICA in computational time, stability and in spatial

detection accuracy due to the use of constraints [14]. The CICA

method always takes into account only one type of prior

information (temporal/spatial) as constraints. However, it is

difficult to obtain accurate prior knowledge. Previous research

has noted that the shape of the reference signal can have a large

influence on the output of an independent component [38]. The

proposed TSCICA method used both spatial and temporal

information as constraints simultaneously so that one type of

prior information moderated the impact of the other type of

information on the method. This moderation reduced the

dependency of TSCICA on the accuracy of the prior information.

Therefore, the inclusion of two types of prior information

contributed to the better performance of TSCICA relative to

TCICA and SCICA, which only introduce one type of prior

information in most cases.

Figure 5. Results of the comparison of TSCICA and GLM. (A) The spatial activation map of the target component that was extracted by
TSCICA. (B) The spatial activation that was detected by GLM. (C) The temporal reference (dotted line) and the time course (solid line) that correspond
to the target component that was extracted by TSCICA. CC is the correlation coefficient between the estimated time course and the temporal
reference.
doi:10.1371/journal.pone.0094211.g005

Figure 6. The spatial activation that was estimated by all of the methods. (A) The activated regions that were detected by GLM. (B) The
activated regions of the target component that were estimated by TSCICA using the first spatial reference. (C) The activated regions of the target
component that were estimated by SCICA using the first spatial reference. (D) The activated regions of the target component that were estimated by
TCICA. (E) The activated regions of the target component that were estimated by TSCICA using the second spatial reference. (F) The activated regions
of the target component that were estimated by SCICA using the second spatial reference. (G) The activated regions of the target component that
were estimated by FastICA.
doi:10.1371/journal.pone.0094211.g006
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One advantage of ICA over GLM is that this method is

powerful for identifying spatially distributed brain networks

without any prior hypothesis regarding the data [7]. It has been

demonstrated that the brain regions participating in each task, as

estimated by GLM, were distributed into multiple functional brain

networks relevant to the same task extracted by the ICA method

[39]. Our simulated data indicated that the proposed TSCICA

method can successfully extract the target brain network engaged

in the task from fMRI data, although the task activated two or

more brain networks (see Fig. 5). By contrast, GLM identified all

regions that were activated by the task, even when the estimated

regions responded to different time series that were related to the

same task (see Fig. 5). Thus, TSCICA is suitable to the cases in

which one or two specific task-related networks need to be

examined. It should be noted that the fact that TSCICA depends

on prior temporal and spatial information causes the TSCICA

method to be not purely exploratory any more. However,

TSCICA has two prominent advantages over ICA: (1) automatic

extraction of the desired component in a predefined order and (2)

a significant decrease in the computational load [14]. Moreover,

the results of this study suggest that incorporating both prior

temporal and spatial information can largely enhance the

performance of ICA. Therefore, TSCICA is attractive to fMRI

application, although the exploratory ability of TSCICA was

reduced.

Under the condition of high noise levels, the mean ROC area

that was produced by TSCICA was larger than those mean ROC

areas that were produced by TCICA, SCICA and FastICA,

although the mean ROC area showed slight differences among

TSCICA, SCICA, TCICA and FastICA for low noise levels (see

Fig. 3A). These results suggest that, among the four methods,

TSCICA had the best robustness to noise. Furthermore, the

variation in the temporal accuracy, the spatial overlap rate and the

error rate of the spatial references produced minor impacts on the

performance of TSCICA. By contrast, the detection power of

TCICA decreased rapidly with the decreasing correlation between

the temporal reference and the true time course (see Fig. 4B). The

TSCICA method invariably demonstrated better performance

Figure 7. A comparison of TSCICA, TCICA, SCICA and FastICA. (A) The spatial correlation coefficient of TSCICA1, TCICA, SCICA1 and FastICA
for an individual subject. (B) The spatial correlation coefficient of TSCICA2, TCICA, SCICA2 and FastICA for an individual subject. (C) The mean spatial
correlation coefficients of TSCICA1, TCICA, SCICA1 and FastICA. (D) The mean spatial correlation coefficients of TSCICA2, TCICA, SCICA2 and FastICA.
The error bar represents the standard deviation. TSCICA1/SCICA1 represents TSCICA/SCICA using the first spatial reference. TSCICA2/SCICA2
represents TSCICA/SCICA using the second spatial reference. The error bar represents the standard deviation. Note: asterisk represents P,0.01.
doi:10.1371/journal.pone.0094211.g007

Figure 8. Mean cluster quality index of all the ICA methods. The
error bar represents the standard deviation. Note: asterisk represents
P,0.01.
doi:10.1371/journal.pone.0094211.g008
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than the TCICA method. Moreover, the detection power of

SCICA decreased rapidly with the decreasing spatial overlap rate

or the increasing error rate (see Fig. 4A, C and D). Compared with

the SCICA method, the TSCICA method displayed a better

performance in most cases, except for a low temporal accuracy

with zero/low error rate and a high spatial overlap rate with zero/

low error rate. In contrast to TCICA/SCICA, the better

robustness to the temporal/spatial reference that was displayed

by TSCICA should be attributed to the additional spatial/

temporal constraints that were included in the method. For the

real fMRI data, the spatial map of the task-related component that

was detected by TSCICA1 and SCICA1 largely overlap.

However, the activation pattern of TSCICA1 showed a higher

correlation with that of GLM compared with the activation

pattern that was produced by SCICA1. When using the second

spatial reference that consisted of the regions irrelevant to the task,

the spatial activation of SCICA changed greatly, whereas

TSCICA performed stably. Compared to TSCICA, TCICA and

FastICA detected a much smaller activation and showed a lower

correlation with that of GLM. Moreover, the stability of TSCICA

was higher than that of SCICA, TCICA and FastICA, regardless

of the spatial reference that was applied. Therefore, the results

from the real fMRI experiment further verified that TSCICA

outperformed TCICA, SCICA and FastICA.

Of note, the convergence of the algorithm depends on the

threshold j that was used to determine the closeness between the

desired IC and the prior information. Lu (2005) noted that the

CICA algorithm should use a small j initially to avoid any local

minima and then should gradually increase its value to converge at

the global minimum that corresponds to the only desired

independent component when the mean square error (MSE) is

used as the closeness measure [14]. One previous study set the

threshold j to different fixed values at different iterative steps [17].

In this study, the threshold j was adaptively altered at each

iteration step. When using correlation as the closeness measure,

the initial j1 and j2 were set to 0.9 to ensure that w could converge

to the reference rapidly and to avoid any local minima. The

threshold j1 and j2 were kept fixed for the initial three iterations.

For the subsequent iterative steps, the threshold j1 (j2) was

adaptively set to be slightly larger than the correlation between the

spatial reference Rs (temporal reference R
0

t) and the signal Y

(unmixing weights W) that was estimated at the previous iterative

step. The initial threshold j1 and j2 must be changed to a small

value if the MSE is used as a closeness measure. Moreover, the

threshold j1 (j2) was adaptively set to be slightly smaller than the

MSE between the spatial reference Rs (temporal reference R
0

t) and

the signal Y (unmixing weights W) estimated at the previous

iterative step. Compared with the method that set the threshold j
as a predefined value at each iterative step, the adaptive method

that was used in this study can automatically change the threshold

according to the correlation/MSE between the estimated signal

and the reference.

For the TSCICA method, the two penalty parameters c1 and c2

determined the weights of the spatial and temporal references on

TSCICA. If the spatial/temporal penalty parameter were much

larger than the temporal/spatial parameter, the spatial/temporal

reference would play a predominant role in the algorithm, and the

TSCICA would be more similar to SCICA/TCICA. To equalize

the impacts of the temporal and spatial references on TSCICA,

the two penalty parameters were set to the same order of

magnitude. The first penalty parameter, c1, was set to 0.164(k21)

based on the pervious study, whereas the second penalty

parameter, c2, was determined by the simulated data. In this

study, we chose 0.264(k21) as the optimal value of c2 according to

the ROC results from the simulation. Good results can be

obtained from both the simulated and real fMRI data using the

current setting of the two penalty parameters for TSCICA.

Moreover, notably, the variation in the mean ROC area is slight

when C varied from 0.1 to 1 (see Fig. 3B). Thus, results would be

almost stable for C ranging from 0.1 to 1, although 0.2 was

selected as the optimal value of C in the study.

The proposed TSCICA method is only suitable for the task

fMRI data because prior temporal information is not available

from resting fMRI data. In contrast to the prior spatial

information, the prior temporal information was much easier to

be obtained from the task fMRI data. The temporal reference

usually can be generated by convolving the experiment paradigm

with the HRF. The spatial reference of the task fMRI data can be

generated using some prior information from previous studies.

Both the simulated and real experimental demonstrated that a

small part of spatial prior information is enough for TSCICA to

extract the target component. Moreover, in the real experiment,

the spatial reference only includes the prior information of one

cluster (SMA). However, the activation map of the target

component detected by TSCICA consists of many other clusters

including the M1, PMA, and the cerebellum. Thus, the real

experiment indicated that TSCICA was able to successfully detect

the target component, although there are clusters for which no

prior was included in the spatial reference. Because the temporal

and spatial references can affect each other, the estimated signal

that corresponded to the temporal reference should not be totally

independent of the spatial reference. Otherwise, the TSCICA

method would not converge. An extreme instance of non-

convergence would be that the temporal reference was highly

correlated with the time course of one independent component

and that the spatial reference was highly correlated with another

independent component. The temporal and spatial references that

are related to two different independent components separately

could easily cause the TSCICA method to fall into an endless loop.

In order to avoid the endless loop, the learning rate in TSCICA

algorithm was set as 0.98k that was reduced with the increasing of

the iterative step. When the iteration step rate is large enough,

both the learning rate and the alteration of W will be close to zero

and the TSCICA algorithm will end the loop. Thus, the algorithm

cannot converge to a global optimal value in this case. For the task

fMRI data, the temporal reference is derived from the task

paradigm, and the spatial reference generally includes the regions

that are activated by the task [1]. Therefore, TSCICA easily

converges when this method is applied to the task-fMRI data to

extract the task-related components. Moreover, the strength of

TSCICA is that this method is able to reliably extract the desired

component, even if only a very small activated region in the

component is included in the spatial reference.

For fMRI task data, the temporal prior information is easier to

be obtained than the spatial information. The temporal reference

usually can be derived from the convolution of the experimental

paradigm with the HRF. However, it is impossible to know the

true HRF that underlies the real fMRI data. Due to the departure

of the ideal HRF from the true one and to the impact of the

various noises on the time courses, the performance of TCICA can

be affected to some extent by the inaccuracy of the temporal

references. In contrast, the inclusion of some spatial prior

information is able to greatly improve the performance and

stability of TSCICA.
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Conclusions

In summary, we presented the TSCICA method, which

incorporated both the prior spatial and temporal information as

constraints on ICA within the CICA framework. The perfor-

mances of the proposed method, TCICA, SCICA and FastICA

were compared using both simulated and real fMRI data. The

results indicate that TSCICA was significantly more robust to

noise than TCICA, SCICA and FastICA. Moreover, TSCICA

displayed better robustness to temporal prior information than

TCICA and to spatial prior information than SCICA.

Supporting Information

Figure S1 Spatial activation maps and the correspond-
ing time courses for CNR = 0.03. (A) The activation maps

(upper) and the associated time courses (lower) of the target

component estimated by TSCICA. (B) The activation maps

(upper) and the associated time courses (lower) of the target

component estimated by TSCICA. (C) The activation maps

(upper) and the associated time courses (lower) of the target

component estimated by TSCICA. (D) The activation maps

(upper) and the associated time courses (lower) of the target

component estimated by TSCICA. The time courses of the target

IC were shown in solid line and the time course of the reference

was shown in dotted line.

(DOC)

Acknowledgments

We wish to thank Dr. Hui Wu and Dr. Litao Zhu for technical assistance

with real fMRI data acquisition.

Author Contributions

Conceived and designed the experiments: ZW ZL. Performed the

experiments: ZW MX. Analyzed the data: ZW. Contributed reagents/

materials/analysis tools: ZW ZJ LY ZL. Wrote the paper: ZW LY ZL.

References

1. Comon P (1994) Independent component analysis, a new concept? Signal

processing 36: 287–314.

2. Cardoso JF (1998) Blind signal separation: statistical principles. Proceedings of

the IEEE 86: 2009–2025.

3. Calhoun V, Adali T (2004) Semi-blind ICA of fMRI: A method for utilizing

hypothesis-derived time courses in a spatial ICA analysis. IEEE. pp. 443–452.

4. Calhoun V, Adali T, McGinty V, Pekar J, Watson T, et al. (2001) fMRI

activation in a visual-perception task: network of areas detected using the general

linear model and independent components analysis. NeuroImage 14: 1080–

1088.

5. Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and

applications. Neural networks 13: 411–430.

6. Stone J, Porrill J, Porter N, Wilkinson I (2002) Spatiotemporal independent

component analysis of event-related fMRI data using skewed probability density

functions. NeuroImage 15: 407–421.

7. McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, et al. (1998)

Analysis of fMRI data by blind separation into independent spatial components.

Human brain mapping 6:160–188.

8. Bagarinao E, Matsuo K, Nakai T, Sato S (2003) Estimation of general linear

model coefficients for real-time application. NeuroImage 19: 422–429.

9. Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into

resting-state connectivity using independent component analysis. Philosophical

Transactions of the Royal Society B: Biological Sciences 360: 1001–1013.

10. Calhoun VD, Kiehl KA, Pearlson GD (2008) Modulation of temporally

coherent brain networks estimated using ICA at rest and during cognitive tasks.

Human brain mapping 29: 828–838.

11. Long Z, Chen K, Wu X, Reiman E, Peng D, et al. (2009) Improved application

of independent component analysis to functional magnetic resonance imaging

study via linear projection techniques. Human brain mapping 30: 417–431.

12. Luo J, Hu B, Ling XT, Liu RW (1999) Principal independent component

analysis. Neural Networks, IEEE Transactions on 10: 912–917.

13. Lu W, Rajapakse JC (2000) Constrained independent component analysis. In

Advances in Neural Information Processing Systems 13 (NIPS2000)

14. Lu W, Rajapakse JC (2005) Approach and applications of constrained ICA.

Neural Networks, IEEE Transactions on 16: 203–212.

15. Sun ZL, Shang L (2010) An improved constrained ICA with reference based

unmixing matrix initialization. Neurocomputing 73: 1013–1017.

16. Lin QH, Liu J, Zheng YR, Liang H, Calhoun VD (2010) Semiblind spatial ICA

of fMRI using spatial constraints. Human brain mapping 31: 1076–1088.

17. Wang Z (2011) Fixed-point algorithms for constrained ICA and their

applications in fMRI data analysis. Magnetic resonance imaging 29:1288–1303.

18. Rasheed T, Lee YK, Kim TS (2009) Constrained Spatiotemporal ICA and Its

Application for fMRI Data Analysis. IFMBE Proceedings 23: 555–558.

19. Formisano E, Esposito F, Kriegeskorte N, Tedeschi G, Di Salle F, et al. (2002)

Spatial independent component analysis of functional magnetic resonance

imaging time-series: characterization of the cortical components. Neurocomput-

ing 49: 241–254.

20. Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind

separation and blind deconvolution. Neural computation 7: 1129–1159.

21. Hyvarinen A (1997) A family of fixed-point algorithms for independent

component analysis. Acoustics, Speech, and Signal Processing 1997, ICASSP-
97, IEEE International Conference on, IEEE 5:3917–3920.

22. Hyvarinen A (1999) Fast and robust fixed-point algorithms for independent

component analysis. Neural Networks, IEEE Transactions on 10: 626–634.
23. Bertsekas DP (1982) Constrained optimization and Lagrange multiplier

methods. Computer Science and Applied Mathematics. Boston: Academic
Press, 1982 1.

24. Constable RT, Skudlarski P, Gore JC (1995) An ROC approach for evaluating
functional brain MR imaging and postprocessing protocols. Magnetic

Resonance in Medicine 34: 57–64.

25. Erhardt EB, Allen EA, Wei Y, Eichele T, Calhoun VD (2012) SimTB, a
simulation toolbox for fMRI data under a model of spatiotemporal separability.

NeuroImage 59: 4160–4167.
26. Gudbjartsson H, Patz S (1995) The Rician distribution of noisy MRI data.

Magnetic Resonance in Medicine 34: 910–914.

27. Wilcoxon F, Katti S, Wilcox RA (1970) Critical values and probability levels for
the Wilcoxon rank sum test and the Wilcoxon signed rank test. Selected tables in

mathematical statistics 1: 171–259.
28. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh

inventory. Neuropsychologia 9: 97–113.
29. Freire L, Mangin JF (2001) Motion correction algorithms may create spurious

brain activations in the absence of subject motion. NeuroImage 14: 709–722.

30. Friston KJ, Ashburner J, Frith CD, Poline JB, Heather JD, et al. (1995) Spatial
registration and normalization of images. Human brain mapping 3: 165–189.

31. Li YO, Adalı T, Calhoun VD (2007) A feature-selective independent component
analysis method for functional MRI. International journal of biomedical imaging

2007, 2007; 15635.

32. Ma X, Zhang H, Zhao X, Yao L, Long Z (2013) Semi-blind independent
component analysis of fMRI based on real-time fMRI system. Neural Systems

and Rehabilitation Engineering, IEEE Transactions on 21:416–426.
33. Lancaster J, Summerln J, Rainey L, Freitas C, Fox P (1997) The Talairach

Daemon, a database server for Talairach atlas labels. NeuroImage 5: S633.
34. Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, et al. (2000)

Automated Talairach atlas labels for functional brain mapping. Human brain

mapping 10: 120–131.
35. Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in

functional neuroimaging using the false discovery rate. NeuroImage 15: 870–
878.

36. Himberg J, Hyvarinen A (2003) Icasso: software for investigating the reliability of

ICA estimates by clustering and visualization. Neural Networks for Signal
Processing, 2003. NNSP’03. 2003 IEEE 13th Workshop on, IEEE: 259–268.

37. Friedman BM (1989) Does Monetary Policy Matter? A New Test in the Spirit of
Friedman and Schwartz: Comment. NBER Macroeconomics Annual 4: 177–

182.
38. James CJ, Gibson OJ (2003) Temporally constrained ICA: an application to

artifact rejection in electromagnetic brain signal analysis. Biomedical Engineer-

ing, IEEE Transactions on 50: 1108–1116.
39. Long Z, Li R, Wen X, Jin Z, Chen K, et al. (2013) Separating 4D multi-task

fMRI data of multiple subjects by independent component analysis with
projection. Magnetic Resonance Imaging 31:60–74.

TSCICA of fMRI Data Analysis

PLOS ONE | www.plosone.org 14 April 2014 | Volume 9 | Issue 4 | e94211


