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Abstract

The indiscriminate use of chemical pesticides increasingly harms the health of living beings

and the environment. Thus, biological control carried out by microorganisms has gained

prominence, since it consists of an environmentally friendly alternative to the use of pesti-

cides for controlling plant diseases. Herein, we evaluated the potential role of endophytic Tri-

choderma strains isolated from forest species of the Cerrado-Caatinga ecotone as

biological control agents of crop pathogenic fungi. Nineteen Trichoderma strains were used

to assess the antagonistic activity by in vitro bioassays against the plant pathogens Colleto-

trichum truncatum, Lasiodiplodia theobromae, Macrophomina phaseolina, and Sclerotium

delphinii isolated from soybean, cacao, fava bean, and black pepper crops, respectively. All

Trichoderma strains demonstrated inhibitory activity on pathogen mycelial growth, with max-

imum percent inhibition of 70% against C. truncatum, 78% against L. theobromae, 78%

against M. phaseolina, and 69% against S. delphinii. Crude methanol extracts (0.5 to 2.0 mg

mL-1) of Trichoderma strains were able to inhibit the growth of C. truncatum, except Tricho-

derma sp. T3 (UFPIT06) and T. orientale (UFPIT09 and UFPIT17) at 0.5 mg mL-1, indicating

that the endophytes employ a biocontrol mechanism related to antibiosis, together with mul-

tiple mechanisms. Discriminant metabolites of Trichoderma extracts were unveiled by liquid

chromatography-tandem mass spectrometry-based metabolomics combined with principal

component analysis (PCA), which included antifungal metabolites and molecules with other

bioactivities. These results highlight the biocontrol potential of Trichoderma strains isolated

from the Cerrado-Caatinga ecotone against crop pathogenic fungi, providing support for

ongoing research on disease control in agriculture.
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Introduction

Diseases caused by fungi are among the most harmful to plants due to their rapid spread and

the ability to adapt to various environmental conditions [1]. The most commonly used meth-

ods for the control of plant diseases caused by fungi include the use of chemical fungicides [1,

2], which have disadvantages such as the potential risk of soil and water contamination, dam-

age to human health, and the development of resistance against fungicides by plant pathogens

[2, 3].

Research on alternative methods of controlling fungal diseases has been widely developed,

often requiring the integrated implementation of several methods, known as integrated disease

management (IDM) [2, 4]. Among these methods are the use of disease-resistant cultivars,

adequate water and soil management, fertilization, crop rotations, and biological control

agents (BCA), aiming to maintain or increase agricultural production with a reduced applica-

tion of chemical agents [5]. Many studies still need to be developed for the use of biological

control of plant pathogens on a global scale, since biopesticides represent only approximately

2% of all pesticides sold in the world [6, 7].

A promising alternative method for plant pathogen control is based on the use of antagonis-

tic microorganisms, such as endophytic fungi, capable of protecting their hosts from the action

of pathogens [8, 9]. These microorganisms live inside plant tissues without causing damage in

a complex mutualistic relationship, where endophytes receive nutrients and protection, while

plants have advantages, such as greater resistance in environments with intense stress caused

by biotic (insects, herbivores, nematodes, and phytopathogenic microorganisms) or abiotic

factors (pH, temperature, drought and saline stresses, etc.) [10, 11].

Recent research has revealed that although endophytic microorganisms have received

global interest, there are still several gaps in knowledge, such as the different biomes explored

[12]. Considering that endophytes depend on host species and environmental conditions, the

diversity of biomes and endemic plants found in Brazil represents a potential source of new

beneficial microbial resources [13]. In this context, the Cerrado-Caatinga ecotone stands out

[14], which corresponds to the transition area where ecological communities or ecosystems

from the Cerrado and Caatinga biomes coincide [15].

The Cerrado and Caatinga biomes are recognized for their great importance. The Cerrado,

also known as the Brazilian savanna, is one of the 25 biodiversity hotspots for conservation pri-

orities in the world [16, 17], and the Caatinga is the only uniquely Brazilian biome, in which

most of its biological heritage cannot be found anywhere else in the world [18]. The Cerrado-

Caatinga ecotone occupies 1.3% of the Brazilian territory, extending over regions of the Piauı́,

Bahia, and Minas Gerais states [14], and it presents great species richness, whether from the

biomes that formed them or endemic species [15]. Few studies have been carried out to

explore the biocontrol potential of endophytic fungal biodiversity in this transition zone,

which also requires attention due to increasing anthropogenic degradation with the expansion

of agricultural production areas [19].

Trichoderma species have been tried as BCA and used as an alternative to synthetic pesti-

cides to control a variety of plant diseases [20]. The biocontrol mechanisms of Trichoderma
are based on the activation of multiple mechanisms, either indirectly, by competing for space

and nutrients, promoting plant growth and plant defensive mechanisms, and antibiosis, or

directly, by mycoparasitism [21, 22]. They are found in rhizospheric and non-rhizospheric

soils, in addition to their endophytic relationships with many plants [22, 23]. Their biodiversity

has been extensively investigated in various geographical locations, and their distribution var-

ies with ecosystems [24, 25]. Therefore, it is fundamental to explore the biocontrol potential of
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Trichoderma strains isolated from native areas, since they represent a tool for sustainable food

production.

In this study, we investigated the potential role of endophytic Trichoderma strains isolated

from forest tree species of the Cerrado-Caatinga ecotone [26, 27] as biological control agents

of crop pathogenic fungi. First, we evaluated the interaction between endophytes and patho-

gens by in vitro antagonism bioassays. The biocontrol factor related to antibiosis was examined

using in vitro bioassays with crude methanolic extracts of Trichoderma strains and liquid chro-

matography-tandem mass spectrometry-based metabolomic approaches. Such data will sup-

port ongoing research to find new beneficial microbial resources to control plant diseases.

Material and methods

Strains and materials

The nineteen Trichoderma spp. isolates (S1 Table) were obtained from leaves of forest tree spe-

cies (S2 Table), located in a Cerrado-Caatinga ecotone in Southwest Piauı́, Brazil (8˚5107.48@ S

and 44˚11039.95@ W) [26], and maintained in potato dextrose agar (PDA) culture medium

(Himedia). This area comprised a fragment of one hectare within the legal reserve [26]. For

the identification of the Trichoderma isolates, the gene regions for the translation elongation

factor (tef1) and the second largest RNA polymerase subunit (rpb2) were amplified and

sequenced, and the construction of phylogenetic trees was performed by comparing the

sequences available in GenBank (National Center for Biotechnology Information, NCBI) [27].

The UFPIT01, UFPIT09, UFPIT12, UFPIT14, UFPIT15, UFPIT17, and UFPIT18 isolates

were previously identified as T. orientale (Samuels & Petrini) Jaklitsch & Samuels; the UFPI02

isolate was previously identified as T. longibrachiatum Rifai; and the UFPI03, UFPI07,

UFPI10, UFPI16, and UFPI19 isolates were previously identified as T. koningiopsis Samuels,

Carm. Suárez & H.C. Evans [27]. The UFPIT04, UFPIT05, UFPIT06, UFPIT08, UFPIT11, and

UFPIT13 isolates were not identified by comparing the sequences available in GenBank and

may likely constitute new species; therefore, they were named Trichoderma sp. T1, Tricho-
derma sp. T2, Trichoderma sp. T3, Trichoderma sp. T4, Trichoderma sp. T5, and Trichoderma
sp. T6, respectively [27]. The strains were registered in the National System for the Manage-

ment of Genetic Heritage and Associated Traditional Knowledge (SisGen) by n˚ A7580C1 and

A1B50F7, as recommended by the Brazilian Biodiversity Law (n˚ 13.123/15).

For plant pathogenic fungi tested for antagonism bioassays, Colletotrichum truncatum
(Schwein.) Andrus & W.D. Moore strain was isolated from infected soybean pods, located in

the same mesoregion where Trichoderma strains were found, through the cultivation of

infected material in PDA medium incubated at 25˚C under a 12 h photoperiod [28]. The

Lasiodiplodia theobromae (Pat.) Griffon & Maubl. strain was isolated from cacao fruit with

symptoms of Lasiodiplodia canker.Macrophomina phaseolina (Tassi) Goid. COUFPI 10 and

COUFPI 11 strains were isolated from the seeds and roots of fava bean, respectively, placed in

PDA medium and incubated at 25˚C for seven days [29]. Sclerotium delphiniiWelch COUFPI

209 and COUFPI 249 strains were isolated from black pepper with symptoms of concentric

leaf spots by inoculating sclerotia in PDA medium [30]. All strains were maintained in PDA

culture medium at 28˚C in the absence of light and preserved using Castellani’s method.

Liquid chromatography–mass spectrometry (LC–MS)-grade methanol and acetonitrile

were purchased from J.T. Baker (Center Valley, PA, USA). Analytical grade formic acid and

sodium formate encephalin were purchased from J.T. Baker (Center Valley, PA, USA), and

leucine enkephalin from Waters (Manchester, UK).

PLOS ONE Potential biocontrol of Trichoderma strains isolated from forest species of the Cerrado-Caatinga ecotone

PLOS ONE | https://doi.org/10.1371/journal.pone.0265824 April 15, 2022 3 / 19

https://doi.org/10.1371/journal.pone.0265824


In vitro antagonism bioassays against plant pathogenic fungi

Culture medium fragments (1 cm2) with Trichoderma spp. mycelia and fungal plant pathogens

(1 cm2), previously cultivated in PDA at 28˚C, were transferred to PDA medium 5 cm apart

from each other [31]. The plates were incubated at 28˚C, and mycelial growth was evaluated

daily for seven days. The experimental design was completely randomized with 20 treatments

and 3 replications, totaling 60 experimental units for the bioassays of each plant pathogen. The

treatments consisted of 19 Trichoderma isolates plus a control sample containing only the

plant pathogen.

The antagonistic potential was measured as the percent inhibition, according to the for-

mula: % inhibition = (DC-DT/DC)�100, where DT is the growth radius of the plant pathogen

colony toward the antagonist and DC is the growth radius of the control [32]. The mycelial

growth rate index (MGRI) was obtained from the averages of the daily values of mycelial

growth for each treatment, according to the formula MGRI = Ʃ(D-Da)/N, where D = current

average colony diameter, Da = average colony diameter from the previous day, and

N = number of days after inoculation [33]. Analysis of variance followed by the Scott–Knott

test at the 5% significance level was conducted using R v.3.5.2 software (R Core Team, Vienna,

Austria).

Inhibitory activity bioassay of Trichoderma spp. organic extracts against C.

truncatum
For the extraction of bioactive compounds, Trichoderma strains were inoculated on PDA at

28˚C in the absence of light for four days. Subsequently, the culture media (60 x 15 mm) con-

taining the fungal colonies were cut into small pieces, and cold methanol (15 mL) was added.

The samples were vortexed for 1 min, allowed to rest for 5 min, and vortexed again for 1 min.

Subsequently, the extracts were centrifuged at 4,000 g for 15 min at 4˚C, and the supernatants

were concentrated under a flow of nitrogen gas [34]. Then, the extracts were weighed, and

dimethylsulfoxide (DMSO) was added to prepare a 100 mg mL-1 stock solution.

Methanolic extracts of Trichoderma spp. were used to evaluate the inhibitory activity

against C. truncatum. For this purpose, fragments of the phytopathogen (9 mm2) were inocu-

lated in the center of Petri dishes (60×15 mm) containing PDA with increasing concentrations

of the extract (0.0, 0.5, 1.0, and 2.0 mg mL-1). For the control (0.0 mg mL-1), only DMSO was

added. Plates were kept in B.O.D. incubator (Bio-Oxygen Demand) at 28˚C in the absence of

light, and colony diameters were measured daily for 10 days with the aid of a digital caliper.

The experimental design was completely randomized with extracts from 19 isolates at concen-

trations of 0.0, 0.5, 1.0, and 2.0 mg L-1, with three replications for each concentration. Data

were subjected to analysis of variance, followed by regression analysis using R software and

SigmaPlot v11.0 (Systat Software Inc. Chicago, USA). Additionally, Pearson’s correlation anal-

ysis of the percent inhibition of Trichoderma strains against C. truncatum in co-culture and

crude extract bioassays was performed.

Metabolic fingerprinting by liquid chromatography–high resolution mass

spectrometry

Sample preparation. For extract preparation of the 19 Trichoderma isolates, the culture

media (60 x 15 mm) containing the fungal colonies, previously cultivated on PDA at 28˚C for

four days, were cut into small pieces and extracted with methanol (15 mL), vortexed for 1 min,

maintained at rest for 5 min, and vortexed again for 1 min. After filtration, the supernatants

were concentrated to approximately 1 mL, lyophilized, and stored at -47˚C until use. For
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analyses by ultra-high-performance liquid chromatography coupled with electrospray ioniza-

tion quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q-TOF-MS), lyophilized sam-

ples were reconstituted in a solution containing water/methanol/acetonitrile (1:2:2 v/v/v, 1

mL). The samples were vortexed for 1 min, sonicated for 30 min at room temperature, filtered

using a 0.22 μm PTFE syringe filter (Millipore, USA), and transferred to vials for LC–MS anal-

ysis [35].

UHPLC-ESI-Q-TOF-MS analysis. An ACQUITY UPLC connected to a XEVO-G2XS

QTOF mass spectrometer (Waters, Manchester, UK) equipped with an electrospray ion source

was used. Liquid chromatography was performed using a Titan™ C18 UHPLC column (2.1 x

100 mm, 1.9 μm, Supelco). The column temperature was maintained at 45˚C. The separation

was performed at a flow rate of 0.4 mL min-1 under a gradient program in which the mobile

phase consisted of (A) 0.1% formic acid (v/v) and (B) pure methanol. The gradient program

was applied as follows (in % B): (t) = 0 min, 1%; t = 2.0 min, 1%; t = 8.0 min, 38%; t = 20 min,

99.5%; t = 25 min, 99.5%; t = 25.1 min, 1%; and t = 28 min, 1%, for a total analysis time of 28

minutes. The injection volume was 0.2 μL. Positive ion mode was recorded, and the instru-

ment was operated in data-independent acquisition mode (MSE). Them/z range was 100–

1700, with an acquisition rate of 0.5 sec per scan. The following instrumental parameters were

used: capillary: 3.0 kV; cone: 40,000 V; desolvation temperature: 550˚C; cone gas flow: 10 L h-

1; desolvation gas flow: 900 L h-1. The collision energy was 20 to 60 eV for fragmentation. Leu-

cine encephalin (molecular weight = 555.62; 200 pg μL-1 in 1:1 acetonitrile:water) was used as

the lock mass for accurate mass measurements, and a 0.5 mM sodium formate solution was

used for calibration. Samples were randomly analyzed.

Data processing and statistical data analysis. LC–MS raw data were processed using

Progenesis QI 2.0 software (Nonlinear Dynamics, Newcastle, UK), which enabled the selection

of possible adducts, peak alignment, deconvolution, and putative metabolite identification

based on MSE experiments. Progenesis QI generates a table of the ions labeled according to

their nominal masses and retention times as a function of their intensity for each sample. The

MassBank database (https://massbank.eu) and Vaniya/Fiehn Natural Products Library

(https://mona.fiehnlab.ucdavis.edu/) were used to perform the identification using the follow-

ing search parameters: precursor mass error� 5 ppm and fragment tolerance� 10 ppm.

The list of extracted ion chromatograms by retention time was uploaded to the MetaboAna-

lyst 5.0 web platform (http://www.metaboanalyst.ca) for principal component analysis (PCA).

Ions detected in at least 10% of the samples were retained for analysis, and an interquartile

range (IQR) filter was used. Data were sum-normalized, and Pareto scaling was used. A heat-

map and unsupervised hierarchical clustering were performed using 50 features with the low-

est adjusted p value< 0.05 depicting differential peaks.

Results and discussion

Endophytic Trichoderma strains from forest species inhibit several crop

pathogenic fungi

The antagonistic potential of the endophytic Trichoderma spp. strains was investigated against

different plant pathogens. The 19 Trichoderma spp. isolates demonstrated inhibitory activity

against mycelial growth, ranging from 50 to 70% for C. truncatum (Fig 1A), 30 to 78% for L.

theobromae (Fig 1B), 49 to 78% forM. phaseolina COUFPI 10 (Fig 1C), 58 to 74% forM. pha-
seolina COUFPI 11, 6 to 62% for S. delphinii COUFPI 209 (Fig 1D), and 2 to 69% for S. delphi-
nii COUFPI249.

Regarding the inhibition of C. truncatum (Fig 1A), the fungi T. orientale (UFPIT01,

UFPIT09, UFPIT14, UFPIT15, and UFPIT17), T. longibrachiatum (UFPIT02), T. koningiopsis
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(UFPIT03, UFPIT07, and UFPIT16), Trichoderma sp. T3 (UFPIT06), Trichoderma sp. T4

(UFPIT08), and Trichoderma sp. T6 (UFPIT13) stood out with the highest percent inhibition,

from 63 to 70%, and Trichoderma sp. T5 (UFPIT11) and T. orientale (UFPIT12), with the low-

est values ranging from 50 to 54%. Trichoderma sp. T5 (UFPIT11) and T. orientale (UFPIT14

Fig 1. In vitro percent inhibition of Trichoderma spp. isolates against C. truncatum (A), L. theobromae (B), M.

phaseolina COUFPI 10 and COUFPI 11 (C), and S. delphinii COUFPI 209 and COUFPI 249 (D). Averages

followed by the same lowercase or capital letter are not significantly different by the Scott–Knott test at the 5%

confidence level. The variation coefficients (CVs) were 4.67% for L. theobromae, 4.55% forM. phaseolina COUFPI 10,

5.96% forM. phaseolina COUFPI 11, 8.37% for S. delphinii COUFPI 209 and 6.02% for S. delphinii COUFPI 249.

https://doi.org/10.1371/journal.pone.0265824.g001
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and UFPIT18) showed the highest percentage inhibition against L. theobromae (Fig 1B) of 73–

78%, while T. orientale (UFPIT09 and UFPIT12) had the lowest performance of 30–32%.

AgainstM. phaseolina COUFPI 10 (Fig 1C), T. orientaleUFPIT01 and UFPIT12 yielded

the highest (78%) and lowest (49%) percent inhibition, respectively, while the other isolates

showed intermediate values, above 50% inhibition. T. orientale (UFPIT01, UFPIT09,

UFPIT14, UFPIT15, UFPIT17, UFPIT18), T. longibrachiatum (UFPIT02), Trichoderma sp. T6

(UFPIT13), and T. koningiopsis (UFPIT16 and UFPIT19) stood out in inhibiting the growth of

M. phaseolina COUFPI 11, from 67 to 74%, and the others, with lower values, ranging from 58

to 66% inhibition, did not differ statistically.

The inhibitory activity against S. delphinii COUFPI 209 (Fig 1D) was highest in Tricho-
derma sp. T3 UFPIT06 (61%) and T. koningiopsisUFPIT16 (62%) and lowest in T. orientale
UFPIT09 (6%) and T. orientaleUFPIT17 (8%), the others ranged from 22 to 56%. In S. delphi-
nii COUFPI 249 (Fig 1D), the fungi T. orientale (UFPIT01, UFPIT14 with 67% and 69%,

respectively) and Trichoderma sp. T3 UFPIT06 (69%) presented the best results, with T. orien-
tale (UFPIT09, UFPIT12, and UFPIT17 with 3, 2 and 3%, respectively) showing less

effectiveness.

Most endophytes reduced the MGRI of the plant pathogen colonies, differing statistically

from the control treatments (S1 Fig), except for S. delphinii COUFPI 249 paired with T. orien-
taleUFPIT09. All isolates stood out in reducing the MGRI for C. truncatum (S1A Fig), with

the highest indices observed for Trichoderma sp. T1 (UFPIT04), T. orientale (UFPIT12), Tri-
choderma sp. T6 (UFPIT13), and T. koningiopsis (UFPIT19) strains. Against L. theobromae,
only the isolate T. orientale (UFPIT12) showed the highest MGRI (S1B Fig).

T. longibrachiatum (UFPIT02), T. koningiopsis (UFPIT03 and UFPIT10), Trichoderma sp.

T2 (UFPIT05), Trichoderma sp. T3 (UFPIT06), T. orientale (UFPIT09, UFPIT14, UFPIT15,

and UFPIT17), Trichoderma sp. T5 (UFPIT11), and Trichoderma sp. T6 (UFPIT13) stood out

in reducing the MGRI ofM. phaseolina, while T. koningiopsis (UFPIT03 and UFPIT16) stood

out againstM. phaseolina COUFPI 11 (S1C Fig). The MGRI of S. delphinii COUFPI 209 was

reduced for all isolates, and the highest indices were obtained when paired with T. orientale
(UFPIT09, UFPIT12, and UFPIT17), while for S. delphinii COUFPI 249, Trichoderma sp. T1

(UFPIT04) and Trichoderma sp. T6 (UFPIT13) showed the highest MGRI (S1D Fig).

Several studies have shown the efficacy of Trichoderma strains against C. truncatum. The

species T. harzianum and T. asperellum showed percent inhibition of 75 and 73%, respectively,

against this pathogen [36]. T. virens, T. longibrachiatum, and T. koningii also inhibited the

growth of C. truncatum with %inhibition of 54 to 81% [37]. Commercial formulations based

on T. viride, T. harzianum, and T. hamatum promoted %inhibition ranging from 67 to 81%

[38]. In our work, similar results were obtained against this pathogen for the species T. orien-
tale, T. longibrachiatum, T. koningiopsis and unidentified Trichoderma isolates.

The species T. harzianum, T. asperellum, T. atroviride, and T. virens showed percent inhibi-

tion in the range of 29 to 54% against L. theobromae [39], while T. koningii and T. viride
reached 75 to 80% [40]. T. pseudokoningii, T. hamatum, T. koningii, and T. reesei also signifi-

cantly inhibited pathogen growth by 62 to 90% [41]. These values corroborate the %inhibition

observed in our study; however, to our knowledge, there are no reports of studies about the

biocontrol potential of T. orientale, T. koningiopsis and T. longibrachiatum against L.

theobromae.
In previous studies, T. longibrachiatum showed a percent inhibition of 58% againstM. pha-

seolina [42], while T. koningiopsis strains ranging from 15 to 70% [43]. Similar results were

obtained in our study for these species; however, there are no reports about T. orientale against

M. phaseolina. Swain et al. (2021) investigated the biocontrol potential of T. erinaceum and T.

hebeiensis against S. delphiii and found a percent inhibition of approximately 75%, which is the
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only study of growth inhibition of this pathogen using Trichoderma strains [44]. This is the

first report that demonstrates the biocontrol potential of the species T. orientale, T. koningiop-
sis and T. longibrachiatum against S. delphiii.

The high percentage of inhibition may be related to the rapid growth of Trichoderma spp.,

which often completely overlap the colonies of C. truncatum (S2 Fig), L. theobromae (S3 Fig),

andM. phaseolina COUFPI 10 (S4 Fig) and COUFPI 11 (S5 Fig). The inhibition may also be

related to the efficacy of Trichoderma spp. in competing for space and nutrients and in parasit-

izing pathogens [45]. S. delphinii COUFPI 209 (S6 Fig) and COUFPI 249 (S7 Sig) were very

aggressive when competing with Trichoderma spp. by space and nutrients; in some cases, they

even grew on endophyte colonies. Antibiosis is also an action mechanism present in endo-

phytic fungi of the Trichoderma genus, which produce several secondary metabolites with anti-

microbial activity used to inhibit the development of plant pathogens [46]. Thus, this action

mechanism may also be occurring, justifying the high %inhibition achieved by Trichoderma
spp.

Several studies have demonstrated the ability of Trichoderma strains to inhibit the growth

of plant pathogens through antibiosis mechanism [46, 47]. Among the secondary metabolites

of Trichoderma with antimicrobial activity are syringaresinol [48], HT-2 toxin [49], trigonel-

line [50], trans-zeatin [51], koninginin A [52], koninginin D [53], koninginin E [52], 6-pentyl-

α-pyrone [10], gliotoxin, gliovirin, crisopanol, pyrone, 6-pentyl-2H-pyran-2-one, harzianic

acid, koningic acid [53], alamethicin, and dermadin [53].

To investigate the antibiosis mechanism performed by Trichoderma spp. isolates, we also

evaluated whether Trichoderma spp. methanolic extracts had inhibitory activity against one of

the plant pathogens. For this purpose, we selected the fungus C. truncatum, the causal agent of

anthracnose in soybeans, which is economically relevant. As a result, antifungal activity

increased with increasing concentrations of the methanolic extracts, potentiating the %inhibi-

tion of the pathogen (S8 Fig). At concentrations of 0.5, 1.0, and 2.0 mg mL-1, there was an

increase in the %inhibition of C. truncatum when compared to the dose of 0.0 mg mL-1 for all

isolates. However, no significant difference from the concentration of 0.5 mg mL-1 was

observed for four of the isolates (T. longibrachiatum (UFPIT02), Trichoderma sp. T3

(UFPIT06), Trichoderma sp. T4 (UFPIT08), and T. orientale (UFPIT17)).

The extracts of T. koningiopsis (UFPIT10) and Trichoderma sp. T5 (UFPIT11) showed the

highest % inhibition, differing statistically from the other isolates at a concentration of 2 mg

mL-1 (S8 Fig). Interestingly, T. koningiopsis (UFPIT10) and Trichoderma sp. T5 (UFPIT11)

did not show the highest activities in the pairing co-culture bioassay (Fig 1A), although both

presented %inhibition higher than 50%. The divergence of results may be explained by the var-

iation between the performance of Trichoderma isolates of the same species in in vitro and in
vivo bioassays, since the biological control mechanisms of fungi can occur simultaneously,

affecting their action [21, 22].

Correlation analysis between co-culture and crude extract bioassays indicated that Tricho-
derma spp. (UFPIT05, UFPIT08, UFPIT11, and UFPIT13), T. koningiopsis (UFPIT07,

UFPIT10, UFPIT16, and UFPIT19), T. orientale (UFPIT12 and UFPIT15), and T. longibra-
chiatum (UFPIT02) had a positive linear relationship, with emphasis on Trichoderma sp. T4

(UFPIT08) and T. longibrachiatum (UFPIT02), which presented r values of 0.97 and 0.96,

respectively (S3 Table). On the other hand, Trichoderma sp. T1 (UFPIT04), Trichoderma sp.

T3 (UFPIT06), T. koningiopsis (UFPIT03), and T. orientale (UFPIT01, UFPIT09, UFPIT14,

UFPIT17, and UFPIT18) showed negative correlations, with emphasis on Trichoderma sp. T3

UFPIT06 (r = -1.00), indicating that other biocontrol mechanisms prevailed in relation to

antibiosis.
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Untargeted metabolomic analysis revealed antimicrobial metabolites of

Trichoderma strains from forest species

The metabolic content of the methanolic extracts of all Trichoderma spp. isolates (S8 Fig) were

explored by PCA to correlate with the efficiency of inhibition. The PCA showed that 54.9% of

the total variation in the data were represented by the first two principal components (Fig 2A).

Although a great overlap of the species was observed, samples of Trichoderma spp. isolates

were clearly separated from the control samples. Clustering of species was performed accord-

ing to the similarity of their metabolomic profiles and resulted in two large clusters. In the

first, with negative scores for PC1, T. longibrachiatumUFPIT02 (T2) and T. orientale
UFPIT01 (T1), UFPIT14 (T14), and UFPIT18 (T18) overlapped, and T. orientaleUFPIT15

(T15) remained close to this group, overlapping with T. longibrachiatumUFPIT02 (T2) and T.

orientaleUFPIT14 (T14).

A second clustering, with majority positive scores for PC1, was formed by the species T.

orientale (UFPIT12 and UFPIT17) and T. koningiopsi (UFPIT03, UFPIT07, UFPIT10,

UFPIT16, and UFPIT19) and unidentified isolates Trichoderma sp. T1 (UFPIT04), Tricho-
derma sp. T2 (UFPIT05), Trichoderma sp. T3 (UFPIT06), Trichoderma sp. T4 (UFPIT08), Tri-
choderma sp. T5 (UFPIT11), and Trichoderma sp. T6 (UFPIT13). T. orientaleUFPIT09 (T9),

located near the zero value of PC1, remained intermediate between these two large clusters of

species. The PC1 x PC3 score plot (Fig 2B) revealed some clusters similar to those observed in

the PC1 x PC2 score plot; however, a new group stood out, with positive scores for PC1,

formed by T. koningiopsisUFPIT03 (T3), UFPIT07 (T7), UFPIT10 (T10), and UFPIT16 (T16),

partially overlapping with T. koningiopsisUFPIT19 (T19).

Altogether, PCA showed that Trichoderma spp. from the same species can produce differ-

ent secondary metabolites, and isolates from different species can produce similar molecules.

In the loading plot, the metabolites produced by Trichoderma spp. isolates are displayed, and

the most distant points represent the metabolites that most influenced the clustering. Molecu-

lar signatures of Trichoderma spp. isolates were identified according to the elution order, MS/

Fig 2. PC1 x PC2 (A) and PC1 x PC3 (B) score plots of metabolic fingerprints of Trichoderma spp. cultures

generated using MetaboAnalyst, where Con = Control, UFPIT01 = T1, UFPIT02 = T2, UFPIT03 = T3,

UFPIT04 = T4, UFPIT05 = T5, UFPIT06 = T6, UFPIT07 = T7, UFPIT08 = T8, UFPIT09 = T9, UFPIT10 = T10,

UFPIT11 = T11, UFPIT12 = T12, UFPIT13 = T13, UFPIT14 = T14, UFPIT15 = T15, UFPIT16 = T16,

UFPIT17 = T17, UFPIT18 = T18, and UFPIT19 = T19.

https://doi.org/10.1371/journal.pone.0265824.g002
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MS fragmentation pattern, molecular formula, and database search. A total of 16 molecules

were identified (Table 1 and S11 Fig).

The metabolite ofm/z 264.10862 was found in all Trichoderma spp. isolates and identified

as 2-O-methyladenosine (Table 1, metabolite 1), a member of the adenosine class that has

Table 1. Secondary metabolites identified in Trichoderma strains using UPLC-ESI-Q-TOF-MS.

No. m/z Retention

time (min)

Adduct MS/MS

Fragment

masses

Molecular

formula

Exact

mass

Putative

identification

Δ m/z
(ppm)

Strains Biological

activity

References

1 264.1086 0.68 [M

+H-H2O]+
69.0328,

84.0443,

139.0881,

150.9268

C11H15N5O4 281.1119 2-O-Methyladenosine 1.78 All Anti-

inflammatory

[54]

2 118.0863 0.86 [M+H]+ 59.0705,

60.0838,

99.0061

C5H11NO2 117.0790 Glycine-Betaine 0 All Plant growth

promoter

[55]

3 138.0553 0.91 [M+H]+ 65.0380,

78.0338,

92.0496,

93.0572,

138.0562

C7H7NO2 137.0480 Trigonelline -2,19 UFPIT02-UFPIT05,

UFPIT07-UFPIT11,

and

UFPIT13-UFPIT19

Plant growth

promoter,

antibacterial

[56, 57]

4 220.1196 4.63 [M+H]+ 97.0356 C10H13N5O 219.1123 Trans-Zeatin -1.37 UFPIT06, UFPIT07,

UFPIT10, and

UFPIT12

Plant growth

promoter,

antibacterial,

antifungal

[51, 58–

60]

5 237.1126 6.80 [M

+H-H2O]+
215.0709,

235.1137,

249.0980

C13H18O5 254.1159 Phomalone -1.96 All Antibacterial,

antifungal,

cytotoxic

[61]

6 247.0957 10.34 [M+H]+ 56.9367,

162.0252,

166.0648

C14H14O4 246.0895 Columbianetin -1.22 UFPIT01, UFPIT02,

UFPIT09, UFPIT14,

UFPIT15, and

UFPIT18

Antibacterial,

antifungal

[62–65]

7 265.1423 10.55 [M+H]+ 173.0774,

189.0489,

195.0886,

245.0917

C15H20O4 264.1352 Abscisic acid 3,78 UFPIT04, and

UFPIT13

Plant growth

promoter,

antioxidant,

antibacterial,

antifungal

[66–68]

8 419.1713 10.83 [M+H]+ 186.0949,

204.1036,

441.1527

C22H26O8 418.1640 Syringaresinol -2.87 UFPIT01, UFPIT02,

UFPIT13, UFPIT14,

UFPIT15, and

UFPIT18

Antibacterial,

antifungal,

anti-

inflammatory

[48, 69]

9 281.1754 12.28 [M+H]+ 123.0814,

133.0655,

160.0524,

175.0431,

177.0254,

245.1556,

263.1660

C16H24O4 280.1688 Brefeldin-A -4.64 UFPIT03, UFPIT07,

UFPIT10, UFPIT16,

and UFPIT19

Antiviral,

antifungal,

antitumoral

[70, 71]

10 305.1721 13.93 [M+Na]+ 147.0131,

153.0918,

161.0294,

225.0098,

255.1513,

259.1615,

276.1381

C16H26O4 282.1837 Koninginin E -2.13 UFPIT03, UFPIT07,

UFPIT10, UFPIT16,

and UFPIT19

Plant growth

promoter,

antifungal

[52]

11 307.1882 14.11 [M+Na]+ 133.0656,

267.1297,

289.1688

C16H28O4 284.1993 Koninginin A -1.76 UFPIT03, UFPIT07,

UFPIT10, UFPIT16,

and UFPIT19

Plant growth

promoter,

Antifungal

[52, 72]

(Continued)
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been isolated from the mycelium of Cordyceps sinensis [54]. The metabolite ofm/z 118.0863

[M+H]+ was detected in all Trichoderma spp. isolates and identified as glycine-betaine

(Table 1, metabolite 2), presenting in the MS/MS spectrum the fragment ofm/z 59.0705 corre-

sponding to (CH3)3N+ [55]. Betaines are naturally occurring metabolites fundamental to the

mitigation of osmotic stress in plants and macro- and microorganisms [55]. The metabolite of

m/z 138.0553 [M+H]+ was identified as trigonelline (Table 1, metabolite 3) and was detected

in T. longibrachiatum (UFPIT02), Trichoderma sp. T2 (UFPIT05), T. koningiopsis (UFPIT07),

Trichoderma sp. T5 (UFPIT11), Trichoderma sp. T6 (UFPIT13), and T. koningiopsis
(UFPIT19) isolates. The MS/MS spectrum was characterized by the fragment ofm/z 92.0496

[__HCOOH]+, referring to the carboxylic acid group [56, 57]. This alkaloid is widely used in

medicine to protect the liver and heart and to treat hypercholesterolemia [81]. and has already

been identified in T. asperellum fermentation cultures [50].

Table 1. (Continued)

No. m/z Retention

time (min)

Adduct MS/MS

Fragment

masses

Molecular

formula

Exact

mass

Putative

identification

Δ m/z
(ppm)

Strains Biological

activity

References

12 453.1914 14.23 [M

+H-H2O]+
147.0929,

154.0670,

174.1137,

212.2395,

225.0931,

263.1654,

281.1769,

328.2860,

373.2012,

374.2914,

413.1963,

431.2048

C26H30O8 470.1947 Physodic acid -1.28 All Antibacterial [73]

13 447.2001 14.43 [M+Na]+ 215.0365,

233.0460,

263.0544,

285.1583,

303.1583,

429.1891,

447.1993

C22H32O8 424.2110 HT-2 Toxin -3.07 UFPIT07, and

UFPIT10

Mycotoxin [74]

14 318.3013 16.01 [M+H]+ 97.9455,

150.0253,

264.2691,

282.2798,

286.2755,

294.2803

C18H39NO3 317.2940 Phytosphingosine -3.15 UFPIT01, UFPIT02,

UFPIT09, and

UFPIT17

Anti-

inflammatory,

antibacterial

[75–77]

15 163.0393 16.54 [M+H]+ 120.9752,

121.0289,

135.0442,

163.0393

C9H6O3 162.0321 4-Hydroxycoumarin -2.47 All Antifungal,

antibacterial,

antioxidant,

antitumoral

[78, 79]

16 338.3413 20.72 [M+H]+ 97.1011,

100.0764,

109.1018,

111.0814,

114.0919,

121.1023,

123.0819,

125.0974,

128.1070,

135.1178,

139.0942

C8H4O3 337.3341 Erucamide 1.19 All Antibacterial [80]

https://doi.org/10.1371/journal.pone.0265824.t001
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The metabolite ofm/z 220.1196 was identified as trans-zeatin (Table 1, metabolite 4), and it

was detected in Trichoderma sp. T3 (UFPIT06), T. koningiopsis (UFPIT07 and UFPIT10), and

T. orientale (UFPIT12) isolates. This cytokinin, previously reported in Trichoderma strains,

can be used for plant growth stimulation and affects host plant phytohormones to enhance

plant resistance against pathogens [50, 58]. The metabolite ofm/z 237.1126 [M+H]+, identified

as phomalone (Table 1, metabolite 5) and detected in all Trichoderma spp., is a common

metabolite in many fungal species, with anti-inflammatory, antibacterial, antifungal, and anti-

algal activities [61]. The metabolite ofm/z 247.0957 detected in T. orientale (UFPIT01), T.

longibrachiatum (UFPIT02), and T. orientale (UFPIT09, UFPIT14, UFPIT15, and UFPIT18)

isolates was identified as columbianetin (Table 1, metabolite 6), a phytoalexin with diverse bio-

logical activities [61]. and that has been extracted from cultures of an endophytic strain of

Annulohypoxylon ilanense [48].

The metabolite ofm/z 265.1423 was identified as abscisic acid (Table 1, metabolite 7), a

phytohormone directly involved in plant-microorganism interactions, improving the defense

system and plant development [66], and it was detected only in Trichoderma sp. T1 (UFPIT04)

and Trichoderma sp. T6 (UFPIT13) isolates. The metabolite ofm/z 419.1713 detected in T.

orientale (UFPIT01), T. longibrachiatum (UFPIT02), Trichoderma sp. T6 (UFPIT13), and T.

orientale (UFPIT14, UFPIT15, and UFPIT18) isolates were identified as syringaresinol

(Table 1, metabolite 8), a lignan that has been found to be a secondary metabolite of an endo-

phytic strain of A. ilanense [48]. The metabolite ofm/z 281.1754, present in T. koningiopsis
(UFPIT03, UFPIT07, UFPIT10, UFPIT16, and UFPIT19), was identified as brefeldin-A (BFA)

(Table 1, metabolite 9) and showed MS/MS spectrum with fragments ofm/z 263.1660 [M

+ H-H2O]+ and 245.1556 [M + H - 2H2O]+ formed by the BFA dehydration pathway [70].

This metabolite is an antibiotic already isolated in several fungal genera, such as Alternaria,

Ascochyta, Penicillium, Curvularia, Cercospora, and Phyllosticta. BFA has been reported to

have important bioactivities, such as antibiotics, antivirals, cytostatics, antimitotics and antitu-

mors [70].

The metabolites ofm/z 305.1721 andm/z 307.1882 were identified as koninginin E and

koninginin A, respectively (Table 1, metabolites 10 and 11). Koninginins are secondary metab-

olites belonging to the group of polyketides that are bioactive against several plant pathogens.

Koninginin E has already exhibited activity against Gaeumannomyces graminis var. tritici,

while koninginin A already exhibited activity against G. graminis var. tritici, F. oxysporum, F.

solani and Alternaria panax [52]. Koninginins A and E were detected in T. koningiopsis
(UFPIT03, UFPIT07, UFPIT10, UFPIT16, and UFPIT19 isolates). The metabolite ofm/z
453.1914 was identified as physodic acid (Table 1, metabolite 12) and was detected in all Tri-
choderma spp. Physodic acid is a metabolite belonging to the depsidone group, and its antibac-

terial activity against S. aureus has been previously reported [73]. The metabolite ofm/z
447.2001, detected in T. koningiopsis (UFPIT07 and UFPIT10), was identified as HT-2 toxin

(Table 1, metabolite 13). The MS/MS spectrum was characterized by fragments ofm/z
215.0365 [HT2—isoval acid—acetic acid—H2O - CH2O + H]+, 233.0460 [C14H16O3 + H]+ and

263.0544 [HT2—isoval acid—acetic acid + H]+ [74]. HT-2 toxin is a secondary metabolite

found mainly in fungi of the Fusarium genus and is classified as a trichothecene type A myco-

toxin [74].

The metabolite ofm/z 318.3013 identified as phytosphingosine (Table 1, metabolite 14) pre-

sented MS/MS spectrum with fragments ofm/z 264.2691 [M+H-DHO-2H2O]+ and 282.2798

[M+H-DHO-H2O]+, formed by the phytosphingosine dehydration pathway [75]. Phytosphin-

gosine is a long-chain sphingolipid present in microorganisms, plants, and some mammalian

tissues with antimicrobial and anti-inflammatory activity [76] and was produced by T. orien-
tale (UFPIT01, UFPIT09, and UFPIT17) and T. longibrachiatum (UFPIT02) isolates. The
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metabolite ofm/z 163.0393 detected in all Trichoderma spp. was identified as 4-hydroxycou-

marin (Table 1, metabolite 15), which is a fungal metabolite obtained from the precursor cou-

marin [79] that has important biological activities [78]. The metabolite ofm/z 338.3413

detected in all Trichoderma spp. was identified as erucamide (Table 1, metabolite 16) and has

been reported in T. longibrachiatum [80].

Altogether, the plethora of and the variety of secondary metabolites identified in the present

study highlight how Trichoderma strains are capable of producing metabolites with different

biological activities, which makes them very promising not only for the biocontrol of plant dis-

eases but also for their application in medical, pharmaceutical and industrial biotechnology.

Forest species from the Cerrado-Caatinga ecotone are rich in genetic resources and have

diverse fauna and flora, with enormous biotechnological potential, including their diversity of

endophytic fungi [26].

Conclusions

Trichoderma strains from the Cerrado-Caatinga ecotone revealed significant biocontrol poten-

tial against crop pathogenic fungi through antibiosis and multiple mechanisms, with possibili-

ties of being used in formulations of biological products for the treatment of plant diseases.

Metabolomic analysis proved to be effective in differentiating Trichoderma strains, in addition

to identifying a variety of secondary metabolites with antimicrobial activity and other different

bioactivities, demonstrating the importance of studying the biological resources of this area,

which are still underexplored. Additionally, new bioactive metabolites can still be discovered,

since this mutualistic association of endophytic fungi with their hosts is controlled by the

genes of both organisms and modulated by the environment in which they live.
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