
1. Introduction
Globally, irrigation is the largest water use sector, accounting for 70% of freshwater withdrawals (Frenken 
& Gillet,  2012). The role it plays in modifying surface and groundwater systems (Asoka et  al.,  2017; Kustu 
et al., 2011; Leng et al., 2015; Rodell et al., 2018; Scanlon et al., 2012), agricultural productivity (Troy et al., 2015; 
Zaveri & Lobell, 2019), and land-atmosphere interactions (DeAngelis et al., 2010; Kueppers et al., 2007; Kustu 
et al., 2011; Lawston et al., 2020; Lobell et al., 2008; Zeng et al., 2017) is well established in intensively irrigated 
regions across the globe at various spatiotemporal scales. In recognition of the importance of representing the 
human water footprint for a better description of hydrological and biogeochemical processes, a large number of 
modeling studies (Döll et al., 2012; Leng et al., 2014; Nie et al., 2018; Pokhrel et al., 2015; Wada et al., 2014) 
have incorporated irrigation schemes in Earth System Models (ESMs). Despite these advances, uncertainties in 
capturing the subjective on-ground practices, climate and agricultural datasets, or modeling parameterizations 
remain a challenge in capturing the timing, magnitude, and spatial patterns of irrigation water use (Scanlon 
et al., 2018; Wisser et al., 2008; Wada et al., 2017.

Irrigation demand, and the associated surface and groundwater extractions, are highly correlated to climate vari-
ability and crop phenology (Deines et  al., 2017; Nie et  al., 2021; Russo & Lall, 2017). Estimating irrigation 
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demand in response to climate variability is of high importance especially during times of water resource stress 
such as droughts. However, this is often challenging as irrigation applications may vary due to water shortages 
or restrictions while the use of conceptualized irrigation rules within ESMs is limited in representing such cases. 
Modeling efforts have been undertaken to improve the representation of human water use in ESMs, but relatively 
few have focused on characterizing sub-annual and interannual variations of irrigation water use. Specific limi-
tations in the irrigation parameterizations include: (a) ignoring the sources of irrigation withdrawals (Lawston 
et al., 2015; Yilmaz et al., 2014); (b) using static irrigation land use or source water partitions obtained from 
datasets for a specific year (Leng et al., 2014; Pokhrel et al., 2015); (c) irrigating based on a climatologically fixed 
growing season that does not account for management responses to extremes such as drought (Leng et al., 2014; 
Lawston et al., 2015; Yilmaz et al., 2014); and (d) calibrating models using nonphysical parameters that may not 
provide skill in future water use projections (Döll et al., 2012). A few studies that employed the active simula-
tion of vegetation phenology were able to better represent interannual changes in irrigation (Flörke et al., 2010; 
Wu et al., 2018; Zhao et al., 2015). However, significant uncertainties remain in many ESMs in predicting the 
vegetation response to changes in hydroclimate (Ma et al., 2017; Niu et al., 2020; Trugman et al., 2018). Further, 
the reported improvements in the irrigation formulations are either limited to certain vegetation types and crop 
species (Liu et al., 2016) or rely heavily on field level calibration (Li et al., 2021).

Recognizing these limitations, several efforts have incorporated observational constraints of vegetation states 
such as Leaf Area Index (LAI) and vegetation optical depth (VOD) within models through data assimilation, 
aiming to improve the estimates of terrestrial carbon fluxes via combined process-based and data-driven models 
(Demarty et al., 2007; Kumar et al., 2019, 2020; Mocko et al., 2021). These studies have demonstrated improved 
representation of not only vegetation conditions and the associated carbon fluxes, but also soil moisture, stream-
flow, and evapotranspiration (ET), as well as the representation of extreme events (Albergel et al., 2017; Barbu 
et al., 2014; Ines et al., 2013; Kumar et al., 2019; Mocko et al., 2021; Xie et al., 2017). Though crop phenology is 
one of the key factors reflecting the irrigation needs, so far, no studies have quantitatively analyzed the impact of 
assimilating LAI on long-term irrigation estimation, which is the main objective for this study.

In a previous study (Nie et al., 2021), an optimal set of irrigation simulations across the Contiguous United States 
(CONUS) was developed by incorporating time-varying irrigation fraction and source water partitioning datasets at 
5-year intervals into the Noah-MP land surface model. Building upon that, here we investigate whether assimilat-
ing the remote sensing-based LAI product can improve irrigation estimation and the associated water, energy, and 
carbon fluxes for several major irrigated water resource regions. While Nie et al. (2021) established a reasonably 
well-estimated spatiotemporal distribution of irrigation water use, the approach relied on a climatological, monthly 
time-varying green vegetation fraction (GVF) data set, which prescribed vegetation states instead of prognostically 
simulating vegetation growth. That is, the Nie et al. (2021) approach is restricted to the deterministic, diagnostic 
simulation of irrigation impacts on vegetation states, as opposed to approaches integrated with an active vegetation 
model with forecast and projection capabilities. The use of the climatological vegetation data also restricts the ability 
to simulate the interannual changes in irrigation water use influenced by corresponding vegetation changes.

In this study, our primary goal is to evaluate the benefit of assimilating remote sensing-based LAI to improve the 
prognostically represented irrigated vegetation phenology and the interactive impact of vegetation phenology and 
irrigation on associated fluxes. To isolate these impacts, we perform simulations with and without assimilating 
LAI and simulations with and without irrigation actively represented. Irrigation estimates from USGS water use 
reports and satellite-derived estimates of surface soil moisture, ET, and gross primary production (GPP) are used 
to evaluate the simulations. Quantifying the influence of assimilating vegetation states in improving irrigation 
is important because an effective correction in vegetation conditions and the associated irrigation scheduling 
has the potential to reduce the dependency and sensitivity of irrigation formulations on empirical and simplistic 
parameterizations. The use of vegetation remote sensing information provides a generalized, globally applicable 
approach to prescribe irrigation onset and water use estimation within models.

2. Methods
2.1. Model Configuration

All simulations are conducted using the Noah-MP LSM (Niu et al., 2011), Version 4.0.1, implemented within 
the framework of the NASA Land Information System (LIS; Kumar et al., 2006) (open source software available 



Journal of Advances in Modeling Earth Systems

NIE ET AL.

10.1029/2022MS003040

3 of 14

at https://github.com/NASA-LIS/LISF). Noah-MP is applied in offline mode (not coupled to an atmospheric 
model) at 0.125° spatial resolution over the CONUS region for period 2003–2019 after a 55-year spin-up, and is 
driven by the meteorological inputs from North America Land Data Assimilation System Phase 2 (NLDAS2; Xia 
et al., 2012). The model is configured using the Moderate Resolution Imaging Spectroradiometer–International 
Geosphere Biosphere Program (MODIS-IGBP; Friedl et al., 2010) land cover data set at 1 km, the machine learn-
ing based 250-m soil property and class data set generated at the International Soil Reference Information Centre 
(ISRIC; Hengl et al., 2017), and the Multi-Error-Removed Improved-Terrain (MERIT; Yamazaki et al., 2017) 
elevation at 3-arcsec spatial resolution. MERIT elevation map is developed to eliminate major error components 
such as stripe noise and speckle noise based on the NASA Shuttle Radar Topography Mission (Farr et al., 2007). 
In this study, the prognostic vegetation module (Dickinson et  al.,  1998) is enabled, along with a Ball-Berry 
photosynthesis-based stomatal resistance scheme (Ball et al., 1987; Bonan, 1996; Collatz et al., 1991), to simulate 
the carbon uptake and allocation among leaf, stem, wood, and root. LAI is calculated from leaf carbon mass by 
multiplying by the specific leaf area, which is a vegetation type dependent parameter. The greenness vegetation 
fraction (GVF), which divides a grid cell into a fractional vegetated area and a fractional bare ground area, is 
derived from LAI based on the following function:

GVF = 1 − 𝑒𝑒
−0.52LAI (1)

GVF is an important variable in Noah-MP, which plays an essential role in representing vegetation conditions, 
partitioning evapotranspiration into different components, and determining the timing and amount for irrigation. 
Rather than prescribing GVF as a vegetation parameter, which is widely applied in other land surface modeling 
applications, here GVF is updated based on LAI within the prognostic vegetation module. This is critical for 
places with intensely irrigated agriculture as the interaction among the prognostic vegetation module, the irriga-
tion scheme, and data assimilation enables the model to simulate the interannual variability of irrigation water 
use. This in turn, can influence the subsequent vegetation growth and soil moisture conditions.

2.2. Irrigation in Noah-MP

The irrigation scheme was originally built into Noah-MP based on a soil moisture deficit approach (Ozdogan 
et al., 2010) and further adapted by Nie et al. (2018, 2021) to account for the spatiotemporal variability of irri-
gation area and source water partitioning. For simulations with irrigation, the irrigation water use is estimated 
based on four rules: (a) where to irrigate; (b) when to irrigate; (c) how much water to irrigate; and (d) what are 
the irrigation sources (i.e., surface water vs. groundwater irrigation).

The MODIS Irrigated Agriculture Data set for the United States (MIrAD-US; Brown & Pervez, 2014), updated 
every 5 years, is used to provide the percentage of irrigated area within each model grid cell. It is used in combi-
nation with the MODIS-IGBP land cover map to restrict the irrigatable area within certain land cover types such 
as croplands and grasslands.

The timing of irrigation is determined by using a vegetation threshold parameter (𝐴𝐴 GVFTS ). Whenever the GVF 
value exceeds 𝐴𝐴 GVFTS , the period is defined as the effective growing season during which irrigation can occur if 
other criteria are satisfied. 𝐴𝐴 GVFTS is calculated as:

GVFTS = GVFmin + (𝐴𝐴 + 𝐵𝐵 ⋅ (GVFmax − GVFmin)) ⋅ (GVFmax − GVFmin) (2)

in which 𝐴𝐴 GVFmax and 𝐴𝐴 GVFmin are the maximum and minimum GVF with respect to long-term climatology 
(2003–2019 in this study), representing the long-term range of the vegetation greenness for each grid cell. 𝐴𝐴 𝐴𝐴 and 

𝐴𝐴 𝐴𝐴 are user-identified vegetation parameters used to control the range of GVF for which irrigation is triggered.

During the effective growing season, the model checks the plant accessible root zone soil water amount (𝐴𝐴 SWSavail ) 
at 6 a.m. local time every day and if 𝐴𝐴 SWSavail is dryer than a soil moisture deficit threshold, C, irrigation will be 
triggered. 𝐴𝐴 SWSavail is estimated as:

SWSavail =

𝑙𝑙root
∑

𝑖𝑖=1

𝜃𝜃𝑖𝑖 ∗ RD𝑖𝑖 −

𝑙𝑙root
∑

𝑖𝑖=1

𝜃𝜃𝑤𝑤 ∗ 𝑅𝑅𝑅𝑅𝑖𝑖

𝑙𝑙root
∑

𝑖𝑖=1

𝜃𝜃𝑐𝑐 ∗ RD𝑖𝑖 −

𝑙𝑙root
∑

𝑖𝑖=1

𝜃𝜃𝑤𝑤 ∗ 𝑅𝑅𝑅𝑅𝑖𝑖

 (3)
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in which 𝐴𝐴 𝐴𝐴𝑖𝑖 and 𝐴𝐴 RD𝑖𝑖 are the soil moisture content and rooting depth at the ith soil layer respectively, 𝐴𝐴 𝐴𝐴𝑤𝑤 is the 
wilting point and 𝐴𝐴 𝐴𝐴𝑐𝑐 is the field capacity for the corresponding soil type in the grid cell. 𝐴𝐴 𝐴𝐴root is the number of soil 
layers that the rooting depth has reached, where the rooting depth is estimated as:

RD = GVF ⋅ RDmax (4)

𝐴𝐴 RDmax is the maximum rooting depth as a function of the crop type, and in our simulation, it is set to 1.2 m in the 
representation of the generic row crops. Note that vegetation related parameters A, B and soil moisture related 
parameter C are all determined in a benchmark simulation described in Section 2.4.

Once irrigation is triggered, the irrigation amount required to bring the current root zone soil moisture condition 
up to field capacity is calculated. The irrigation rate (𝐴𝐴 𝐴𝐴irrig ) is then estimated by distributing the amount evenly 
during the irrigation occurring period (𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ), which is set to be local time 6–10 a.m.:

𝑄𝑄irrig =

𝑙𝑙root
∑

𝑖𝑖=1

(𝜃𝜃𝑐𝑐 − 𝜃𝜃𝑖𝑖) ∗ 𝑅𝑅𝑅𝑅𝑖𝑖

𝑡𝑡irrig

 (5)

To allocate surface water and groundwater sources to irrigation demand, the USGS-based groundwater irrigation 
percentage datasets (https://water.usgs.gov/watuse/data/), updated every 5 years, are used to generate the ground-
water irrigation ratio (𝐴𝐴 GWratio ) for each grid cell, and the groundwater storage (WA) at time t is then updated by:

WA𝑡𝑡 = WA𝑡𝑡−1 −𝑄𝑄irrig ∗ GWratio ∗ ∆𝑡𝑡 (6)

in which 𝐴𝐴 ∆𝑡𝑡 is the model time step, which is set to be 15 min.

2.3. LAI Data Assimilation

The one-dimensional Ensemble Kalman Filter (EnKF; Reichle et  al.,  2002) is used to assimilate LAI into 
Noah-MP. The assimilation update is determined by the relative uncertainty between the LAI observations and 
the model ensemble:

𝑋𝑋
𝑖𝑖

𝑇𝑇+
= 𝑋𝑋

𝑖𝑖

𝑇𝑇−
+𝐾𝐾𝑇𝑇

(

𝑍𝑍
𝑖𝑖

𝑇𝑇
−𝐻𝐻𝑇𝑇𝑋𝑋

𝑖𝑖

𝑇𝑇−

)

 (7)

in which 𝐴𝐴 𝐴𝐴
𝑖𝑖

𝑇𝑇−
 and 𝐴𝐴 𝐴𝐴

𝑖𝑖

𝑇𝑇+
 are the ith ensemble member of the state vectors before and after the assimilation update, 

respectively. 𝐴𝐴 𝐴𝐴
𝑖𝑖

𝑇𝑇
 is the observation vector that is assimilated into the model. 𝐴𝐴 𝐴𝐴𝑇𝑇  is an operator that converts the 

model states to observation space. The Kalman gain matrix 𝐴𝐴 𝐴𝐴𝑇𝑇  determines the relative weights of uncertainties 
in the model and LAI observations.

The uncertainty of the model is estimated from an ensemble of model simulations, developed by applying small 
perturbations to three meteorological fields (i.e., precipitation (P), incident shortwave (SW) and longwave (LW) 
radiation) and LAI state variable following Kumar et  al.  (2019). Time series correlations are imposed via a 
first-order regressive model (AR(1)) with a timescale of 1 day for both forcing fields and LAI state. Cross correla-
tions of the perturbations are set within the forcing fields based on known associations between these components 
(Reichle et al., 2007). For instance, a positive perturbation to SW tends to be associated with negative perturba-
tions to LW and P. Additive perturbation with a standard deviation of 0.01 (−) is applied for both modeled and 
observed LAI fields. A summary of the perturbation settings is listed in Table 1. Note that after LAI gets updated 
by data assimilation, the leaf biomass is updated by dividing the LAI with the specific leaf area, and the GVF is 
also updated based on Equation 1.

2.4. Experimental Design

In this study, the two vegetation parameters (A and B) and one soil moisture parameter (C) for the domain are 
defined based on Nie et al. (2021), in which the simulated irrigation water use was evaluated against the USGS 
water use report for 2005, 2010, and 2015 at state level. Besides, annual irrigation water use for 2002–2017 and 
its response to climate variability were evaluated for the four most intensively irrigated states (i.e., California, 
Texas, Kansas, and Mississippi) where year-by-year irrigation water reports are available. In this configuration, 

https://water.usgs.gov/watuse/data/
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the prognostic phenology module is turned off, and the climatological monthly time-varying GVF data sets 
derived from MODIS-NDVI are used to inform the timing of the growing season to trigger irrigation. This set of 
irrigation parameters is then used in the following two sets of experiments with the prognostic phenology scheme 
turned on:

Open Loop Experiments (OL and OLirr): The model is run without assimilating any vegetation observations. Both 
experiments are run with prognostic phenology module, but with irrigation turned off for OL and on for OLirr.

MODIS-Based LAI Assimilation (DA and DAirr): In the DA and DAirr experiments, the gap-filled and interpo-
lated daily LAI retrievals obtained from the MODIS-MCD15A2H Version 6 product (Myneni et al., 2015) are 
assimilated into Noah-MP. An ensemble size of 20 is generated by applying perturbations to three meteorological 
fields (i.e., precipitation, incident shortwave, and longwave radiation) and LAI state variable following Kumar 
et al. (2019). Irrigation is turned off for DA and on for DAirr.

We first compare the simulated and USGS reported irrigation water amount at the state level to see the influence 
of LAI assimilation on irrigation estimation. USGS-based irrigation estimates for 2005, 2010, and 2015 are used 
as the reference datasets for evaluation. We then compare the two sets of simulations to investigate the isolated 
and combined impact of irrigation and LAI assimilation on the water, energy, and carbon fluxes for irrigation 
managed regions. Datasets utilized for this evaluation include: (a) the 1 km gridded soil moisture data derived 
from the Soil Moisture Active Passive (SMAP) Level 2 Enhanced soil moisture product (Chan et  al.,  2018) 
covering the period of 2015–2019 using the Thermal Hydraulic disaggregation of Soil Moisture (THySM) (Chen 
et al., 2022; Liu et al., 2022) approach; (b) the gridded 5 km daily Atmosphere-Land Exchange Inverse (ALEXI; 
Anderson et al., 2007) evapotranspiration for the period of 2003–2019; and (c) the gridded 5 km daily estimates 
of GPP from FluxSat (Joiner et al., 2018) for the period of 2003–2019. It should be noted that the FluxSat GPP 
product uses MODIS reflectance information along with remote sensing-based solar induced fluorescence cali-
brated to ground measurements. Similarly, the THySM product is derived based on combining thermal inertia 
theory and soil infiltration process that utilizes the land surface temperature and NDVI from MODIS and soil 
texture from ISRIC to enhance SMAP's original spatial resolution. The version of ALEXI ET data used here 
relies on time differential land surface temperature from geostationary satellites. Although these reference data-
sets may contain some common information to that of MODIS LAI datasets assimilated in this study, they also 
incorporate other unique information as indicated above, which is independent from LAI.

3. Results
3.1. Irrigation Water Amount

For this study, we select nine water resource regions for analyses, covering the most intensively irrigated area 
with wide variety in source water partitioning (Figure 1). The Lower Mississippi Region (LMR), the High Plains 
across the Missouri Region (MR), the Arkansas-White-Red Region (AWRR), and the Texas Gulf region (TGR) 
include intensively irrigated areas primarily supported by groundwater pumping for irrigation. The western 
regions including the Central Valley in California Region (CR), the Pacific Northwest Region (PNR) along the 
Snake River, and the eastern regions with smaller irrigation extent including the Great Lakes Region (GLR), 

Variable Type Standard deviation Temporal correlation Perturbation cross-correlations

Met-forcings SW LW P

 SW M 0.2 (dimensionless) 1 day 1 −0.5 −0.8

 LW A 30 W m −2 1 day −0.5 1 0.5

 P M 0.5 (dimensionless) 1 day −0.8 0.5 1

LSM States

 LAI A 0.01 m 2 m −2 1 day

Note. Multiplicative (M) or Additive (A) perturbations are applied to incident shortwave radiation (SW), incident longwave 
radiation (LW), precipitation (P), and leaf area index (LAI).

Table 1 
Ensemble Perturbation Parameters in the Assimilation Simulations
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Upper Mississippi Region (UMR), and South Atlantic-Gulf region (SAGR) are supported by a mix of both 
surface and groundwater irrigation.

We first compare the simulated and USGS reported irrigation water use from groundwater and surface water for 
the top 10 irrigated states for the years 2005, 2010, and 2015 (Figure 2). Compared to USGS reports, DAirr in 
general better captures the magnitude and relative distribution of irrigation amount across different states than 
OLirr. With the default prognostic phenology scheme, OLirr estimates much larger irrigation water use, especially 
for Texas. A plausible explanation for this overestimation is that Noah-MP has large errors in the seasonal evolu-
tion of vegetation phenology due to the simplified parameterization of growth characteristics and the stomatal 
response to stresses, reported in previous studies (Liu et al., 2016; Niu et al., 2020). The limitations in capturing 
the magnitude and phase of vegetation growth in OLirr influence vegetation and root zone soil moisture estimates 
in the model, which then impact the calculation of the amount of irrigation to be applied. As a result, the defi-
ciencies in the GVF and root zone estimates in OLirr lead to degradations in the irrigation water use estimates. 
By assimilating LAI, DAirr reduces the irrigation water use estimates for nine out of 10 states while increasing 
the estimation for Nebraska. The relative irrigation usage across these 10 states in DAirr is then much closer to 
the reported estimates. Note that the simulated quantities are still lower than the USGS estimates because the 
irrigation approach adopted by the model does not account for off-field losses and other inefficiencies. Besides, 
since the USGS report has its own uncertainties relating to data collection and quality control methods, its limited 
temporal coverage under such uncertainties does not allow for an evaluation of the irrigation use in terms of its 
interannual variability.

As of 2015, the USGS report began to provide consumptive irrigation water use estimates, which serve as a more 
comparable reference to the simulated water use. We regress the simulated state-level irrigation water amount 
from OLirr and DAirr onto the USGS consumptive water use and we find that the regressed model with DAirr can 
explain 79% of the variance as compared to OLirr with only 69%. The OLirr simulated water use regressed on the 
reported consumptive use has a slope of 𝐴𝐴 1.32 ± 0.27 at 95% confidence interval, indicating that on average the 
model may overestimate by about 5%–59% relative to consumptive use reports, with a significance test indicating 
that the slope is different from 1. DAirr, on the other hand, provides a closer statistical match to the USGS reports 
with a slope of 0.97 𝐴𝐴 ± 0.15 , closer to the value of 1. The slope estimation of one indicates that the scale of water 
use among states between the USGS reports and the simulation is comparable. We also estimate the Pearson's 
correlation coefficient between the simulated and USGS water use to examine the spatial match and we find that 
DAirr leads to correlation increasing from 0.83 for OLirr to 0.89, but this difference is not statistically significant. 
These results underscore large uncertainties in irrigation water use estimation when relying on the prognostic 
phenology scheme within Noah-MP and highlight the value of assimilating LAI to constrain the irrigation simu-
lation by correcting for the vegetation conditions. Further, the use of remote sensing LAI constraints also provides 
comparable and even better performance against the approach of prescribing vegetation conditions using monthly 
time-varying GVF data sets.

Figure 1. Distribution of irrigated area and groundwater irrigation. Panel (a) shows the long-term averaged irrigation fraction from the MODIS Irrigated Agriculture 
Data set for the United States upscaled from a spatial resolution of 250 m to the model resolution of 0.125° along with the water resource regions and panel (b) shows 
percent of irrigation from groundwater derived from the USGS water use report data given at county level.
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3.2. Surface Soil Moisture

Surface soil moisture is directly affected by both vegetation water uptake and irrigation, the signal of which 
can be retrieved from satellite measurements. To investigate the isolated and combined impact of irrigation and 
LAI assimilation on surface soil moisture distributions for actively irrigated areas, we use the Kullback-Leibler 
divergence (KLD; Kullback & Leibler, 1951) metric, a statical measure of the difference in two probability distri-
butions. Here we use it to compare the probability distribution differences between THySM surface soil mois-
ture retrievals and the simulations for period 2015–2019. Note that the climatological seasonal cycle has been 
removed from the daily surface soil moisture before estimating KLD. Figure 3a shows the KLD of OL relative to 
THySM, with smaller values indicating closer agreement in the soil moisture distributions of OL and THySM, 
whereas larger KLD values indicate locations where they differ. Panels 3b–3d show the differences in KLD from 
various integrations relative to that from OL. In these panels, negative values of KLD differences indicate areas 
where there is a closer match with THySM. Conversely, positive values of KLD differences indicate locations 
where the respective integration worsens the level of agreement with THySM (relative to that in OL). Despite its 
tendency to overestimate irrigation amount, OLirr leads to a better match with THySM over most of the irrigated 
areas compared to OL except for the western part of High Plains and Florida, which may stem from the mismatch 
in irrigation timing between the simulation and signals detected by THySM. This suggests that simulating irri-
gation can substantially affect the surface soil moisture anomaly distribution, and part of these irrigation signals 
are consistent with the estimates from the THySM product. For DA, improvements are only seen in Missouri 

Figure 2. Comparison between simulated and USGS-reported irrigation water use. Panels (a, c, and e) show the simulated and USGS-reported groundwater and 
surface water irrigation amount for the top 10 irrigated states, selected and ranked based on USGS total irrigation amount for 2005, 2010, and 2015; panel (b and d) 
show the scatter plot of simulated total against USGS consumptive irrigation amount for 2015, along with (f) listing the statistics from linear regression and correlation 
analysis.
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and California, likely due to a correction of vegetation phase, while it leads to degradation in other regions. By 
constraining irrigation via assimilating LAI, DAirr leads to overall largest improvements over California, followed 
by Pacific Northwest and Missouri. Note that irrigation signals with smaller amount of water applied and at 
scales smaller than ∼9 km resolution are likely to be undetectable by SMAP (Lawston et al., 2017), limiting the 
utility of THySM product in representing the influence of irrigation on soil moisture conditions in such areas. 
Such representativeness limitations likely contribute to the mixed results found over the southern High Plains 
including Arkansas-White-Red and TGR. Additionally, THySM may observe faster soil moisture dry downs due 
to tile drainage in places like Midwest. Artificial drainage is not currently represented in the model, so assimilat-
ing LAI may drive simulated surface soil moisture further from THySM via modification of the vegetation and 
soil moisture interaction.

3.3. Evapotranspiration (ET)

To investigate the impact of LAI assimilation and irrigation on ET, we compare the four simulations for actively 
irrigated grid cells in each water resource region. The actively irrigated areas are divided into three classes: (a) 
lightly irrigated areas, where the irrigation fraction is lower than 20%; (b) moderately irrigated areas, where the 
irrigation fraction is within 20%–50%; and (c) heavily irrigated areas, where the irrigation fraction is greater than 
50% (Figure 1a). Figures 4a–4f shows the correlation (R) and bias (BIAS) for simulated ET compared against 
ALEXI ET data set. DAirr increases the correlation especially for the heavily irrigated category, with the median 
of the R improvement ranging from 0.07 to 1.1. The greatest improvement again is found for California with irri-
gation fraction greater than 50%, where the median of R increases from −0.21 in OL to 0.9 in DAirr. However, the 

Figure 3. Impact of irrigation and leaf area index assimilation on surface soil moisture. Panel (a) shows the Kullback-Leibler divergence (KLD) estimates for OL 
against the THySM soil moisture retrievals, and panel (b–d) show the difference of KLD between OL against THySM and the other three simulations against Thermal 
Hydraulic disaggregation of Soil Moisture (THySM), respectively. Cool colors indicate a closer match with THySM while warm colors indicate larger differences with 
THySM.
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impacts of either OLirr or DA, in this case, are limited. In general, OL tends to underestimate ET for most of the 
regions, while DAirr reduces the BIAS, in particular for Pacific Northwest, California and TGR, by an average of 
14–35 mm/mo. Note that the improvement from DAirr is not purely due to a fortuitous correction of a model bias. 
Over the Lower Mississippi and South Atlantic-Gulf, OLirr overestimates ET which is also improved by DAirr by 
reducing the amplitude of LAI. On one hand, LAI affects the irrigation demand via root depth parameterization, 
thus impacting ET by altering the water supply. On the other hand, LAI determines GVF, which affects ET by 
altering the evaporation and transpiration partitioning.

The contribution of DAirr in improving the ET estimation stratified by dry, wet, and normal conditions are exam-
ined in Figures 4g–4l. The dry, wet, and normal years are defined as the z-score of the annual total precipitation 
less than −1, greater than 1, and in between, respectively within the period 2003–2019. Overall, the impact of 
DAirr is generally insensitive to these moisture-based stratifications. Nevertheless, some instances of the influ-
ence of climate conditions are also observed in these results. For example, DAirr exhibits greater improvements in 
ET correlation in dry years, with median correlation increased by 0.22 compared to OL across the nine regions, 
while the median increase is only by 0.1 for normal and by 0.08 for wet conditions. The greatest improvements 
are particularly found for Missouri and Great Lakes. The general contribution toward reducing biases, however, 
is similar regardless of the three moisture regimes. Overall, the combination of LAI assimilation and irrigation 
provides beneficial impacts in improving the magnitude and seasonal dynamics of ET, especially for intensively 
irrigated areas.

3.4. Gross Primary Production (GPP)

The same metrics as in the ET evaluation are used to examine the simulated impact on gross primary product 
compared against the FLUXSAT GPP product (Figures 5a–5f). For most of the irrigated regions, the improve-
ments in GPP are mainly attributed to LAI assimilation rather than irrigation. OLirr provides marginal impacts 
on GPP in most cases while assimilating LAI leads to substantial improvements in terms of R and BIAS for all 
regions across different irrigation intensity classes. The largest improvements take place over Missouri, Texas 
Gulf, Upper, and LMR, with median R increasing by 0.27, 0.29, 0.34, and 0.37 accounting for all irrigated areas, 

Figure 4. Impact of irrigation and leaf area index assimilation on evapotranspiration. Panel (a–f) show boxplots of the correlation (R) and BIAS averaged over actively 
irrigated areas for nine water resource regions with low (left column), moderate (middle column), and high (right column) irrigation fraction intensities for the OL, 
OLirr, DA, and DAirr simulations. Panel (g–l) show boxplots of R and BIAS averaged over actively irrigated areas for nine water resource regions stratified by dry (left 
column), normal (middle column), and wet (right column) conditions determined by precipitation anomalies.
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respectively. These improvements are mainly achieved by correcting for the seasonal phase of LAI, leading to 
an earlier onset of growing seasons. For these regions, DAirr has additional, but marginal improvements on top 
of assimilating LAI. However, it is interesting to note that for heavily irrigated Pacific Northwest and Califor-
nia, DA alone does not dramatically improve the simulation of the seasonal variation of GPP (Figure 5c). The 
simultaneous use of irrigation and DA (DAirr), on the other hand, provides more significant improvements. This 
indicates that an irrigation routine, in combination with assimilating observed vegetation conditions, plays a 
vital role in improving the simulation of carbon fluxes. The fact that DAirr outperforms OLirr also indicates that, 
besides a direct impact on carbon flux via assimilating LAI, the assimilation serves a critical role in supporting 
a better representation of irrigation processes. Interestingly, when categorized by precipitation anomalies, DAirr 
shows greater capability in reducing GPP bias in normal to wet years for Upper Mississippi and Great Lakes, 
with the median of the BIAS further reduced by 7%–25% for the two regions as compared to that in dry years 
(Figures 5j–5l). However, the contribution on the correlation is not sensitive to climate conditions (Figures 5g–5i).

4. Discussion and Conclusions
This study investigates the role of assimilating remotely sensed LAI into the Noah-MP land surface model in 
improving the estimation of irrigation water use and associated fluxes. Results suggest that assimilating LAI to 
inform irrigation scheduling and demand estimation leads to significant improvements in the spatial distribution 
and magnitude of irrigation water use estimates when regressed to the USGS reported consumptive water use. 
It improves the simulated temporal evolution of surface soil moisture, ET, and GPP, with the median correlation 
increasing between 0.1–1.1 and 0.3–0.6 for ET and GPP, respectively, for heavily irrigated areas. The combi-
nation of irrigation and LAI data assimilation also effectively reduces the BIAS by 14–35 mm mo −1 for ET 
and 10–82 g m −2 mo −1 for GPP for heavily irrigated areas. Large improvements found in California and PNR 
imply that capturing the vegetation variability and representing irrigation is crucial to better capture the seasonal 
dynamics of soil moisture and carbon fluxes for Mediterranean-like climate zones, as better vegetation seasonal-
ity supports better identification of irrigation time window, at which the applied water source is a major contribu-
tor to vegetation transpiration and soil evaporation. This, in turn, improves the vegetation phenology by providing 
more reliable water stress conditions. Besides, the large improvements in simulating water-energy-carbon fluxes 
in CR can be valuable in aiding water management and planning considering its role as the largest irrigation 
water consumer across CONUS facing challenges such as frequent drought, water shortages, and sustainable 

Figure 5. Same as Figure 4, but for gross primary production.
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groundwater use. Integrating models and satellite observations for irrigation estimation also reduces uncertainties 
as compared to single source satellite-based irrigation estimation as the satellite estimation contains noises and 
errors in its raw data, along with its uncertainties in the underlying retrieval algorithms (Foster et al., 2020). Our 
results demonstrate the effectiveness of utilizing satellite observed vegetation conditions to overcome the model 
errors in simulating vegetation phenology and the potential to compensate for simplified irrigation parameteriza-
tion to improve the spatiotemporal variation of irrigation in response to climate and agricultural land use change. 
Such information is essential for more informed management of global freshwater withdrawals and benefit the 
understanding of anticipate climate change impacts on future water availability. It could also support impact 
studies for human-water interactions such as irrigation in response to extremes. This approach can be incorpo-
rated into other land surface models and applied to irrigated regions over the globe. The strategy of assimilating 
LAI to constrain irrigation simulation is especially beneficial over regions where ground-based irrigation data 
and related measurements are not available for irrigation calibration. However, the effectiveness of such strategy 
would heavily rely on the capability of the remotely sensed measurements in detecting irrigation signals at the 
targeted spatial scale.

While the approach presented here can reasonably capture the pattern of irrigation estimation and its impact on 
fluxes for CONUS, reliable estimation of its sub-monthly variation remains challenging as the timing of irri-
gation in our scheme, which is determined by vegetation threshold parameter, coincides more with particularly 
vulnerable growth stages and irrigation is absent in early stages of the crop season before LAI reaches the thresh-
old. Moreover, large uncertainties still exist for irrigation estimation globally due to the utilization of different 
irrigation area data sets, weather drivers, crop representations, and irrigation approaches (Scanlon et al., 2018; 
Wisser et al., 2008; Wada et al., 2017). Continuing improvements to reduce uncertainties for these aspects should 
remain a priority as this may further enhance the benefit of LAI assimilation-informed irrigation. Finally, our 
study identifies better model performance in western and central CONUS, while capturing the seasonal and inter-
annual variations in energy and carbon fluxes over irrigated regions in the eastern U.S. remains a challenge. This 
is likely due to the limitation of the spatial resolution from both the model input and remote-sensing constraints 
in capturing irrigation detail in eastern U.S. irrigated fields, which have smaller irrigation extent, lower irrigated 
density, and supplementary irrigation signal compared to rainfall variability. This might be addressed through 
multivariate joint data assimilation to better constrain irrigation estimates. For instance, approaches to introduce 
soil moisture related constraints within irrigation formulations (e.g., Felfelani et al., 2018) indicate that the joint 
use of moisture and vegetation constraints also may be a fruitful future direction. Overall, our study demonstrates 
the strong influence that vegetation condition has in parameterizing irrigation and the effectiveness of assimilat-
ing LAI to an advanced land surface model in improving irrigation formulation and the associated water, energy, 
and carbon cycles in response to irrigation. Capturing these features is important for water resource assessment 
and for simulating human influence on land-atmosphere interactions in coupled land to weather and climate 
models.

Data Availability Statement
The modeling platform LIS along with Noah-MP land surface model used for this research is an open-source 
software available at https://github.com/NASA-LIS/LISF. Different datasets used for model evaluation are avail-
able from the following websites: MCD15A2H LAI: https://lpdaac.usgs.gov/products/mcd15a2hv006/; USGS 
Water Use Report: https://water.usgs.gov/watuse/data/; THySM available through USDA NASS: https://nassgeo.
csiss.gmu.edu/CropCASMA/; FLUXSAT: https://avdc.gsfc.nasa.gov/pub/tmp/FluxSat_GPP/; ALEXI ET and 
the model output relevant to this work are available through the Johns Hopkins Data Archive (DOI: https://doi.
org/10.7281/T1/RECXQW).
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