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Abstract 
Emerging spatial omics technologies continue to advance the molecular mapping of tissue architecture and 
the investigation of gene regulation and cellular crosstalk, which in turn provide new mechanistic insights 
into a wide range of biological processes and diseases. Such technologies provide an increasingly large 
amount of information content at multiple spatial scales. However, representing and harmonizing diverse 
spatial datasets efficiently, including combining multiple modalities or spatial scales in a scalable and 
flexible manner, remains a substantial challenge. Here, we present Giotto Suite, a suite of open-source 
software packages that underlies a fully modular and integrated spatial data analysis toolbox. At its core,  
Giotto Suite is centered around an innovative and technology-agnostic data framework embedded in the R 
software environment, which allows the representation and integration of virtually any type of spatial omics 
data at any spatial resolution. In addition, Giotto Suite provides both scalable and extensible end-to-end 
solutions for data analysis, integration, and visualization. Giotto Suite integrates molecular, morphology, 
spatial, and annotated feature information to create a responsive and flexible workflow for multi-scale, 
multi-omic data analyses, as demonstrated here by applications to several state-of-the-art spatial 
technologies. Furthermore, Giotto Suite builds upon interoperable interfaces and data structures that bridge 
the established fields of genomics and spatial data science, thereby enabling independent developers to 
create custom-engineered pipelines. As such, Giotto Suite creates an immersive ecosystem for spatial multi-
omic data analysis. 
  

Introduction 
Biological tissues are organized in a hierarchical and structured manner that is optimized for their specific 
functions and occur at various scales.  Examples are abundant, including the subcellular localization of 
transcripts across the polarized axis of intestinal enterocytes1, the different roles for individual liver cells 
dictated by hepatocyte zonation2, multi-cellular niches comprised of macrophages, endothelial and cancer 
cells that promote metastasis3, or the layered organization of the brain4. As a result, large-scale efforts to 
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systematically create spatial maps from various tissues5 and disease states6 are occurring with increased 
frequency. With the introduction and advancement of spatial omics technologies, including spatial 
transcriptomics7–10, proteomics11–14, and others15, researchers have the ability to visualize and analyze 
various molecular analytes within their tissue context and across different levels of the biological 
organization. Each of these techniques provides a unique level of resolution and data modality,  creating an 
intricate, multidimensional map of biological tissue. Regardless of the scale, the individual units of a tissue 
are single cells whose phenotypes are defined by the interplay of multiple regulatory layers, such as 
variations in the (epi-)genome, transcriptome, proteome, and metabolome. Accumulating research 
highlights the importance of integrating both multi-omics data within single cells and multi-scale patterns 
within the tissue. Connecting both the intrinsic and extrinsic layers of variation will provide the foundation 
to understand how the activities of single cells jointly coordinate tissue function and organization in a 
systems biology manner. 
 
For instance, while spatial transcriptomics allows the exploration of gene expression in a spatial context, 
spatial proteomics on the same - or immediately adjacent tissue slice - provides complementary insights 
into the spatial distribution of proteins. Furthermore, most technologies can be combined with  imaging,  
which captures tissue and cellular morphology. Similarly, multiple serial sections from a tissue of interest 
can be profiled to create a 3-dimensional (3D) representation16–18. Hence, by integrating these multi-scale 
and multi-modal  data, a comprehensive systems biology perspective of biological tissue can be attained, 
offering an unparalleled, two- or three-dimensional view of biology in vivo. These integrative approaches 
promise to significantly advance our understanding of the complex spatial and functional relationships 
among cells and tissues,  leading to a more precise and nuanced understanding of biological processes in 
health and disease. However, most software engineering approaches are not purposefully designed to fully 
capture the increasing complexity associated with multi-scale and multi-modal datasets in a technology-
agnostic manner. Furthermore, tools and methods to access and work with the full breadth of information 
that is available within these emerging spatial datasets is either performed in isolated environments or 
completely lacking. Hence, there is a dire need for increased method and data engineering development 
along with the spatial technologies and datasets.  
 
The programming language R is widely used for analyzing biological data. It has seen a strong increase in 
users across the fields of biomedical sciences since it offers an array of tools for statistical and genomics 
analysis. For instance, the Bioconductor project has a central role in more advanced omics analysis and has 
created a collaborative community for method development and interoperability19. In parallel, the geospatial 
field has a long history of working with various spatial data, including raster and vector-based data types20. 
However, implementations of the many associated and established spatial data analysis or simulation 
methods are rare within the field of biomedical sciences. Here we leveraged our previous expertise from 
Giotto21,22 to create a rich and inclusive ecosystem for spatial data analysis and engineering. This ecosystem 
includes an innovative and immersive spatial multi-modal data framework, called Giotto Suite, and modules 
to represent, analyze, and visualize any type of spatial omics data. In addition, it maximizes and connects 
with other existing exploratory data ecosystems in genomics and spatial data science to provide users with 
easy workflows for a plethora of spatial downstream analyses. Finally, it facilitates the building of novel 
methods and applications by external developers that are accessible to large user groups. 
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Results 
  
Giotto Suite core framework  
Giotto Suite is a new modular suite of R packages that together create a holistic spatial data analysis 
ecosystem (Fig. 1A). It is technology-agnostic and designed to work with the ever-increasing size and 
complexity of spatial datasets, including innovative implementations for multi-modal and multi-resolution 
dataset representation and integration. It couples easy-to-use workflows on a large variety of spatial 
technologies with extended documentation, including examples for numerous downstream spatial analysis 
methods and visualizations (Supplementary Fig. 1A). Importantly, Giotto Suite has been specifically 
designed to underscore the FAIR principles and promote community building in an open-source software 
environment23. 
 
At the core of Giotto Suite is an innovative data framework that is designed to be agnostic to spatial omics 
technology and to maximally capture and represent the multi-scale and multi-modal biological data  (Fig. 
1B). This framework is designed based on two core principles. First, any type of spatial data can be 
efficiently used and represented by dedicated data structures, which are built on top of classes within the 
geospatial terra package and emphasize retaining raw information to a maximal degree. These structures 
include giottoPoints, giottoPolygon, and giottoLargeImage that capture respectively point, 
vector-based, and image or raster-like information (Fig. 1B and Supplementary Fig. 1B). giottoPoints 
represents points information (e.g. individual transcripts) and their associated spatial coordinates generated 
by multiplexed in situ hybridization techniques, thus ensuring that subcellular resolution is retained. 
Similarly, it can also be used to work with sequencing-based methods that generate spatial data from 
individual arrays with dimensions at the subcellular scale9,24. giottoPolygon is a versatile class used to 
represent the spatial organization and structures of biological shapes or annotated regions, including 
biological segmentation results (e.g. cell or organelle boundaries), flexible spatial arrays, or uniform grid 
and tessellation structures. Hence, it can be used to represent several types of information, ranging from 
(sub)cellular or tissue structures to external biological information (e.g. pathology annotations). Finally, 
almost all spatial technologies include either an associated tissue image (e.g. H&E image) or build a dataset 
through sequential imaging (e.g. protein intensities for cyclic antibody multiplexing technologies12,25), and 
this type of data is represented with giottoLargeImages. As such, it provides a dual role by allowing both 
efficient visualization and extraction of the data.   
 
The second principle focuses on data organization. Giotto Suite implements an approach that can be easily 
modified to allow the integration of multiple datasets with different modalities and/or resolutions (Fig. 1C). 
A key step herein is to organize data types based on their feature type and spatial unit (Supplementary Fig. 
1C). The feature type refers to the corresponding data modalities, whereas the spatial unit refers to the 
underlying spatial structure (e.g. nucleus, cell, or abstract grid/spot) and is represented by the 
giottoPolygon class. In this manner, an unlimited number of feature type-spatial unit aggregations can be 
performed and efficiently stored for further downstream specialized integration methods (Supplementary 
Fig. 2A, B). In addition, provenance and hierarchy can be encoded within the aggregation or integration 
steps to build a custom hierarchical tissue structural model. Hence, the core framework in Giotto Suite 
facilitates the aggregation or integration of multiple different feature types at multiple spatial units at both 
technical and biological levels. 
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Figure 1: Giotto Suite ecosystem and core data framework. A) Giotto Suite consists of a suite of 
integrated R packages supported by a technology-agonistic core data framework. B) Illustration depicting 
the conceptual and flexible integration of spatial datasets across multiple length scales and data modalities 
in Giotto Suite. C) Schematic depicting how Giotto Suite’s core framework represents diverse spatial 
datasets by features (molecular analytes) and spatial units (e.g. cell or grid)  thereby facilitating various 
multi-scale and multi-omics data integration. D) Pictograms summarizing key implementations for 
flexibility, scalability, interactivity, and interoperability.  
 
 
To support the core framework the original and convoluted S4 Giotto class has been redesigned and 
supplanted by a light-weight design that underscores the generation of independent S4 subclasses 
representing different data types and structures. These subclasses are both extensible and easy to maintain. 
This new design underscores a commitment to good practice object-oriented programming (OOP) 
principles, providing a platform with increased flexibility for future tooling, visualization, and framework 
development. Additionally, this design is oriented toward ensuring backward compatibility,  thereby 
creating a seamless experience for long-term users and adopters. Moreover, improved and unified accessor 
and show functions were created as well as terra spatial generics for each subobject. Continuous integration 
and unit testing have been added to facilitate contributions from external developers. Finally, significant 
efforts to improve scalability, interactivity, and interoperability (Fig. 1D) were implemented to augment 
the new core framework from Giotto Suite as demonstrated through the following vignettes. 

 
Vignettes for multi-scale and multi-omic analyses  
To demonstrate the ability of Giotto Suite and highlight its spatial technology-agnostic (Supplementary 
Fig. 3), flexible, and scalable implementations, we showcase various applications on specific datasets 
generated by some of the latest spatial technologies as follows. 
 
Multiscale and expansive framework. Biological processes occur at multiple scales and resolutions (Fig. 
2A) and will lead to different  - but related - scientific questions throughout the anatomical hierarchy of the 
tissue. Giotto Suite’s core framework (Fig. 1C) facilitates joint data representation and analysis at any level 
(Fig. 2A & Supplemental Fig. 4A-B). To demonstrate this utility, we use a subset of the MERFISH FFPE 
Human breast cancer dataset. First, tissue structures are annotated with increasing granularity, such as tissue 
domains, niches, individual cell types, or nuclei (Fig. 2B & Supplemental Fig. 4B). Next, the data 
organization facilitates efficient queries between different spatial scales and can also be used to assess how 
independent clustering results at different scales (e.g. nuclei vs cells) are related (Supplemental Fig. 4C-
E). 
 
In addition to common analysis pipelines that typically treat each cell as the basic unit, Giotto Suite’s 
framework allows users to carry out subcellular analysis as well. Individual transcript locations can be 
queried against any pre-defined spatial units and used to identify genes or gene sets that are spatially 
enriched at subcellular organelles, such as nucleus vs cytoplasm (Fig. 2C & Supplementary Fig. 5A,B) or 
detect transcripts that are found preferentially inside or outside cell boundaries (Supplementary. Fig. 5C). 
For example, Gene Set Enrichment Analysis (GSEA)26 identified enrichment of (ribo-)nucleotide related 
genes within cells while, interestingly, genes associated with the extracellular matrix are also often located 
outside cells themselves (Supplementary Fig. 5D,F). When comparing transcript location preferences  
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Figure 2: Representative vignettes implemented in Giotto Suite. A-C) Multi-scale analysis. A) 
Pictogram depicting the hierarchy of multiple biological scales. B) Sankeyplot showing the hierarchical 
relationships between different spatial units in Giotto Suite. C) Overlay of multi-scale annotations of a  
MERFISH dataset; depicting nuclear (magenta) and cytoplasmic (cyan) enriched transcripts for all genes 
in GSEA terms related to “programmed cell death” and “COPII-coated ER to Golgi transport vesicle”, 
respectively. The nuclear boundary is defined with a yellow border, and the cell body is filled in with dark 
green. D-F) Registration and segmentation. D) Pictogram showing multi-modal co-registration from serial 
tissue sections. E) Aligned Xenium (Black), Visium (Orange), and immunofluorescence (Red and Green) 
spatial datasets from a single breast cancer sample (10X Genomics). F) Overlay of HER2 protein (rasterized 
intensity, blue gradient)  and ERBB2 transcripts (points, red)  after co-registration, inset shows zoomed-in 
region. G-H) Multi-modal data analysis. G) Pictogram depicting multi-modal data analysis from two 
different modalities obtained from the same tissue slice. H) Integrated clustering results (RNA + Protein) 
from the 10X Genomics CytAassist Visium Human Tonsil dataset. I-L) Scalable data analysis. I) 
Pictograms depicting on-disk backends, parallelization, and projection to improve scalability within Giotto 
Suite. J) Stereo-seq datasets processed at bin1 and analyzed through multiple levels of hexagon 
aggregation, the inset depicts a zoomed-in subset and visualization of niche clustering on Leiden 
annotations and associated selected transcripts with random jitter. K-L) Tiling and pseudo-spatial data 
creation K) Schematic pictograms for different tiling options and tunable parameters. L) Spatial 
deconvolution plot showing the percentage of individual brain cell types for the pseudo-visium dataset 
generated from the stereo-seq subset in J.  
 
 
inside the nucleus or cytoplasm, genes associated with apoptosis were enriched within the nucleus, and 
genes linked to cytoplasmic membrane structures (i.e. Golgi transport and endoplasmic reticulum) were 
found mostly within the cytoplasm (Supplementary Fig. 5E,G). Finally, the Giotto Suite framework 
facilitates subcellular 3D data analysis. To demonstrate this workflow,  we use a subset of the MERFISH 
mouse brain dataset (v1.0, May 2021) as an example. Within this dataset individual transcripts are detected 
in seven adjacent z-stacks, each separated by approximately 1.5 µm (Supplementary Fig. 6A). In addition, 
each z-stack also contains its own cell polygon information,  such that transcripts can be accurately assigned 
to the correct cell polygon (Supplementary Fig. 6A,B). Users can efficiently aggregate the multiple stacks 
to create spatial networks at the transcript level (Supplementary Fig. 6B) or use layer-specific information 
to assess technological or biological differences between layers (Supplementary Fig. 6C-H). 
 
Registration and segmentation. Spatial omics assays can profile different molecular analytes in thin tissue 
sections.  The use of multiple adjacent tissue sections has become a popular strategy to create 3D spatial 
datasets16–18,27 or to integrate multiple technologies28–30 that are not directly compatible on the same section 
slice (Fig. 2D). This approach provides individual labs, or larger consortia with multiple groups, the 
opportunity to create more complex datasets that can unravel the intricacies of cellular decision making in 
the context of tissue architecture. Tools for aligning or co-registering one or more tissue slices have been 
developed previously31,32 or are currently being adapted for spatial biology purposes33,34. However, 
capturing and working with different spatially aligned datasets, each with its own resolution and data output, 
is still challenging. The Giotto Suite framework is uniquely suited to work with multiple co-registered 
spatial datasets due to its flexible handling of different scales and data types. To demonstrate this capacity, 
we use the recent spatial multi-modal breast cancer dataset from 10X Genomics, consisting of Visium, 
Xenium, H&E, and immunofluorescence (IF) as a concrete example29. First, tissue registration was 
performed by STalign34 and the transformed spatial datasets, including Xenium, Visium, IF and H&E 
images, were subsequently used to create a multi-modal and multi-scale Giotto object for downstream 
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analysis, including RNA, protein, and morphology information (Fig. 2E & Supplementary Fig. 7A). Next, 
correlations between corresponding spatial protein and RNA levels, such as for the B-cell (CD20 and MS41) 
and breast cancer (HER2 and ERBB2) markers demonstrated moderate to high correlations between the 
protein and transcript analytes, respectively r = 0.21 and 0.60 (Fig. 2F & Supplementary Fig. 7B,C). 
Similarly, systematic comparisons were performed for transcript counts from genes present in both the 
Visium (Sequencing) and Xenium (in situ hybridization) datasets (Supplementary Fig. 7D). This analysis 
indicated that on average concordance between both technologies is good (median r = 0.42) and that lower 
correlations are associated with low detection levels (Supplementary Fig. 7E). For example, the high 
expressed FASN gene showed a similar spatial expression pattern for both Visium and Xenium 
(Supplementary Fig. 7F) however, the opposite was seen for the low expressed HDC gene 
(Supplementary Fig. 7G). 
 
Another key task for many new spatial technologies is cell segmentation and subsequent transcript 
aggregation. Giotto Suite can read and simultaneously store various segmentation output formats, including 
mask files or geojson files, and this capacity was illustrated for several common methods35–38 
(Supplementary Fig. 8A). To assess how segmentation choice might lead to variable outcomes in cell type 
composition two complementary analyses were performed. First, a Giotto object was created containing 
both original segmented cells, i.e. provided by 10X Genomics, and cells segmented by Baysor36, which also 
uses transcript density. Next, transcripts were aggregated within cells from both segmentation results and 
co-clustered to obtain joint annotations for both methods (Supplementary Fig. 8B,C). The results did not 
only show a difference in the number (Baysor: 220,845 vs original: 164,471) and pixel area size (Baysor: 
4.9 vs original: 14.2) (Supplementary Fig. 8D) of detected cells, but also striking differences in cellular 
composition, such as for stromal cells (Supplementary Fig. 8B,E,F) which are key players in breast cancer 
progression39,40. Next, a more controlled analysis was performed by resizing (i.e. 25% downscaled) cell 
segmentation results from Imaging Mass Cytometry (IMC) data41 (methods & Supplementary Fig. 9A). 
Unbiased clustering with k-means (k = 7) of both the original and downscaled cells showed a substantial 
number (26%) of cell annotation class switches that are dispersed across the region of interest 
(Supplementary Fig. 9B-E). Together, these observations highlight how Giotto Suite provides a 
standardized ecosystem to study how segmentation choices or strategies can affect downstream spatial 
analysis. 
 
Multi-modal data analysis. Emerging technologies provide a great opportunity to investigate the 
relationship between different data modalities. A major addition to Giotto Suite is the support of multi-
modal data analyses and integration to obtain a more comprehensive characterization of cell states. This is 
made possible by the addition of specific features facilitated by the core framework. First, multiple data 
modalities (e.g. RNA and Protein) can be stored at the same spatial locations (Fig. 2G). Here the multi-
omic data may either be obtained from the same cells or assembled from different cells through image 
alignment, as described previously (Fig. 2D). Next, efficient structures for combining and re-weighting 
graph structures from different modalities have been implemented that could support various statistical 
integration approaches42–44 (Supplementary Fig. 10A). To demonstrate how Giotto Suite handles multi-
modal data, we analyzed the Visium CytAssist human tonsil dataset (10X Genomics), containing multi-
omics information for RNA and surface proteins (Supplementary Fig. 10B-C). By analyzing each data 
modality separately, we identified 12 cell clusters from RNA and protein profiles, respectively 
(Supplementary Fig. 10B). The difference between the clustering results suggests these data modalities 
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contain complementary information. By using a weighted nearest-neighbor (WNN) method43, both RNA 
and protein information were integrated thereby obtaining 13 integrated cell clusters (Fig. 2H). Compared 
to the outcome from individual modalities, the multi-omic clustering result performs better and its spatial 
pattern clearly resembles the histological structures in the tissue image (Fig. 2H & Supplementary Fig. 
10C). This is further corroborated by the spatial distribution of different cell types, which were estimated 
from a cell-type deconvolution algorithm45. The resulting pattern follows the known architecture of the 
tonsil (Supplementary Fig. 10D). 
 
Scalability and tiling.  Advancements in spatial technologies have led to ever-growing datasets that can be 
stored in large databases46–48 and can easily contain spatial and expression information from millions of 
cells. Even high-performance computing infrastructure can struggle to process these datasets with 
conventional methods. To alleviate the challenge of scalable analysis, several complementary tools are 
implemented in Giotto Suite, including optimized parallel coding, delayed on-disk calculations, and data 
projection strategies (Fig. 2I, Supplementary information). The Giotto Suite package is also built, tested, 
and available on terra.bio as a cloud-based solution to accommodate users who have no access to high-
performance computing infrastructure or would like additional scaling (Supplementary Fig. 11A). 
 
As an illustrating example, we analyzed a stereo-seq dataset obtained from a mouse embryo at embryonic 
day 16.5 (“E16.5_E2S6”) from the Mouse Organogenesis Spatiotemporal Transcriptomic Atlas 
(MOSTA)24.  We focused on a whole sagittal section at its highest resolution (bin1) (Fig. 2J). The dataset 
contains 378 million transcripts from 292 million bins covering the whole transcriptome. Storing the raw 
cell gene matrix alone takes about 40GB of memory. To facilitate working with large spatial data, a database 
backend was implemented to provide on-disk S4 representations for points and polygons information as 
dbPointsProxy and dbPolygonProxy, respectively (Supplementary Fig. 11B). These representations 
respond to spatial manipulation generics and can also be directly converted into corresponding terra objects 
that are native to the Giotto Suite framework. In order to increase responsiveness and allow in-memory 
operations, lazy evaluation is used when possible, and spatial chunking is implemented on these S4 classes. 
To support interactive usage of these objects, they are also implemented with high-performing plotting 
methods. Finally, any resulting large aggregated expression matrices are handled by using a delayed 
HDF5matrix49 on-disk backend (Supplementary Fig. 11C). Users can simultaneously achieve significant 
additional computing speed gains by using data projection strategies for initial data exploration. Similar to 
a standard exploratory data analysis pipeline, it facilitates the optimization of parameters in a computation-
efficient and more responsive manner.  

 
In parallel, Giotto Suite also offers flexible tiling and tessellations (Fig. 2K) that can be interpreted by the 
spatial framework layer (Fig. 1C & Supplementary Fig. 2A). Tiling is a popular strategy to analyze large-
scale data at multiple scales or resolutions (Fig. 2J & Supplementary Fig. 12A-C) but can also be used to 
create pseudo-datasets with a custom grid configuration to support benchmark analyses. For example, a 
more granular ‘pseudo-visium’ dataset was created from a brain region in the stereo-seq mouse embryo 
dataset (Supplementary Fig. 12D). Next, spatialDWLS was used to deconvolve each pseudo-visium spot 
and to assess deconvolution accuracy relative to the original and ground-truth stereo-seq data (Fig. 2L & 
Supplementary Fig. 12D). Together, tiling and scalability implementations provide users with the tools 
needed to analyze large-scale data at custom resolutions or patterns. 
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Interactivity & Interoperability. To aid users in their exploration of the relationship between molecular, 
histomorphological, and pathological changes within a tissue, we have created an integrated and interactive 
Shiny app for refined annotation and region selection in Giotto Suite (Supplementary Fig. 13A). This tool 
allows users to manually annotate multiple spatial regions using an html widget. Notably, information 
within the selected regions (e.g. cell identities) is immediately available in the Giotto object and can thus 
be directly used in any other downstream analyses (e.g. differential expression) (Supplementary Fig. 13B). 
Additionally, we have developed an interactive tool to plot and subset 3D datasets (e.g. mouse brain with 
MERFISH27) that facilitate subsetting slices in the z-axis and select cell types or clusters. The subsetted 
cells can be used for downstream analysis such as the comparison of gene expression patterns across diverse 
slices (Supplementary Fig. 13C). 
 
During the past years, many groups have developed innovative tools and methods for spatial transcriptomics 
data analysis50,51. Giotto Suite provides several utilities to facilitate interoperability with these external 
tools, including rich data structures, accessor functions, and plugins. Giotto Suite also provides built-in 
converter functionality for the R/Bioconductor SpatialExperiment52, python AnnData53, and Seurat54 
classes, and classes used in the open spatial sciences field within R55. For example, Giotto Suite users can 
use the bi-directional converters (Supplementary Fig. 14A, B, C) to effortlessly use tools developed with 
Seurat or in Bioconductor and subsequently combine and visualize the final results within the Giotto 
framework. Similarly, the Giotto to AnnData class converter functions can be used to download and access 
all datasets within the Spatial Omics DataBase (SODB)46 (Supplementary Fig. 14B). In addition, a 
modified AnnData version for the Bento pipeline is also available and allows users to perform various RNA 
localization pattern analyses (Supplementary Fig. 14D-F). Finally, various classes (e.g. terra, sf, stars, 
etc.) and associated methods and statistics used in the R spatial sciences field are easily accessible 
(Supplementary Fig. 15A) and can be directly created from Giotto (sub-)classes through “as'' converter 
functions (Supplementary Fig. 15B). In this manner, other methods and packages can utilize the accessor 
functions in Giotto Suite to extract information from individual Giotto Suite slots. For example, 
interpolation methods such as kriging in the gstat package, can be easily combined with the Giotto Suite 
framework to develop unique ways to enhance low-resolution spatial datasets (Supplementary Fig. 15C). 
Altogether, close integration with these other large and established ecosystems significantly extends Giotto 
Suite’s capabilities for spatial downstream analysis and visualization. 
 
Discussion 
We present a new generation spatial analysis framework, Giotto Suite, which offers a fully integrated and 
comprehensive suite of tools that were built to provide end-to-end workflows encompassing every critical 
stage of working with data generated by the latest spatial technologies. In this manner, Giotto Suite differs 
significantly from the original Giotto package21 and provides an all-in-one solution that is otherwise only 
offered through a combination of multiple recently developed tools56–61.  
 
First, Giotto Suite adheres to its technology-agnostic approach by providing data ingestion pipelines that 
are compatible with any type of raw data structure. At the core of the Giotto Suite framework, we developed 
innovative data classes to represent biological datasets across multiple spatial and data modalities. In 
addition, these data classes form their own fully independent sub-objects and can thus be the starting point 
for independent spatial workflows, such as providing solutions for imaging-based segmentation-free 
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clustering approaches62. Importantly, these core classes make it possible to generate a multi-modal 
hierarchical representation that faithfully reflects the organizational principles of tissue architecture and 
provides a unified approach for data representation. Similarly, it underlies our seamless integration with 
co-registration methods such that multiple spatial technologies can be jointly queried or analyzed together. 
In this manner, our approach provides more flexibility than the recently developed SpatialData58 package, 
which enforces a standard data framework. Notably, to accommodate the increasing size of spatial multi-
modal datasets, we developed GiottoDB, which provides the groundwork that developers and users can use 
to represent their data through different backends that can scale according to their needs.  
 
Next, Giotto Suite provides users with a modular set of tools for spatial analysis and visualization, including 
a responsive coding environment and seamless interoperability to both spatial and other genomics software 
communities. In this manner, Giotto Suite provides direct access to other spatial omics ecosystems such as 
those from R/Bioconductor52,57,60 and geospatial55 communities.  Although similar effort has been taken in 
Voyager57, the underlying SpatialFeatureExperiment class currently limits working with multiple 
spatial layers at different scales or with different data modalities. Hence, Giotto Suite provides a more 
integrated and inclusive solution that combines the strengths of these methods. 
 
Altogether, Giotto Suite offers an ideal benchmarking framework to systematically implement and compare 
a large number of new spatially related methods. The results of such analyses are needed for establishing 
best practices and data standards. It is also well suited to adopt and adhere to any future minimum 
information guidelines63 or metadata standards64 that will be necessary for spatial dataset and method 
harmonization. These activities are especially important for coordinating large-scale collaborative efforts 
that involve many technology and data analysis experts, such as in various cell atlas projects6,48,65,66. 
 
Finally, we have demonstrated the utility of Giotto Suite through applications to multiple spatial datasets 
from a diverse set of technologies that span across various spatial resolutions and modalities. Taken 
together, the core framework and new tools implemented in Giotto Suite provide a powerful solution for a 
seamless harmonization and integration of diverse datasets.   
 

Contributions 
J.G.C., J.C., G-C. Y. and R.D. conceived the project. J.G.C., J.C., M.O.B., J.X., E. R., W.W., I. A., I.S., 
P.G., A.S., and R.D. developed Giotto Suite, implemented and revised code.  J.G.C., J.C., M.O.B., J.X., E. 
R., W.W. performed analyses and generated figures. G-C.Y. and R.D. wrote the manuscript with input and 
feedback from all other authors. 
 

Data and Code Availability 
The packages that are part of Giotto Suite can be downloaded from our GitHub page 
http://github.com/drieslab and additional information, including a large set of examples, vignettes, and 
FAQs can be found on http://giottosuite.com.  
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The following spatial datasets were used in this manuscript:  
Spatial Genomics dataset. The mouse kidney fresh frozen dataset was downloaded from the Spatial 
Genomics website at https://spatialgenomics.com/data/. 
DBiT-seq dataset. The mouse embryo E10.5 dataset was downloaded from 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE137986. 
Nanostring CosMx dataset. The CosMx FFPE Non-Small Cell Lung Cancer dataset for lung sample 12 was 
downloaded from the Nanostring website at  https://nanostring.com/products/cosmx-spatial-molecular-
imager/ffpe-dataset/nsclc-ffpe-dataset/  
Seq-Scope dataset. The Seq-Scope liver dataset was downloaded directly from the following link, 
https://deepblue.lib.umich.edu/data/concern/data_sets/9c67wn05f. 
Vizgen dataset. The MERSCOPE/MERFISH FF mouse brain (data release v1.0, May 2021) and FFPE 
breast cancer (May 2022) datasets were downloaded directly from the Vizgen website at 
https://info.vizgen.com/mouse-brain-data and https://info.vizgen.com/ffpe-showcase, respectively.  
10X Genomics Xenium dataset. Xenium, corresponding images and Visium datasets for human breast 
cancer were downloaded directly from the 10X website at 
https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast.  
10X Genomics multi-modal Visium CytAssist Human Tonsil dataset. The multi-modal Visium CytAssist 
Human Tonsil dataset was downloaded from the 10X genomics website at 
https://www.10xgenomics.com/resources/datasets/gene-protein-expression-library-of-human-tonsil-
cytassist-ffpe-2-standard.  
10X Genomics Visium Mouse Brain Section (Coronal) dataset. The Visium Mouse Brain Section (Coronal) 
dataset was downloaded from the 10X Genomics website at https://support.10xgenomics.com/spatial-gene-
expression/datasets/1.1.0/V1_Adult_Mouse_Brain  
Stereo-seq dataset. The bin1 matrix files (i.e. *_GEM_bin1.tsv.gz) were downloaded from the CNGB 
portal at the following link (https://db.cngb.org/stomics/mosta/download/).   
Imaging Mass Cytometry dataset. Intensity images of human lymph node FFPE tissue were downloaded 
from a repository created by Bost et. al https://data.mendeley.com/datasets/ncfgz5xxyb/1.  
Single Cell Mouse Brain Dataset. A single-cell reference dataset published by Manno et al. 2021  was used 
to identify developmental mouse brain cell types for spatial DWLS deconvolution with Stereo-seq data in 
this study. This data can be downloaded in the form of a .loom file from the Mousebrain.org website 
(http://mousebrain.org/development/downloads.html).  
Single-cell Human Tonsil Dataset. The Atlas of Cells in the Human Tonsil published by Massoni-Badosa 
et al 2022 containing the annotation of >357,000 cells was used for spatial DWLS deconvolution of Visum 
CytAssist data in this study. The annotated SpatialExperiment object was downloaded from 
https://github.com/massonix/HCATonsilData.    
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Supplementary Figures 
 

 

 
 
Supplementary Figure 1: Giotto Suite workflows and data structures. A) An overview of the types of 
spatial analyses and workflows implemented in Giotto Suite.  B) Pictograms depicting the various Giotto 
Suite data representations within a typical spatial data analysis pipeline. C) Schematic representation of 
sub-object creation from defined feature types and spatial units with encoded provenance information. 
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Supplementary Figure 2: Giotto Suite subcellular data organization and aggregation. A) Schematic 
depicting the storage of different subcellular and image data types. B) Visualization of Giotto Suite’s object 
slots that are available to store different raw and processed information from aggregated spatial data. 
Aggregate information can be created from any spatial unit and feature type information encoded in the 
Giotto object spatial_info and feat_info slots in A, respectively. C) Additional tools available in Giotto 
Suite to dictate default behavior and functionalities in downstream spatial analysis workflows.  
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Supplementary Figure 3: Technology-agnostic identification of spatial expression patterns. 
Identification and visualization of expression patterns identified through spatial co-expression analysis in 
datasets from various recently developed spatial technologies. Zoomed-in regions highlight transcript 
information at the subcellular level. 
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Supplementary Figure 4: Multi-scale analysis. A) Spatial plots showing raw transcript locations (top) 
and corresponding DAPI image (bottom). B) Spatial plots illustrating annotations at different scales, 
including nucleus (top left), cell (top right), neighborhood (bottom left), and domain (bottom right). 
Highlighted annotations correspond with selection in Fig. 2B. C-D) UMAP and spatial plot showing Leiden 
clusters for cellular (C) and nuclear (D) segmentations. E) Sankey plot showing the Leiden cluster 
relationships between count aggregation results from cellular (C) and nuclear (D) segmentations.  
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Supplementary Figure 5: Subcellular gene set enrichment analysis. A-B) Spatial plots showing cellular 
(A) and nuclear (B) segmentation results in red. C) MERFISH dataset subset depicting cellular (magenta) 
and extracellular (cyan) enriched transcripts for all genes in GSEA terms related to “ribonucleotide binding” 
and “connective tissue development”, respectively. D-E) Waterfall plot depicting the log-fold enrichment 
changes for all transcripts within versus outside of the cell (D) and nuclear versus cytoplasm (E). F-G) 
GSEA enrichment plots showing results for inside versus outside cells (F) and nuclear versus cytoplasm 
(G). 
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Supplementary Figure 6: Transcript detection variance across z stacks. A) Pictogram of z stacks each 
with their own detected transcripts and cellular segmentation information. B) Spatial plot depicting the 
overlapping polygons from all z stacks combined. Colors represent how many polygons overlap at each 
pixel. C) Summed and rasterized expression combined for all layers and transcripts. D) Summed and 
rasterized expression for all transcripts within each individual layer. E) Boxplots showing summed 
rasterized expression levels for all pixels within each layer. F) Coefficient of variation (COV) for 
expression levels from all transcripts per rasterized pixel across all layers. G) Scatterplot showing log 
counts versus log COV across all z stack layers for each gene. H) Rasterized expression levels per pixel for 
Gad1 for each z stack layer.  
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Supplementary Figure 7: Comparison of co-registered multimodal datasets. A) A schematic workflow 
of the co-registration step for the 10X Genomics Xenium pre-release breast cancer dataset. B) Rasterized 
CD20 intensity data (left) and rasterized MS4A1 transcript counts (right). Pearson’s r is shown. C) 
Rasterized HER2 intensity data (left) and rasterized ERBB2 transcript counts (right). Pearson’s r is shown. 
D) Rank of correlation scores between overlapping genes expressed in Visium and registered Xenium data. 
E)  LOESS regression (solid curves) of log expression against ranked correlation scores from (D). F-G) 
Spatial feature expression plots for registered Xenium and Visium data for genes FASN (F) and HDC (G).  
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Supplementary Figure 8: Joint analysis of multiple cellular segmentation results. A) Spatial plots 
depicting the segmentation results from a set of established segmentation methods on a subset of the 10X 
Genomics Xenium Breast Cancer data. B) Spatial plots of the 10X Genomics Xenium Breast Cancer data 
depicting the segmentation results and cellular annotations for the original (left) and Baysor (right) 
segmentation methods. C) UMAP plots showing the joint clustering results for both the manufacturer-
provided and Baysor cellular segmentations. D) Violin plots showing the surface area of polygons identified 
by the original and Baysor segmentation methods. E) Barplot illustrating the percentage of cellular 
annotations for both the original and Baysor segmentation results. F) Stacked barplot showing the 
percentage of cellular annotations for both the original and Baysor segmentation results.  
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Supplementary Figure 9: Polygon resizing effect on cell annotations. A) Example of a multi-step end-
to-end workflow for processing, analyzing, and visualizing imaging mass cytometry (IMC) data. B) Spatial 
and UMAP plots showing the cell clustering and annotation results from kmeans (k = 7). C) Spatial and 
UMAP plots showing the cell clustering and annotation results from kmeans (k = 7) starting from 25% 
downscaled cell polygons compared to (B). D) Spatial plot depicting cell IDs that stayed in the same (gray) 
or changed (red) their majority cluster annotation. E) Pie chart showing the number of changed cell 
annotations between the original and downscaled cell polygons. F) Sankey diagram illustrating the 
relationship between cell annotations from the original versus downscaled cellular polygons. 
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Supplementary Figure 10: Multi-omics data analysis using the Giotto Suite framework. A) Schematic 
representation and workflow for multi-modality integration of RNA and Protein spatial transcriptomic 
datasets. B-E) 10X genomics Human tonsil dataset. Analysis at the RNA (B), Protein (C) level, multi-
omics integration (D), and DWLS deconvolution (E) using a reference scRNAseq were performed. 
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Supplementary Figure 11: Scalability implementations for Giotto Suite. A) Docker images and startup 
scripts compatible with terra.bio platform were developed to facilitate running analysis using Giotto on the 
cloud. The implementation creates a customized cloud environment ready to run Giotto analysis using 
interactive Jupyter notebooks and the RStudio app. B) Pictogram showing the implemented chunking 
strategy utilized by Giotto Suite to perform large spatial analytical operations. C) Schematic for the 
implementation of the delayed HDF5 backend. The standard sparse expression matrix (left) is replaced 
within the ‘expression’ slot with a string that indicates the internal path to the expression matrix within an 
on-disk .h5 file (right).  
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Supplementary Figure 12: Tiling approaches and applications.  A) Spatial plots showing aggregated 
stereo-seq transcript counts for hexagon tiles with diameter = 400 (left) and 100 (right). Inset shows 
zoomed-in tail region. B) Spatial plots showing Leiden clustering results at low (hexagon, diameter = 100) 
and high (hexagon, diameter = 50) tile resolution for the selected stereo-seq region in Fig. 2J. C) Heatmap 
(top) depicting spatial gene co-expression modules for the selected region in B. Spatial metagene plots 
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(bottom) showing the expression of selected spatial co-expression modules. D) Visualization illustrating 
the creation of a Pseudo-Visium dataset from a stereo-seq dataset. Spots with diameter 55 µm and inter 
centroid distance equal to 100 µm (left) were used to aggregate individual transcripts at bin1 level. This 
was followed by downstream spatial processing steps and the generation of Leiden clusters at the spot level 
(right). 

 
 
Supplementary Figure 13: Interactive R/Shiny applications facilitate the selection and comparison of 
regions of interest. A) A local-running Shiny gadget was developed to interactively select regions of 
interest over a Giotto Suite spatial plot. B) The information from plotted regions of interest is used for 
downstream analysis such as subsetting of cells, as well as gene and cell type enrichment comparison. C) 
An interactive tool for plotting and subsetting tri-dimensional datasets was developed. The tool facilitates 
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subsetting across the z-axis to create slices and select cell types. Downstream analyses include Giotto object 
subsetting and feature enrichment.  
 
 
 
 

 
 
Supplementary Figure 14: Spatial data analysis community interoperability. A-C) Schematics 
depicting the mapping strategies between a Giotto object and a (A) SpatialExperiment,  (B) Seurat, or (C) 
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AnnData/Squidpy object. D) The spatial plot (top) shows the region selected for Bento analysis. RadViz 
plot (bottom) depicts the spatial subcellular distribution for all transcripts. E) UpSet plot showing the 
number of transcripts with different spatial distribution features. F) Heat maps showing the results of Bento 
colocalization analysis. In this analysis, 5 colocalization factors were identified. Heatmaps showing the 
loading of each colocalization factor on spatial features (left panel), cell distributions (middle panel), and 
gene pairs (right panel). 
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Supplementary Figure 15: Integration of Giotto Suit with the R (geo)spatial ecosystem. A) Pictogram 
illustrating the connection between Giotto Suite and the larger R geospatial ecosystem. B) Giotto-native 
‘as’ functions for converting giottoPoints and giottoPolygon to corresponding terra, sf, and stars classes C) 
Spatial plots showing spatial clustering results from original (left) and super-enhanced (right) Visium gene 
expression data. Insets depict zoomed-in regions illustrating differences in resolution (55 µm vs single-
cell). D) Spatial gene expression plot for Pantr1 from original (left) and super-enhanced (right) Visium gene 
expression data. 

Methods 
 
Spatial data co-expression processing pipeline 
 
A standard Giotto spatial data processing and analysis workflow was used to visualize spatial clusters 
starting from a balanced set of genes from spatial co-expression modules. A similar pipeline was used for 
data generated by Nanostring CosMx, Spatial Genomics, DBiT-seq, Spatial CITE-seq, and Seq-Scope. 
More specifically, raw data was loaded followed by filtering, normalization, and detection of spatial genes 
using binSpect(). Top spatial genes (max = 500) were subsequently used to create spatial gene co-
expression modules followed by hierarchical clustering and the selection of an equal representation of 
spatial gene groups from each co-expression module with getBalancedSpatCoexpressionFeats(). 
These genes were then used in a typical Giotto Suite pipeline, including dimension reduction (PCA), 
creation of a shared nearest-neighbor network, and Leiden clustering to create spatial expression-informed 
clusters for each tissue sample. 
 
MERSCOPE data processing and analysis 
 
Two Vizgen MERSCOPE datasets were used. The FFPE Human Immuno-oncology Breast Cancer (patient 
1) dataset and the Mouse Brain Receptor Map (v1.0. May 2021 Slice 1, replicate 1). A key difference 
between both datasets is that the Breast Cancer dataset contains cellular segmentations, while the Brain 
dataset contains nuclear segmentations. In addition, the Brain dataset also provides different segmentation 
results associated with each of the 7 provided z stacks. 
 
For each dataset, associated images were first loaded in as giottoLargeImages and mapped to microns 
using the provided “transforms” information via createMerscopeLargeImage(), then cell segmentations 
and transcript detections were aligned to the same coordinate reference frame. These early MERSCOPE 
datasets provide cell segmentation information as a directory of thousands of HDF5 files, separated by 
FOVs. The files were first scanned through to produce an H5TileProxy object that contains a spatially 
indexed manifest of the files, their contents, and a parse function for converting chunks of data read in from 
the HDF5 files into the format expected downstream. This provided a framework for spatially chunked 
access to the polygon information. For visualization purposes and faster processing of the analysis examples 
the datasets were spatially subset to 500 x 500 micron regions. The breast cancer dataset was subset to 
5500, 6000, 3500, 4000, and the mouse brain dataset was subset to  6700, 7200, 3100, 3600 (xmin, xmax, 
ymin, ymax). Since the vector data (polygons and points) have inverted y values relative to the image, the 
spatial selection was first flipped across the image y midline and then used to select the data. The resulting 
data was then flipped back across the image’s midline and then ingested as giottoPolygon and 
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giottoPoints objects respectively. Next, Giotto objects were then constructed from the giottoPoints, 
giottoPolygon, and giottoLargeImage objects using createGiottoObject(). For the Breast Cancer 
dataset, only 1 of the polygon layers was loaded in since they are all identical. For the Mouse Brain dataset, 
all 7 of the polygon z-layers were loaded. Next, addSpatialCentroidLocations() was used to calculate 
a set of spatial location coordinates for each of the polygons. Counts matrices were then created for each 
set of polygons in each dataset by first running calculateOverlapRaster() to determine the points data 
overlapped by the polygons, and then overlapToMatrix() to convert the overlaps information into 
matrices. At this step, aggregateStacks() was run on the Mouse Brain dataset to combine the expression 
and spatial information content of its 7 z-layers into a single spatial unit called “aggregate”. This step also 
creates a new set of matching “aggregate” polygon information, with vertices defined as the combined outer 
boundary across layers. From here, both datasets were processed using the standard steps, including 
filtering, normalization, dimension reduction, and clustering. 
 
Multiscale analysis and visualization 
To demonstrate data representation and analysis at multiple spatial scales, we started with a subset of the 
Vizgen FFPE Breast Cancer dataset which already had a set of machine-based cell boundary segmentations. 
We added a set of nuclear segmentations by hand using QuPath. Additional spatial scales or spatial units 
for cell neighborhoods and domains were calculated based on cell-level expression information. Cell 
neighborhoods were defined by finding local niches composed of cells with similar Leiden cluster results 
using calculateSpatCellMetadataProportions() and kmeans (k = 6). Spatial domains were detected 
using Hidden Markov Random Field (HMRF)1 on genes selected from spatial co-expression modules. 
spatialSplitCluster() was then run to further split the resulting annotations when regions were not 
spatially touching. Sankey plots were used to show spatial intersections across the previously described 
spatial units. 
 
Transcript location gene set enrichment analysis 
Comparative analysis of transcript abundance differences within the cell versus extracellular and nuclear 
versus cytoplasmic segmented compartments was performed to demonstrate spatial querying. A cell was 
defined as all transcript detections that overlap within the Vizgen-provided cell segmentation annotations 
and extracellular as those that are outside. Nuclear was the detections that were within the manual nuclear 
annotations, and cytoplasmic were those that were within the cell, but outside the nuclear. GSEA analysis 
was performed using clusterProfiler, biomaRt, and org.Hs.eg.db packages. The results were then plotted 
using enrichplot package’s dotplot() function. 
 
Z-stack variance analysis 
To illustrate variance in transcript abundance between different z-stack layers a subset of the Vizgen Mouse 
Brain Receptor Map dataset was used. The polygons from each of the 7 provided z-layers were rasterized 
at 1000 x 1000 with the rast() function from terra. To assess gene expression variance within and between 
z-stack layers, transcript locations for each gene were first rasterized and summed within pixels at a 
predetermined pixel size (20 x 20). Hence, each gene is represented by 7 aligned images and these images 
were then used to calculate the coefficient of variation (COV) across the z-stack layers for each gene. To 
identify genes that display higher than expected variation the COV was plotted against the summed counts. 
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10X Genomics data processing and analysis 
 
To demonstrate the different steps of co-registering spatial multi-modal datasets, the data associated with 
the 10X Genomics Breast Cancer dataset was used. This Xenium instrument data includes subcellular 
transcript locations, polygon information, immunofluorescence (IF), and post-Xenium H&E images from 
the same tissue section. From an adjacent tissue section, the Visium CytAssist instrument was used to 
generate gene expression data with an H&E image. 
 
Co-registering multimodal dataset 
Image registration was performed using STalign2. Depending on data input and registration purposes we 
used both affine and non-rigid transformation modes from STalign as explained in more detail below. First, 
to register Xenium transcripts to the post-Xenium H&E image, we calculated an affine transformation 
matrix (Affine_tx). The corresponding cell centroids were used as input to the STalign.rasterize() 
function, supplying the argument dx = 15. This function returned rasterized cell centroid data for landmark 
detection. Landmark points were manually selected with the point_annotator.py script provided by STalign, 
and this information was provided to the function STalign.L_T_from_points() to calculate the affine 
matrix, Affine_tx. The coordinates of cell boundaries were also applied with the same Affine_tx matrix 
along with the registration of transcripts. Next, to register the IF image to the post-Xenium H&E image, the 
IF image data was converted to point data, represented as pixel intensity, x, and y coordinates. The affine 
transformation matrix for the IF data (Affine_IF) was then calculated following the same pipeline for the 
creation of Affine_tx. Then, large deformation diffeomorphic metric mapping (LDDMM) was performed 
to register Xenium data to the Visium H&E image. The affine matrix for Xenium to Visium H&E 
registration (Affine_visium) was first calculated in the same manner described above. Default parameters 
were chosen to optimize the velocity field with STalign.LDDMM(). The combined deformation field 
(Φ_visium) was applied to Xenium transcript locations to complete the registration. In parallel, the 
polygons within the Visium coordinate system that represent Visium spots were also mapped to the Xenium 
H&E image by serially calculating the inverse operation of Affine_visium. This was done by swapping 
the input order of landmarks for the function STalign.L_T_from_points(), and then transforming with 
Affine_tx so that the spatial locations of Visium counts were registered to the same coordinate system of 
the post-Xenium H&E image. Finally, the IF, Xenium transcript locations, corresponding segmentation 
polygons, and Visium counts were aligned to the post-Xenium H&E image coordinate system. This resulted 
in a fully aligned and multi-modal dataset with overlapping regions for all three modalities.  
 
Cell segmentation 
The 10X Genomics Xenium Pre-Release Breast Cancer dataset was segmented with different methods to 
simulate different scenarios or allow method comparison within the Giotto Suite framework. The original 
segmentation data is stored in .csv data format and can be directly read into a giottoPolygon object using 
the createGiottoPolygons() function. Other segmentation methods were optimized by following their 
instructions and exploring their parameter space. A final segmentation result for each method was selected 
based on empirical observation of the resulting polygons and details are described below.   

Baysor3 (version 0.5.2 with Julia version 1.7.3) was used in combination with a reference 
segmentation, i.e. the original segmentation results provided by 10X genomics for initialization. The 
minimum transcripts per cell parameter was set to 30, and the confidence for the prior segmentation was 
set to 0.5. The resulting Baysor polygons were saved as a geoJSON file, converted to a data frame with 
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polygon vertices, and used as input for the createGiottoPolygonsFromDfr() function. 
 CellPose4 (v2.2.2) was used to segment the Xenium IF data. The IF image was segmented in Python 
using the cyto2 model from CellPose out-of-the-box. The HER2 channel was defined as a cell boundary 
stain for the model, while the DAPI channel was used as the nuclei stain. No further parameters were 
modified. The mask output was written to a tif file using the cv2 library and provided as input to the 
createGiottoPolygonsFromMask() function.   
 The IF image was loaded into QuPath5 (v0.4.3) and segmented using Universal StarDist for 
QuPath6. StarDist7 was installed as a QuPath extension (link). Pretrained models were downloaded from a 
repository (link), and the model `dsb2018_heavy_augment.pb` was used in the final analysis. The file 
`GPU_Multimodal StarDist Segmentation.groovy` was downloaded from a separate repository [ref], and 
was used as the segmentation script on QuPath. The following parameters were used in the previous file: 
model_trained_on_single_channel = 1, param_channel = 3, param_median = 0, param_divide 
= 1, param_add = 0, param_threshold = 0.5, param_pixelsize = 0, param_tilesize = 768, 
param_expansion = 10, min_nuc_area = 10, max_nuc_area = 1000, nuc_area_measurement = 
“Area px^2”, min_nuc_intensity = 0.5, nuc_intensity_measurement = “DAPI: Nucleus: 
Mean”, normalize_low_pct = 1, normalize_high_pct = 99. The script was adjusted to remove 
detections of nuclei with a total area larger than the maximum nuclei size parameter. The resulting 
segmentation data was then exported from QuPath as a geoJSON file and provided as input to 
createGiottoPolygonsFromGeoJSON().  
 
Spatial correlation analysis of molecular modalities from adjacent tissue slices. 

Transcript and Protein Colocalization Analysis. A subcellular Giotto Object was created using the 
transcript locations which had been aligned to the corresponding Xenium H&E image, as previously 
described. The immunofluorescence data from the Xenium experiment was aligned, as previously 
described, and split into single-channel images. The data for the HER2 and CD20 channels were separately 
rasterized using terra. Each of these rasters was then converted to a giottoLargeImage and added to a 
Giotto Object. The transcript locations of ERBB2 and MS4A1 were extracted from the Giotto object and 
each was rasterized in the same manner. The corresponding spatRaster objects were combined (i.e. HER2 
and ERBB2), and zero values were imputed for any resulting NAs. The combined raster objects were each 
provided to the terra function layerCor() to calculate a simple Pearson's correlation between the transcript 
counts and intensity information.  

Xenium aggregated transcripts and Visium. The Xenium transcript data was registered to Visium 
H&E Image using the deformation field Φ_visium as described above. After loading the registered Xenium 
data in Giotto Suite pseudo-Visium polygons were created at the same location of the spots from the Visium 
data using the function polyStamp(). An aggregated transcript matrix within each pseudo-spot was created 
with the functions calculateOverlapRaster() and overlapToMatrix(), which identifies overlapping 
transcript and polygon coordinates and converts the overlapping results into a matrix, respectively. The 
Pearson correlation statistic was then calculated using the log10-normalized values for all common genes 
between Visium and Xenium. To assess the association between correlation scores and gene expression 
levels, we computed the Loess trend for the log10 expression value of both Xenium and Visium assays 
against the rank of the correlation of intersecting genes.  
 
Joint clustering and comparing of multiple segmentation results 
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Creation and processing of a Multi-Segmentation Giotto object. Two subcellular Giotto objects 
were created using the 10X Genomics Xenium Pre-Release Breast Cancer dataset. The first Giotto object 
was created using the original cell segmentation data, while the second was created using the aligned 
Baysor cell segmentation data. For this analysis segmentation data was provided in a .csv format which is 
the output format of the STAlign co-registration pipeline that was used. The gene-by-cell expression matrix 
for each Giotto Object was calculated using the functions calculateOverlapRaster() and 
overlapToMatrix(). Cell centroids were then computed from the segmentation polygons using the 
addSpatialCentroidLocations() function and used as spatial locations in downstream analyses. Next, 
the two Giotto objects were combined using the function joinGiottoObjects(), which is typically used 
for analyzing multiple samples by appending sample-specific names (e.g. baysor) to cell IDs from both 
objects. The combined Giotto object was then processed following standard processing steps, including 
filtering, normalization, and dimension reduction with PCA. 

Clustering and annotation. A downsampled Giotto object was created using 25% of all cells (n = 
96,329) and used in downstream Giotto projection functions to speed up exploratory data analysis and cell 
clustering. First, this subset was used to create a low-dimensional UMAP representation 
(runUMAPprojection()) and nearest neighbor network (createNearestNetwork()) using the top 25 
PCs. Leiden clustering was then performed with the doLeidenClusterIgraph() function, with 100 
iterations and a resolution parameter of 0.55. The obtained Leiden cluster labels were then mapped back to 
the larger, joint Giotto object through the use of doClusterProjection(), which uses a knn classifier to 
assign a label to each unseen cell by majority vote on the same PCA space (top 25 PC), with ties broken at 
random. Finally, individual Leiden clusters from the whole Giotto object were annotated based on 
differential gene expression information (i.e. known markers) and visual overlap with the original 
annotations provided by 10X Genomics. 

Pairwise cluster results comparison. The average polygon size of each segmentation method was 
calculated by averaging the results of the expanse() function from terra, with the segmentation-specific 
giottoPolygon provided as input. Segmentation-specific cell metadata was extracted from the joint Giotto 
Object by logical indexing of the list_ID column. The cell types comprising each segmentation method 
were identified and put into tabular format to determine occurrence frequency. Percentages of each cell 
type were calculated by dividing the number of occurrences per cell type by the number of polygons in the 
segmentation method.  
 
Imaging Mass Cytometry data processing and analysis 
 
The human lymph node FFPE IMC dataset contains 12 images. First, the 193Ir intensity image, depicting 
nucleic acids, was used for segmentation in QuPath, using the Positive Cell Detection functionality (Non-
default parameters: Background Radius:5, Minimum Area:5, Maximum Area:18, Threshold:5, Smooth 
Boundaries:No). The polygonal data was exported from QuPath as a .geojson file. Intensity images 
corresponding to the following genes were used to create a subcellular Giotto object using 
createGiottoObjectSubcellular(): MX1, Ki67, CD20, CD69, DNA1, Actin, FoxP3, MMP9, 
CXCL13, CD45, Vimentin. The subcellular locations in the Giotto object were subsetted, and centroids 
were calculated for all polygons within the default spatial unit “cell”.  
 
Polygon rescaling analysis. 
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The function rescalePolygons() was used to create a new set of polygons stored in a separate spatial 
unit, “smallcell” (Arguments used: poly_info = “cell”, name = “smallcell”, fx = 0.75, fy = 
0.75, calculate_centroids = TRUE). For both spatial units, overlaps between polygon and feature 
information (i.e. intensities for each antibody representing the genes previously listed) were calculated 
using calculateOverlapPolygonImages(). The features were aggregated by summation per polygon to 
create an expression matrix using overlapImagesToMatrix(). Using the function filterGiotto(), both 
spatial units in the Giotto object were filtered using the same parameters (expression_threshold = 0, 
feat_det_in_min_cells = 10, min_det_feats_per_cell = 2). The expression threshold was left at 
0 in order to preserve the maximum amount of expression information. Expression matrices for each spatial 
unit were normalized with normalizeGiotto() via the pearson_resid method, and PCA dimension 
reductions were performed using runPCA() on the sets of normalized values (scale_unit = FALSE, 
center = FALSE, ncp = 20). UMAPs were calculated with runUMAP() for each spatial unit 
(dimensions_to_use = 1:5), and a shared nearest network was created with the 
createNearestNetwork() function (dimensions_to_use = 1:5). Kmeans clustering was performed on 
the normalized values of each spatial unit with doKmeans() and k = 7 for each spatial unit. Between the 
spatial units, clusters were determined to be corresponding based on the percentage overlap in cell_IDs in 
each cluster. Clusters with maximal overlapping cell IDs were determined to be matching clusters between 
spatial units “cell” and “smallcell”. This was calculated with the convenience function 
showPolygonSizeInfluence(). The results were visualized with spatInSituPlotPoints(). 
 
Multi-omics Visium CytAssist data processing and analysis 
 
Multi-modal integration 
To perform multi-modal data integration, individual modality PCAs and k-Nearest Neighbors were used 
for calculating the weighted matrix and cell-specific modality weights using the method of  Hao, et al 
integrated into the function runWNN(). Both results were stored within the multi-omics slot of the Giotto 
object. The resulting weighted matrix was used for calculating an integrated k-Nearest Neighbor graph by 
using the function runIntegratedUMAP(). Both weighted matrix and integrated kNN graph were used for 
calculating the integrated UMAP that was stored within the dimension reduction slot of the Giotto Suite 
object, and using both RNA and protein feature type names. Finally, the integrated kNN graph was used to 
calculate integrated Leiden clusters using the standard Giotto function doLeidenCluster(). The resulting 
cluster IDs were stored in the cell metadata slot. 
 
Analysis of Human Tonsil dataset 
For RNA modality, a minimum of 1000 features per cell, 50 cells with a feature, and an expression threshold 
of 1 was used for filtering, resulting in the removal of 3 out of  4194 cells and 230 out of 18977 genes. For 
the Protein modality, a minimum of 1 feature per cell, 50 cells with a feature, and an expression threshold 
of 1 were used, none cells nor proteins were removed. Both RNA and protein expression matrices were 
normalized and scaled using a logbase = 2, log_offset = 1, and a scalefactor = 6000. The 
calculation of highly variable features was performed for RNA modality using a Z-score threshold = 
1.5. The HVFs were used for the calculation of the RNA modality PCA, while all 35 proteins were used 
for protein PCA; 100 Principal Components were calculated for both individual modalities. The first 10 
PCs were used for the calculation of individual UMAP, tSNE, and shared nearest neighbors. The resulting 
sNN graphs were used for calculating Leiden Clusters with a resolution of 1. The individual modality PCAs 
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were used for integrating RNA and protein modalities, and then the integrated UMAP and clusters were 
calculated by running Giotto functions runWNN(), runIntegratedUMAP(), and doLeidenClusters() 
respectively. The annotated single-cell dataset from the Atlas of Cells in the Human Tonsil at the annotation 
level 1 and the integrated Leiden clusters were used for the deconvolution of the ST dataset using the 
SpatialDWLS method.  
 
 
 
Stereo-seq data processing and analysis 
 
Bin1 matrix files were downloaded from the CNGB website (see Data and Code Availability for details), 
unzipped using gunzip, and converted into .bgef files using generate_bgef() from the gefpy python 
module (v0.5.4.8). A reader function using the rhdf5 package was written to combine the .bgef 
/geneExp/bin1/expression and /geneExp/bin1/gene datasets into gene detections per bin. These 
values were ingested chunkwise into a duckdb backend as a dbPointsProxy using dbvect(). 
tesselate() was then used to generate two sets of tiled hexagon bin polygons, with diameter of 400 and 
100 units (200 and 50 microns respectively), which were also read into the backend as dbPolygonProxy 
using dbvect(). Finally, calculateOverlap() was run on the dbPolygonProxy and dbPointsProxy 
objects and the overlap results were written to disk using overlapToMatrix() as HDF5Matrix count 
matrices. The matrices and the tesselated polygons were added to a Giotto Object. The expression 
information was filtered and normalized with filterGiotto() and normalizeGiotto(), then 
calculateHVF() was used to find highly variable genes using a randomly sampled 10% subset of the 
dataset. Downstream, further projection strategies were used to speed up analysis. runPCAprojection(), 
runUMAPprojection(), and doClusterProjection() were performed with 25% subsets of the dataset, 
after which the results were projected onto the rest of the dataset. See the script for further details and 
parameters. 
 
Resolution increase, pseudo-aggregation and deconvolution 
A representative region of interest was selected in the mouse brain with subsetGiottoLocs() and 
coordinates x_min = 1000, x_max = 3000, y_min = 9000, and y_max = 12000. Next, a similar workflow 
as for the whole embryo dataset was followed, except with hexagon bin polygons with diameter of 50 units 
(25 µm). In addition, the Leiden cluster results were used to perform niche clustering with 
calculateSpatCellMetadataProportions() and simple kmeans() (k = 12). To identify spatial co-
expression modules a spatial k-nearest neighbor network was created with createSpatialNetwork() and 
parameters k = 10 and maximum_distance_knn = 200. This network was used together with binSpect() to 
identify the top 500 spatial genes  starting from all highly variable genes. These  most spatially variable 
genes were used as input for detectSpatialCorFeats() to compute spatial co-expression modules and 
followed by hierarchical clustering with clusterSpatialCorFeats() and k = 10. Individual spatial co-
expression modules were converted to metafeatures (i.e. metagenes) with createMetafeats() and 
visualized with spatCellPlot(). Next, makePseudoVisium() was used to generate a scale-accurate 
Visium spot array within the region of interest. For deconvolution, spatialDWLS was run using 
runDWLSDeconv() on the pseudo-Visium spots using a previously published developmental mouse brain 
single-cell atlas as a reference dataset for cell typing with the blood cell type removed (see Data and Code 
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Availability for sources). Top single cell markers in this dataset were identified using the 
findMarkers_one_vs_all() function in Giotto Suite using the scran method. 
 
Scalability implementations 
 
Integration of Giotto in the Cloud 
We developed a Docker image compatible with terra.bio available at 
giottopackage/terra_jupyter_suite_modular:latest. The image contains the latest version of Giotto 3.4.0 
which allows running interactive Jupyter notebooks within a customized cloud environment. On the other 
hand, we developed a startup script for running the RStudio app with an automatic Giotto installation, 
available at https://github.com/drieslab/Giotto_Suite_manuscript. 
 
DelayedArray and future.apply Implementation 
We used the HDF5Array package to create a DelayedArray backend. For integrating the HDF5 backend, 
the function createGiottoObject() was adapted to write expression matrices within an on-disk .h5 file 
instead of the Giotto object, while a string with the internal path in the h5 file leading to the matrix was 
stored in the expression slot. Giotto getter and setter functions were adapted to automatically identify the 
HDF5 backend and manage expression information to/from the on-disk file using the chihaya package. 
Additionally, the ScaledMatrix package was used for storing and reading scaled matrices. Analysis 
functions were adapted using the DelayedMatrixStats package to handle DelayedArray calculations. To 
allow parallel operations the future.apply package has been implemented and users can follow the plan() 
guidelines to use the processing (e.g. sequential or multisession) backend of choice.  
 
Subsampling and projection strategies 
To facilitate large-scale principal component analysis, runPCAprojection() and 
runPCAprojectionBatch() were implemented. First, the expression matrix is subsetted by taking a user-
defined percentage of all spatial units (e.g. cells) in a random sampling manner. Next, the downscaled 
expression matrix is used for PCA using the standard implementations in Giotto Suite and results are 
converted to an S3 prcomp class. This is then followed by the projection of the remaining expression matrix 
with predict.prcomp() to the same PCA space. A similar approach is followed by the batch approach, 
except that multiple batches will be performed and aggregated for a final PCA result. To compute UMAP 
coordinates from a large-scale spatial dataset runUMAPprojection() was implemented. First, the 
expression matrix is subsetted by taking a user-defined percentage of all spatial units (e.g. cells) in a random 
sampling manner. Next, the downscaled expression matrix is used with runUMAP() and the UMAP model 
is stored. This UMAP model is subsequently used to transform the remaining expression matrix spatial 
units (e.g. cells) into the same UMAP coordinate space. Finally, doClusterProjection() is implemented 
to transfer annotation labels from spatial units (e.g. cells) to other unseen spatial units that share an identical 
dimension reduction space. For this approach, users can create a smaller Giotto object with one of the 
convenience functions (e.g. subsetGiotto()), cluster the data with their preferred method (e.g. kmeans, 
hierarchical, Leiden, etc), and subsequently provide both the original Giotto object (target) and the smaller 
cluster Giotto object (source) to transfer the obtained labels using a fast k-nearest neighbor approach as 
implemented by the FNN package. 
 
Database and spatial chunking approach 
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dbPointsProxy and dbPolygonProxy are S4 structures that contain dbplyr/dplyr tbls connected to a 
database via DBI. They can be created using dbvect() from specifically formatted data.frames, terra 
SpatVectors, and filepath inputs. In these analyses, the database used was DuckDB. On backend creation, 
connection details are stored in a package-level environment, from which objects can independently retrieve 
connections, allowing them to function in a standalone manner and be encapsulated within larger objects 
similarly to normal in-memory objects. Connection handling for these objects is then abstracted away 
through pool. These representations respond to spatial manipulation generics and can be pulled into memory 
as their corresponding terra objects using as.spatvector(), making them convenient proxies for the data 
that they contain. Spatially chunked processing is implemented through chunkSpatApply(), which plans 
and pulls out chunks of data for up to two inputs and then applies a supplied function, writing the results 
back to the database. Individual geometries are selected during the chunking process using a 𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ≤
 𝑥𝑥 <  𝑚𝑚𝑣𝑣𝑥𝑥 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 filter, ensuring entities are not double-selected. For dbPolygonProxy specifically, 
geometries are selected based on the x and y means of the vertices of each polygon. Utilities for table 
generation with constraints, and chunkwise data ingestion into the database are also provided and allow 
flexible use of different reader, writer, and callback functions. 
 
Embedded Shiny Interactivity  
 
Interactive polygon selection. 
We developed a Shiny gadget that launches a local application to interactively draw multiple regions of 
interest over a Giotto spatial plot, by running the function plotInteractivePolygons(). The spatial plot 
may or not contain a tissue image in the background. The application provides the flexibility to assign 
custom names for each region of interest, as well as multiple or individual colors for the polygons. The tool 
also provides slide bars across the x and y axes to zoom -in and -out over the image. The reactivity feature 
of this interactive plot allows users to draw new polygons on the images, as well as simultaneously retrieve 
the corresponding x and y coordinates to a user-defined variable within the R console. The resulting table 
with coordinates can subsequently be used or integrated within the Giotto Suite object by running the 
functions addGiottoPolygons() and addPolygonCells(). Polygon information can be used for 
downstream analysis such as the comparison of cell type abundance or gene expression patterns within the 
drawn areas by running the functions compareCellAbundance() and comparePolygonExpression(), 
respectively.    
 
Interactive 3D spatial plotting. 
To create an interactive tri-dimensional visualization of 3D spatial datasets the plotly package was used 
within an interactive Shiny application. The implementation runs locally by calling the function 
plotInteractive3D(). The application is reactive to slide bars that modify the lower and upper limits of 
the x, y, z axis creating custom slices across the dataset. Additionally, the plot is reactive to an optional 
selection of cluster IDs listed in the cell metadata table, facilitating the visualization and subsetting of cell 
types of interest. When closing the application, a table containing cell IDs, spatial coordinates, and cluster 
or cell type IDs will be retrieved.  

 
Interoperability 
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Converters between Giotto Suite and other spatial omics packages 
Currently, Giotto objects created within Giotto Suite are interoperable with other spatial omics packages,  
including Bioconductor/SpatialExperiment, Seurat, and AnnData/Squidpy. This promotes a bi-directional 
compatibility of Giotto objects with other ecosystems and simultaneously extends its applications. 
 
For the Bioconductor group of packages, the SpatialExperiment data container is used for storing data from 
spatial-omics experiments. It is designed to handle data from spot-based and molecule-based platforms that 
include spatial coordinates, images, and image metadata, apart from the data already common to 
Experiment classes. Giotto Suite provides two functions giottoToSpatialExperiment() and 
spatialExperimentToGiotto() developed by mapping the slots of the Giotto object to the corresponding 
slots. Briefly, Giotto’s feat_metadata maps to SpatialExperiment’s rowData, expression corresponds to 
assays, cell_metadata to col_Data, dim_reductions to reducedDims, spatial_locs to spatialCoords and 
Images are reflected as imgData. The images in Giotto are technically stored as raster objects and 
SpatialExperiment also supports the same. Giotto handles expression matrices within separate spatial units 
and feature types. The SpatialExperiment object can only store one spatial unit at a time therefore, a list 
of SpatialExperiment objects is returned from the giottoToSpatialExperiment() function, where 
each element of the list corresponds to a distinct SpatialExperiment object for a specific spatial unit. 

Giotto Suite also provides interoperability between Seurat and Giotto. Since Seurat has multiple 
versions in use with differences in object structure, we currently provide interoperability between Giotto 
and both the older and the newer versions of Seurat objects. Therefore, there are four functions tailored for 
these different Seurat versions: giottoToSeuratV4() and seuratToGiottoV4() for the older versions, 
and giottoToSeuratV5() and seuratToGiottoV5() for Seurat v5, which now includes subcellular and 
image information. The v4 functions map Giotto's cell_metadata to Seurat's meta.data, 
dimension_reduction to reductions, feat_metadata from Giotto is mapped to meta.data for each assay in 
Seurat and expression to assays. With v5, additional slots like spatial_loc and images from Giotto are 
mapped to the most relevant slots in Seurat. During the conversion from Giotto to Seurat, Giotto's spatial 
information is stored in Seurat's dimension reduction slot as it does not provide a separate slot for overall 
tissue level coordinates. Images and subcellular information in Giotto are both passed to the images slot of 
the Seurat objects. 

Finally, to support conversions to the AnnData class in Python, the functions anndataToGiotto() 
and giottoToAnnData() were created by mapping the slots of the Giotto object to the corresponding 
locations in a squidpy-flavored AnnData object. In summary, Giotto’s expression slot maps to adata.X, 
spatial_locs to adata.obsm, cell_metadata to adata.obs, feat_metadata to adata.var, dimension_reduction to 
adata.obsm, nn_network and spat_network to adata.obsp. Images are currently not mapped between both 
classes. Of note, the Giotto object stores expression matrices within separate spatial units and feature types, 
while AnnData objects do not support this hierarchical data storage method. Thus multiple AnnData objects 
will be created from a Giotto object when multiple spatial units and feature type pairs exist.  
 
Bento integration and analysis 
To integrate Bento analysis with Giotto, Bento (version 2.0.1) scripts were adapted and updated to ensure 
compatibility with Python 3.10, the current default version utilized in Giotto Suite. These modified Bento 
scripts are also accessible on GitHub at https://github.com/wwang-chcn/bento-tools. For this example, the 
Xenium Breast Cancer dataset was used and subsetted with subsetGiottoLocs() with parameters x_min 
= 0, x_max = 2000, y_min = 0, and y_max = 2000. First, transcripts, cell, and nuclei coordinates 
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information was extracted from the Giotto object. Next, cell and nucleus polygons were re-created in Python 
utilizing the shapely package (v1.8.5.post1) and subsequently stored in a geopandas (v0.10.2)) dataframe. 
A modified AnnData object was created using the bt.io.prepare() function from Bento. Furthermore, 
various APIs were established to invoke Bento's tools and plotting functions for shape features, point 
features, RNAflus, RNAforest, and colocalization analyses. amounting to a total of 12 APIs.  
R Spatial open science integration and analysis. 
To facilitate integration between Giotto Suite and (geo)spatial open science ecosystems we have 
implemented several convenience and interoperability functionality. First, functions and methods from the 
terra package are also available for the derived giottoPoints and giottoPolygon objects. Next, to scale 
up and generalize accessibility for other (geo)spatial classes and dependent packages, we  implemented 
converters between spatial data and sp, sf, terra, and stars objects as as.sp(), as.sf(), as.terra(), and 
as.stars(), respectively. These converters can also be directly applied on giottoPoints and 
giottoPolygon objects to change the underlying data representation. Finally, to make all spatial auto-
correlation statistics and metrics available the functionality from the spdep package is also available through 
the spdepAutoCorr() function. 
 
Spatial resolution enhancement through interpolation and single-cell segmentation. 

Spatial interpolation for spatial variable genes. The 10X Genomics Mouse Brain Coronal Section 
dataset was downloaded and used in this analysis (see Data Availability). createGiottoVisiumObject() 
was used to create a Giotto object, considering only in-tissue spots. Raw data was filtered and normalized. 
createSpatialnetwork() was used to generate a spatial network with the ‘kNN’ method, specifying k=5 
and maximum_distance_knn=400. This spatial network was used to identify spatially variable features 
using binsSpect() or spdepAutoCorr() which makes all metrics and spatial statistics from the spdep 
package available in Giotto Suite. The top 500 spatially variable features were extracted and clustered to 
identify spatial patterns using the spatial co-expression pipeline. Next, the expression levels of each of these 
500 genes were rasterized into 50 row by 50 column terra spatRaster objects (2,500 pixels). To increase 
gene expression resolution a raster of 100 rows by 100 columns (10,000 pixels) was first generated with 
the rast() function from terra and ensuring that extents of both rasters match the extent of the underlying 
polygonal representation of Visium spots. Together, the data was used to create a model using gstat(), 
specifying formula=count~1 and locations=~x+y. This model, together with the high-resolution raster, 
was then provided to the interpolate() function from terra to compute spatial interpolated and higher 
resolved raster objects for each gene (hires images).  

Building and representing a super-resolved Visium dataset. The hires images were first converted 
to a list of giottoLargeImage objects using createGiottoLargeImage(). Alternatively, these high-
resolution images could also be saved as .tif files. The high-resolution H&E image from the dataset was 
segmented using StarDist for QuPath. Polygons with a nucleus area less than 0.0001 px2 or more than 600 
px2 were removed. The polygons were exported from QuPath in a geoJSON format and read into R as 
giottoPolygons using createGiottoPolygonsFromGeoJSON(). The provided scalefactor and spatial 
location data were used to create polygons to represent the original Visium spots. The list of 500 
giottoLargeImages and both sets of polygonal information were fed to 
createGiottoObjectSubcellular(). Expression matrices were created for each spatial unit (i.e. Visium 
Spots and StarDist Cells) using the functions calculateOverlapPolygonImages() and 
overlapImagesToMatrix(). Expression data for StarDist was filtered to remove all cells that did not have 
any expression data from the 500 genes considered in this analysis. Then, each of the expression matrices 
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was normalized. PCA was performed on both expression matrices, and the first 10 PCs were used with 25 
neighbors to calculate a UMAP and shared nearest neighbor network. Finally, the data was clustered using 
kmeans() (k = 12).  
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