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ABSTRACT
Humans and other mammalian hosts have evolved mechanisms to control the bacteria colonizing
their mucosal barriers to prevent invasion. While the breach of barriers by bacteria typically leads
to overt infection, increasing evidence supports a role for translocation of commensal bacteria
across an impaired gut barrier to extraintestinal sites in the pathogenesis of autoimmune and
other chronic, non-infectious diseases. Whether gut commensal translocation is a cause or con-
sequence of the disease is incompletely defined. Here we discuss factors that lead to translocation
of live bacteria across the gut barrier. We expand upon our recently published demonstration that
translocation of the gut pathobiont Enterococcus gallinarum can induce autoimmunity in suscep-
tible hosts and postulate on the role of Enterococcus species as instigators of chronic, non-
infectious diseases.
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Introduction

Only a thin layer of highly specialized epithelium
separates our internal organs from trillions of
intestinal microbes.1 This gut barrier functions as
both a selective gatekeeper that keeps pathogens
from invading as well as a site for immune cell
education, nutrient absorption, and waste secre-
tion. Although a thick mucus layer, antimicrobial
peptides, and IgA serve to maintain the barrier
function, perturbations in host defenses and
alterations in microbial community composition
can lead to pathologic breaches and subsequent
disease states.2-4 Our recent demonstration that
a gut microbe, Enterococcus gallinarum, crosses
the gut barrier in autoimmune-prone hosts to
colonize internal organs and incite autoimmunity
provides a model for gut commensal translocation
leading to pathologic states.5 In this addendum to
our published study, we discuss these findings in
the context of other investigations of translocation
of whole bacteria across the gut barrier.

Epithelial barrier

The intestinal epithelia regulates the entry of
micro- and macromolecules from the gut lumen
into the host.1 The movement of solutes across the
barrier is controlled in part by tight junctions (TJs)
that tether together epithelial cells and selectively
control solute entry based on their size and charge.
Passage of important molecules beneficial to the
host usually occurs paracellularly or transcellularly
through enterocytes, with larger macromolecules
being actively transcytosed. Two major paths of
paracellular passage exist: a high capacity pore
pathway permeable up to ~10Å molecules and
a low capacity leak pathway permeable to up to
~125Å macromolecules.6,7 A third, unrestricted
pathway becomes active at sites of erosive and
ulcerative damage, such as that induced by dex-
tran-sodium sulfate (DSS), where the loss of cel-
lular integrity enables the passage of ions,
metabolites, and even whole bacteria.6,7

Barrier integrity proteins are regulated by internal
and external factors and can be direct targets of
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bacteria. Their expression varies depending on cell
type and location. Table 1 summarizes selected bar-
rier proteins-based on cellular and anatomical loca-
tion as well as their respective contributions to
barrier integrity.1,6,8-11 TJs are comprised of multiple
transmembrane proteins, including claudins, occlu-
dins, and junctional adhesion molecules, which
interact with cytoskeletal components through pla-
que proteins such as zonula occludens (ZOs).
Claudins generally regulate the paracellular pore
pathway whereas ZOs, occludins, and tricellulins
regulate the leak pathway.7 While expression of
many of these proteins leads to decreased perme-
ability, up-regulation of some such as claudin-2 lead
to increased pore pathway activity. Due to the
importance of barrier integrity to the host, there is
considerable compensation of barrier proteins if one
of them has been disrupted.7 TJ protein formation
and disassembly are regulated by multiple signaling
pathways including protein kinase C, mitogen-
activated protein kinases, myosin light chain kinases,
and Rho GTPases.12 The activity of these enzymes is
in turn modulated by cytokines and intraluminal
molecules including bacterial metabolites and diet-
ary factors.1,12 Some beneficial bacteria exert barrier
protective effects by inducing TJ formation and lim-
iting permeability.12 Others take advantage of these
TJ regulatory mechanisms for invasion.4

Vascular barrier and enteric nervous system

Within the lamina propria beneath the epithelial
layer lies the gut vascular barrier (GVB) and gut
lymphatic barrier (GLB) comprised of endothelial
cells that are held together by TJs and adherens
junctions (AJs). The GVB barrier is permeable to 4
kD fluorescein isothiocyanate (FITC)-dextran,8 so
as with the epithelial barrier, restricts the passage
of bacteria. The GVB integrity is influenced by the
WNT-β-catenin signaling pathway with β-catenin
as a major AJ component.8 When β-catenin is
constitutively active in endothelial cells, mice are
less susceptible to enhanced GVB permeability and
pathogen invasion normally seen with Salmonella
typhimurium infection.8

The enteric nervous system is composed of enteric
neurons and glial cells.13 Enteric glial cells and peri-
cytes are in immediate contact with the GVB and
form the gut vascular unit.8 Cells from the enteric
nervous system produce substances that can also
modulate barrier permeability. For example, the
release of S-nitrosoglutathione by enteric glial cells
induces TJ expression at the epithelium, and stimu-
lation of the vagus nerve prevents burn-induced gut
permeability.14 Furthermore, mice lacking enteric
glial cells are susceptible to epithelial permeability
that leads to bacterial invasion and host death.15

Table 1. Gut barrier-related molecules & barrier function*.
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Mechanisms of microbial translocation

Bacteria may translocate past the gut epithelial layer
through both physiologic and pathologic means
depending on the context and type of bacteria.16,17

Bacterial size, virulence factors, defects in host barrier
integrity, and uptake by antigen-presenting cells are
all factors that influence entry into the host
organism.4,8,16,18,19 Inert particles of the size of bacteria
are passively taken up in the gastrointestinal tract,20

suggesting that entry of some bacteria may naturally
occur because of mass and quantity if they can avoid a
sterilizing immune response. Under steady
state, M cells, CXCR3R1+ macrophages and CD103+

dendritic cells (DCs) extend protrusions that sample
luminal contents and enable some commensals and
pathogens to gain access beyond the epithelial layer
without causing damage.2,3,21-23 These mechanisms
are important for normal induction of IgA and T cell
tolerance,18,24 as well as bacterial clearance.22 For
example, live commensal E. cloacae are taken in
by M cells to Peyer’s patches (PP) and carried by
DCs to mesenteric lymph nodes (MLNs) to mount
IgA responses.18 Other commensals, such as
Alcaligenes, naturally inhabit DCs within host PPs
where they induce broadly mucosal IgA in a non-
inflammatory context.25,26 These unique bacteria
have likely co-evolved for millennia with the host
because their levels drop in an IgA-deficient host,
suggesting that IgA binding may be needed for their
uptake and growth within gut-associated lymphoid
tissue.25 Additional commensals within lymphoid tis-
sues promote tolerance by inducing interleukin (IL)-
10 and IL-22 byDCs and innate lymphoid cells type 3,
respectively, which collectively inhibit Th17 responses
and facilitate bacterial colonization.27 In the absence of
host defects or virulence and in the presence of intact
MLNs, these commensals are prevented from further
dissemination, in part due to efficient killing by
macrophages.18

On the other hand, pathogens have developed the
machinery to exploit these sampling cells and facilitate
their invasion, including pili that mediate adhesion
and Type III and IV secretion systems that inject
effector proteins into host cells. Salmonella typhimur-
ium targets M cells, leading to their destruction and
disruption of the intestinal epithelium.2 Shigella flex-
neri, on the other hand, invades M cells and subse-
quently reenters enterocytes basolaterally, triggering

cell death and inflammation that leads to additional
bacterial translocation.3 Mechanisms of invasion by
these and other infectious agents including Yersinia
enterocolitica and Salmonella enterica have been
described in detail previously.2,4

Paracellular passage is achieved by certain patho-
gens like Entamoeba histolytica, Toxoplasma gondii,
Streptococcus agalactiae, and group A Streptococcus,
which disrupt TJs and AJs to enhance permeability
and facilitate their translocation.2,3,28 Commensals
may also gain access to the host paracellularly as
a consequence of barrier disruption caused by patho-
gens or irritants.

The dissemination of bacteria to various organs
beyond the intestinal epithelium also depends on
whether the GVB or GLB is breached. Some bacteria
may breach only lymphatic vessels and are carried to
the MLNs. Serratia marcescens, for example, was
reported to reside only in lymph and not blood,
paralleling translocation of a bacteriophage.29

Group A Streptococcus exhibits tropism for lympha-
tics as its hyaluronan capsule binds to lymphatic
vessel endothelial receptor-1. Disruption of this
interaction, interestingly, impairs lymphatic disse-
mination and leads to blood vessel invasion.30

Bacteria that breach the capillary system invade
the enterohepatic circulation and travel to the liver
via the portal vein. Thus, the liver represents
a firewall after a breach of the GVB whereas the
MLNs limit bacteria that break through the GLB.8,31

Particularly pathogenic bacteria, like Salmonella, are
able to breach both GVB and GLB.8,18 Additionally,
E. gallinarum, a gut pathobiont that induces auto-
immunity, sequentially colonizes mesenteric veins,
MLN, livers, and spleens of monocolonized mice,
suggesting it can breach both lymphatic and blood
vessels (Figure 1).5 This sequence of colonization
contrasts with direct inoculation of bacteria into
the peritoneal cavity, which are recovered in the
spleen rather than the MLNs.18

Induced gut barrier disruption and
translocation

Bacterial translocation can occur after gut barrier
disruption due to certain drugs, radiation, epigenetic
changes, alcohol, hyperglycemia, ischemia, and auto-
nomic dysfunction after stroke, among other
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factors.32-39 Chemotherapy and radiation alter the
integrity of the gut barrier and allow for the passage
of macromolecules and bacteria,38 a process that
enhances antitumor immunity.32,34 Treatment of
mice with cyclophosphamide enhances gut perme-
ability as shown by the leakage of orally administered
FITC-dextran into the blood. Commensals such as
Lactobacillus johnsonii, L. murinus, and Enterococcus
hirae could be cultured in this setting from lymphoid
organs includingMLN and spleen.34 Daily injections
of low doses of the chemotherapeutic drug strepto-
zosin lead to bacterial translocation to the pancreatic
lymph node, innate immune activation, and type
I diabetes.33 Bacterial translocation to MLNs,
blood, and adipocytes is also seen following DSS-

induced colitis as well as indomethacin-induced
ileitis.40,41 Furthermore, chronic alcohol consump-
tion, proton pump inhibitors (PPIs), and other non-
steroidal anti-inflammatory drugs (NSAIDs) induce
intestinal permeability to certain molecules.4,7,36

Interestingly, translocation of Enterococcus spp., in
particular, E. faecalis, has been linked to gastric acid
suppression in alcoholic liver disease, which leads to
liver inflammation and hepatocyte death.36

Besides PPIs and NSAIDs, treatment with antibio-
tics can enable bacterial translocation.42 Antibiotic-
treated mice are more susceptible to DSS-induced
epithelial injury, translocation of live bacteria, and
inflammasome-mediated damage.43 In addition to
eradicating beneficial bacteria that contribute to bar-
rier integrity, antibiotic use can lead to overgrowth of
pathogenic bacteria. Ampicillin treatment, for exam-
ple, promotes colonization with vancomycin-resistant
Enterococcus (VRE) in mice and humans prior to
bloodstream infections.44 Metronidazole and strepto-
mycin treatment enable E. faecalis overgrowth and
approximation to the epithelial border, where it can
be visualized inside intestinal epithelial cells, deeper in
the lamina propria and beyond the mucosa.45

Similarly, a 2-day course of ceftriaxone enabled
E. faecalis and Lactobacillus spp. overgrowth and sys-
temic dissemination to the liver, spleen, and MLN
within 3–4 days of exposure, with subsequent clear-
ance by 14 days. Of note, exposure to ceftriaxone did
not affect TJ protein expression, fecal albumin, or
permeability to FITC-dextran.46 Oral antibiotics
were shown to induce colonic goblet cell-associated
antigen passages that enabled translocation of live
bacteria to MLN, which continued for ~5 days after
antibiotic withdrawal.47 Thus, antibiotics may disrupt
colonization resistance and physiological homeostatic
processes, allowing for transient dissemination of bac-
teria even without overt intestinal pathology.

Spontaneous gut commensal dissemination

Spontaneous translocation of commensal bacteria
beyond physiologic uptake by host cells can occur
as a result of inherent alterations in the mucosal
barrier, the immune system, or the microbial com-
munity structure. Mice grown in germ-free facil-
ities exhibit greater translocation due to an
immature immune system, a permeable mucus

Figure 1. Gut barrier breach by the gut pathobiont E. gallinarum
in autoimmune-prone hosts. Beyond the intestinal epithelial bar-
rier (IEB), the gut vascular (GVB) and gut lymphatic barriers (GLB)
shield the internal organs from colonization by commensals
breaching the inner mucus layer and epithelial lining. (a) In (NZW
x BXSB)F1 mice, a leaky gut barrier allows E. gallinarum to translo-
cate beyond the intestinal epithelium. In monocolonized mice,
E. gallinarum downregulates barrier molecules related to both the
GVB and GLB,5 suggesting that it can breach all barrier compo-
nents in the gut. Alternatively, it could be carried by host cells into
host tissues. Once past the IEB and inside the lamina propria,
E. gallinarum travels via the mesenteric veins (blue) and lympha-
tics (green) to the so-called “firewalls”, the liver and mesenteric
lymph nodes, respectively. Within these organs, E. gallinarum
interacts with host immune and epithelial cells to promote
autoimmunity.5 (b) In a non-autoimmune-prone host, the intest-
inal epithelia, GVB, and GLB are intact. At steady state, antigen-
presenting cells (orange) sample luminal bacteria to induce
homeostatic IgA responses. T- and B-lymphocytes (blue) partici-
pate in this process leading to T cell-dependent and -independent
IgA. The GVB is supported by enteric glial cells (yellow) and
pericytes (dark green) surrounding a fenestrated endothelium
sealed by tight junctions.8.
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layer, and the absence of an intact commensal
community.48,49 Germ-free mice are impaired in
forming PPs and MLNs, and in secreting IgA,
which is reversible by colonization with commen-
sal bacteria.50-52 Viable E. coli and L. acidophilus
could be recovered from MLNs, spleens, and livers
of germ-free mice inoculated with whole cecal
content from specific pathogen-free (SPF) mice,
but could not be cultured from those organs in
SPF mice with intact microbiota.48 Similarly, our
laboratory found bacterial translocation and colo-
nization of mesenteric veins, followed by MLNs,
livers, and spleens of C57BL/6 mice with
E. gallinarum in the monocolonized setting, but
not under normal housing conditions, suggesting
that the resident microbiota of a healthy host pre-
vent either colonization or translocation of this
Enterococcus species. We observed consistent
translocation of E. gallinarum to these organs
under SPF conditions only in an autoimmune-
prone host, the male (NZW x BXSB)F1 mouse,
which carries a toll-like receptor 7 (tlr7) gene
duplication.5 In addition, lactobacilli translocate
in a host predisposed to excessive TLR7 signaling
induced by transgenic overexpression of tlr7.53

Specifically, L. reuteri was shown to drive innate
inflammation in TLR7 transgenic mice kept under
SPF conditions. Translocation of L. reuteri to the
MLN or liver was observed in non-transgenic
C57BL/6 wild-type (WT) mice only after stimula-
tion with the TLR7 agonist imiquimod. TLR7 sig-
nals were needed both under SPF conditions and
in L. reuteri-monocolonized C57BL/6 mice for
translocation to occur. WT but not TLR7 KO
C57BL/6 mice displayed increased gut leakiness
to FITC-dextran when exposed to TLR7 transgenic
mouse-derived microbiota. In addition, C57BL/6
mice treated with imiquimod have increased per-
meability to FITC-dextran, further supporting
a role for TLR7 in barrier integrity.53 The mechan-
isms of how TLR7 signals regulate barrier integrity
remain to be determined, as the receptor is not
expressed in the gut epithelium itself.53,54 In addi-
tion, factors that regulate the translocation of lac-
tobacilli across the gut barrier are incompletely
understood. Interestingly, deletion of tet2, an
enzyme involved in DNA demethylation, also
leads to translocation of L. reuteri and related
species to the MLN and spleen.39 Overall,

enterococci and lactobacilli appear to be predomi-
nant genera translocating under pathologic
conditions.46

Functional consequences of spontaneous
bacterial translocation

A functional consequence of barrier breach and
bacterial dissemination, whether induced or spon-
taneous, is a systemic immune response with the
production of systemic IgG in addition to mucosal
IgA.41 In genetically susceptible hosts, this sys-
temic immune response, perpetuated by continu-
ous bacterial translocation, may propagate
autoimmunity and other non-infectious chronic
diseases (Figure 2). Our laboratory has recently
shown that spontaneous bacterial translocation of
E. gallinarum plays a causative role in the induc-
tion of autoimmune disease.5 In the (NZW
x BXSB)F1 model, male mice carry a duplication
of the tlr7 gene on the BXSB background and
additional autoimmune genes on the NZW back-
ground, which lead to heightened levels of type
I interferon and spontaneous features of systemic
autoimmunity. These mice develop impairment of
the intestinal barrier starting in adolescence as
measured by FITC-dextran, and exhibit transloca-
tion of several organisms, among them predomi-
nantly and most consistently E. gallinarum.
Monocolonization of non-autoimmune-prone
C57BL/6 mice with E. gallinarum induced gut
permeability to FITC-dextran, suggesting that
both microbial, as well as host-related factors
(e.g., TLR7-mediated signals as above), contribute
to loss of barrier integrity. E. gallinarum reduced
gut barrier-tightening molecules (such as those
listed in Table 1) in (NZW x BXSB)F1 mice and
in monocolonized non-autoimmune C57BL/6
mice.5 In addition, E. gallinarum downregulates
RNA of claudin-3 and -5 in gut organoids derived
from small intestines of (NZW x BXSB)F1 mice
(Figure 3). In long-term-monocolonized C57BL/6
mice, claudin-3 and -5 proteins were also reduced,
as assessed by confocal imaging, whereas short-
term exposure led to claudin-3 RNA upregulation.
These findings likely reflect dynamic kinetics fol-
lowing epithelial cell interactions as seen also for
claudin-5 in (NZW x BXSB)F1 ileum-derived
organoids (Figure 3).5 Importantly, E. gallinarum
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functionally breached the gut barrier and migrated
to MLNs, liver, and spleen. This process was
linked to the progression of autoimmunity, includ-
ing liver inflammation, systemic autoantibody pro-
duction (against dsDNA, RNA, β2-glycoprotein I,
and endogenous retroviral proteins), signs of lupus
nephritis, and widespread thrombi formation as
seen in lupus-related antiphospholipid
syndrome.5 Notably, the portal inflammation in
the liver is reminiscent of autoimmune hepatitis
(AIH), an organ-specific autoimmune disease also
characterized by anti-dsDNA antibodies in
a subset of AIH patients.55 Continuous oral van-
comycin treatment depleted E. gallinarum in the
gut microbiome of (NZW x BXSB)F1 mice and

prevented autoimmune manifestations.5 Ongoing
chronic treatment with vancomycin in our animal
facility, however, created a niche for the develop-
ment of vancomycin-resistant strains of
Enterococcus (VRE). E. gallinarum is naturally
resistant to low-dose vancomycin due to a vanC
gene cassette.56 When E. gallinarum acquires the
vanB operon via horizontal transfer, however, it

Figure 2. Factors influencing translocation of bacteria and
extraintestinal autoimmunity. Autoimmunity arises in geneti-
cally susceptible hosts that are exposed to environmental sti-
muli that accelerate loss of self-tolerance. Barrier leakiness can
either be intrinsic to the host or induced by external factors
such as diet or medications. Bacteria that are normally con-
tained in the gut lumen can gain access to extraintestinal
tissues in response to enhanced intestinal permeability and
via intrinsic bacterial mechanisms. The capability of bacteria
to translocate depends on virulence factors, their abundance
and proximity to the epithelial barrier, and their ability to
compete within the gastrointestinal niche and evade immune
defenses. Once translocated, bacteria such as E. gallinarum
colonizing internal organs can directly induce autoimmunity
by interacting with host tissues or indirectly via metabolites
and their influence on the innate and adaptive immune system.
The examples listed for each factor (host genetics, gut bacteria,
modulators/accelerators) can impact translocation, autoimmu-
nity or both (for instance, diet can influence barrier function as
well as autoimmune responses). MHC, major histocompatibility
complex; NSAIDs, non-steroidal anti-inflammatory drugs; PPIs,
proton pump inhibitors.

Figure 3. Small intestinal organoids from autoimmune-prone
mice downregulate gut barrier molecules upon exposure to
E. gallinarum. Ileum tissue was dissected from 12-week-old
(NZW x BXSB)F1 mice. Crypts were isolated and cultured for 7
days in IntestiCult Organoid Growth Medium (STEMCELL
Technologies) and Matrigel Matrix (Corning). On day 7, heat-
killed E. gallinarum (EG) or EG RNA, as prepared in ref. 5, or
medium was added to the organoid cultures (n = 3) for 1.5, 3,
6, and 12 h. RNA was extracted and RT-qPCR performed as
described in ref. 5. RNA expression of the barrier molecules
claudin-3 and claudin-5, as well as the mucus protein mucin-2,
were quantified in relation to actin. Blue lines, media alone; red
lines, EG lysate; green lines, EG RNA. Data are presented as
mean ± SD in (a) to (c); *P < 0.05, **P < 0.01, ***P < 0.001;
ANOVA followed by Bonferroni multiple-comparisons test.
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becomes VRE with high-level resistance that over-
comes the high oral doses we applied to prevent
autoimmunity and normally suppress the growth
of E. gallinarum (Figure 4). Remarkably, the
mouse colonized with the VRE strain of
E. gallinarum progressed to full-blown autoimmu-
nity with VRE growing in internal organs. Along
with the host-microbial interaction studies we per-
formed, this observation supports that autoimmu-
nity was induced by E. gallinarum and not any of
the other diverse bacteria sensitive to vancomycin
in the gut of (NZW x BXSB)F1 mice. In addition
to monocolonization studies, vaccination against
E. gallinarum provides evidence that this bacter-
ium alone was the main driver of organ-specific
and systemic autoimmunity. Intramuscular vacci-
nation against E. gallinarum, but not against phy-
logenetically related E. faecalis or other less related
gut bacteria, prevented autoimmunity and asso-
ciated mortality.5 When introduced into germ-
free non-autoimmune-prone C57BL/6 mice by
oral gavage, E. gallinarum induced Th17 responses

not only in the lamina propria, as has been seen
with gut resident segmented filamentous
bacteria,57 but also in MLNs, supporting immuno-
logic effects beyond the gut. This phenomenon
was linked to E. gallinarum translocation to
MLNs, followed by liver and spleen, and induction
of serum autoantibodies directed against dsDNA
and RNA, which are hallmarks of human SLE.

These findings have relevance to human disease as
E. gallinarum DNA can be detected by PCR in liver
biopsy samples from patients with AIH and SLE, but
not from healthy controls.5 We found that healthy
livers contained other Enterococcus spp., suggesting
that bacteria of this genus are prone to gut barrier
translocation like lactobacilli, which were also pre-
sent in human liver samples.5,53 Sera from patients
with AIH and SLE have greater antibody titers to
E. gallinarum RNA in comparison to RNA from
E. faecalis or B. thetaiotaomicron, whereas antibody
titers to these three bacterial RNAs occur at similar
levels in healthy controls.5 Of note, E. gallinarum
RNA antibodies correlated highly with autoantibo-
dies against human RNA, possibly due to shared
immunogenic sequences.

Strain comparisons and further gnotobiotic stu-
dies should help elucidate if only particular
E. gallinarum strains promote autoimmunity or if
genetic predisposition of the host is needed for pene-
trance of autoimmune manifestations independently
from the E. gallinarum strain. In addition, the dura-
tion of translocation and microbial burden in tissues
likely matters in eliciting disease phenotypes. In the
autoimmune-prone model, we noted persistent and
progressive translocation overtime but could not
detect naturally colonizing E. gallinarum in feces
compared to very high fecal levels after exogenous
reconstitution in a pancreatic sepsis model.5,58 In
that model, E. gallinarum translocation to blood,
pancreas, and spleen was linked to sepsis that was
partly TLR2 dependent.58 Another open question is
how enterococci travel and persist within the host. It
remains to be determined if E. gallinarum migrates
freely in the extracellular space or hijacks antigen-
presenting cells or other host cells to reach internal
organs and persist in host tissues. E. faecalis is well
known to persist within macrophages, which is one
of many possibilities for E. gallinarum persistence
within its host that need to be tested.59

Figure 4. Vancomycin resistance gene restriction fragment
length patterns for E. gallinarum and E. faecalis. E. gallinarum
was grown in increasing concentrations from 1 μg/ml to 8 μg/
ml of vancomycin. Restriction digest with MspI and multiplex
PCR was performed as described in ref. 56 to determine vanco-
mycin resistance genes. E. gallinarum normally carries the low-
level vancomycin resistance vanC-1 operon (fragment sizes at
230/237 bp). E. faecalis carries the high-level vancomycin resis-
tance vanB operon (fragment sizes at 136, 160, 188/189 bp).
Horizontal transfer of this operon to E. gallinarum can occur
within gut microbiomes (not shown). Depicted below the gel is
the in vitro growth of E. gallinarum without the vanB operon.
Normal growth at concentrations between 1 and 4 μg/ml is
noted with diminishing growth starting at 8 μg/ml and little to
no growth at 20 μg/ml and beyond (not shown).
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Similarly, it would be important to know if the
closely related E. casseliflavus is also capable of
inducing autoimmunity in susceptible models, as
E. faecalis is not capable of doing so but is more
distantly related to E. gallinarum. Although
E. faecalis induced barrier leakiness and transloca-
tion similar to E. gallinarum, it did not induce
signs of systemic autoimmunity. In contrast to
monocolonization of C57BL/6 mice with
E. gallinarum, E. faecalis did not induce Th17
cells or systemic autoantibodies.5 Biosynthetic
gene clusters are markedly different in E. faecalis
compared to E. gallinarum/E. casseliflavus (Figure
5),60 suggesting different virulence factors may
contribute to autoimmunity versus translocation.
Clearly, different translocating species within the
Enterococcus genus promote diverse host pheno-
types depending on distinct pathogenicity and host
factors, respectively (Table 2 and Figure 2). The
commonality of translocating into host tissues may
be related to its evolutionary history.

Evolution of enterococci as instigators of
chronic human diseases

In the antibiotic era, enterococci have evolved
from commensals to hospital-endemic human
pathogens, now becoming a major cause of noso-
comial infection.61 By nature, enterococci are
ubiquitous bacterial residents of the gastrointest-
inal tracts of mainly land animals, and are highly
adapted to terrestrialization and the selective
pressures of desiccation, starvation, and isolation.
Their intrinsic-hardened outer cell walls and abil-
ity to exist in an environmentally persistent state
naturally confer resistance to many antibiotics
and disinfectants.61 The introduction of antibio-
tics over the last 80 years selected for lineages of
E. faecalis and E. faecium that lack CRISPR pro-
tection of their genomes.62 This leads to
a destabilization of the coevolved relationship
with the human host. As a result of the easier
entry of mobile genetic elements (MGE), hospi-
tal-adapted lineages possess “swollen genomes”
replete with MGEs including a pathogenicity
island, lysogenic phages, and many plasmids and
transposons that confer new metabolic abilities
and resistance to even last-line antibiotics.62-64

This leads to a destabilization of the coevolved

relationship with the human host. The combina-
tion of long evolved and recently acquired traits
make them well suited for persistent residence in
hospitals and transmission among antibiotic-
treated individuals. These processes result in
nosocomial infections, especially bacteremia, sur-
gical site, and urinary tract infections.

Even more so, enterococci are becoming recog-
nized as contributors of diseases not classically con-
sidered infectious in origin (Table 2).65 Their broad
living conditions may make them particularly suita-
ble to detect in disease states, especially compared to
bacteria that are harder to culture or propagate.
Within the intestine, Enterococcus has been consid-
ered a driver of both inflammatory bowel disease and
neoplasm.66-71 Beyond the intestine, Enterococcus
expansion is linked to hepatic inflammation in hepa-
titis B virus-related cirrhosis and E. faecalis enhances
inflammation in mouse models of alcoholic cirrhosis
with gastric acid suppression.36,72 Enterococcus spp.
among other species were also recovered fromMLNs
of cirrhotic patients and this genus is enriched in the
gut mucosa of encephalopathic patients with
cirrhosis.73,74 Furthermore, Enterococcus is enriched
in the fecal microbiome of patients with primary
sclerosing cholangitis (PSC),75 another liver

Figure 5. Network of predicted biosynthetic gene clusters
(BGCs) from E. faecium, E. faecalis, E. gallinarum, and
E. casseliflavus genomes according to Rashidi et al. Figure
reproduced with permission from ref. 60. Unique strains are
represented by colored nodes. Connecting lines indicate at least
75% similarity of BGCs between two strains. The weight of each
line is proportional to the number and strength of BGC con-
nections between two strains. Thicker lines represent more
frequent higher-similarity pathways. Secondary metabolite pro-
file predictions revealed distinct clusters. Intrinsically vancomy-
cin-resistant E. gallinarum (orange) and E. casseliflavus (red)
cluster together whereas E. faecalis (green) and E. faecium
(blue) cluster independently from each other.
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autoimmune disease related to AIH and associated
with bacterial RNA in the portal tracts of the liver.76

Consistent with these findings, Enterococcus abun-
dance in the stool of PSC patients correlates with
alkaline phosphatase, a marker of PSC progression.75

In addition, very recent work from Japan found
specifically E. gallinarum translocated to the MLN
in humanized gnotobiotic mice along with Klebsiella
pneumoniae and Proteus mirabilis, which together
promoted Th17 responses in PSC.77 Similarly,
another recent study showed anti-tumor properties
of an E. gallinarum strain mediated by its flagellin,78

following human cancer microbiome studies which
revealed E. hirae, E. durans, and E. gallinarum
among the most enriched species in the stool of
patients responding to checkpoint
immunotherapy.79 In a study with transplant
patients, Enterococcus spp. including E. faecium
and E. gilvis expanded after allogeneic stem cell
transplantation, especially in those patients with
graft-versus-host disease.80 Patients with the out-
growth of these bacteria also have lower urinary
3-indoxyl sulfate, which correlates with poor early
and long-term outcomes.80,81 Finally, E. gallinarum
translocates to internal organs in autoimmune-
prone hosts and interacts with host cells in tissues,
contributing to autoimmunity related to SLE, AIH,
and PSC as detailed above. Further research is
needed to fully assess E. gallinarum as a target in
human autoimmune diseases, but the evidence for
Enterococcus spp. in promoting non-infectious,
chronic disease states is growing. More broadly, dis-
ease-promoting candidates across different genera
will likely be discovered as the “dark matter” within
the human microbiome is being revealed.82,83
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