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Abstract
Objective: The aim of this study was to compare a theoretical neural net model with MEG data
from epileptic patients and normal individuals.

Methods: Our experimental study population included 10 epilepsy sufferers and 10 healthy
subjects. The recordings were obtained with a one-channel biomagnetometer SQUID in a
magnetically shielded room.

Results: Using the method of x2-fitting it was found that the MEG amplitudes in epileptic patients
and normal subjects had Poisson and Gauss distributions respectively. The Poisson connectivity
derived from the theoretical neural model represents the state of epilepsy, whereas the Gauss
connectivity represents normal behavior. The MEG data obtained from epileptic areas had higher
amplitudes than the MEG from normal regions and were comparable with the theoretical magnetic
fields from Poisson and Gauss distributions. Furthermore, the magnetic field derived from the
theoretical model had amplitudes in the same order as the recorded MEG from the 20 participants.

Conclusion: The approximation of the theoretical neural net model with real MEG data provides
information about the structure of the brain function in epileptic and normal states encouraging
further studies to be conducted.

Introduction
Epilepsy is a disorder involving recurrent unprovoked sei-
zures: episodes of abnormally synchronized and high-fre-
quency firing of neurons in the brain that result in
abnormal behaviors or experiences. This is a fairly com-
mon disorder, affecting close to 1% of the population.
The lifetime risk of having a seizure is even higher, with
estimates ranging from 10 to 15% of the population. Epi-

lepsy can be caused by genetic, structural, metabolic or
other abnormalities. Epileptic disorders can be general-
ized, partial (focal) or undetermined. A primary general-
ized seizure starts as a disturbance in both hemispheres
synchronously, without evidence of a localized onset. Par-
tial forms of epilepsy start in a focal area of the brain and
may remain localized without alteration of
consciousness.
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MEG is a noninvasive imaging technique, applicable to
the human brain with temporal resolution approximately
~1 ms [1]. Several authors during the last decade have
demonstrated the importance of MEG in the investigation
of normal and pathological brain conditions [2,3]. The
major advantage of MEG over electroencephalography
(EEG) is that MEG has higher localization accuracy. This
is because the different structures of the head (brain, liq-
uor cerebrospinalis, skull and scalp) influence the mag-
netic fields less than the volume current flow that causes
the EEG. Also, MEG is reference free, so that the localiza-
tion of sources with a given precision is easier for MEG
than it is for EEG [4].

The goal of this study is to compare the theoretical model
that follows Poisson or Gauss distributed connectivity [5-
12] with experimental MEG data from epileptic patients
and healthy volunteers.

Methods
Description of the model
Neural nets are assumed to be constructed of discrete sets
of randomly interconnected neurons of similar structure
and function. The neural connections are set up by means
of chemical markers carried by the individual cells. Thus,
the neural population of the net is treated as a set of sub-
populations of neurons, each of them characterized by a
specific chemical marker. We attribute the appropriate
Poisson or Gauss distribution law to each subsystem to
describe connectivity.

The elementary unit, the neuron, is bistable. It can be
either in the resting or in an active (firing) state. The tran-
sition from the resting to the firing state occurs when the
sum of postsynaptic potentials (PSPs) arriving at the cell
exceeds the firing threshold θ of the neuron. PSPs may be
excitatory (EPSPs) or inhibitory (IPSPs), shifting the
membrane potential closer to or further away from θ,
respectively. Each neuron may carry an electrical potential
of a few millivolts, which it passes on to the neurons to
which it is connected.

In this model, a net with N markers is assumed to be con-
structed of A formal neurons. A fraction h (0<h<l) of these
are inhibitory with all the axon branches generating IPSPs,
while the rest are excitatory with all their axon branches
generating EPSPs. Each neuron receives, on average, µ+

EPSPs and µ- IPSPs. The size of the PSP produced by an
excitatory (inhibitory) unit is K+ (K-). The neurons are also
characterized by the absolute refractory period and the
synaptic delay τ. If a neuron fires at time t, it produces the
appropriate PSP after a fixed time interval τ, the synaptic
delay. PSPs arriving at a neuron are summed instantly,
and if this sum is greater or equal to θ, then the neuron
will fire immediately, otherwise it will be idle. PSPs (if

below θ) will persist with or without decrement for a
period called the summation time, which is assumed to be
less than the synaptic delay. Firing is momentary and
causes the neuron to be insensitive to further stimulation
for a time interval called the (absolute) refractory period
[5-12].

The mathematical formalism of this study is based on the
equations for the expectation values of the activity derived
in previous papers [5-12]. A brief mathematical analysis
for each case is given below.

a) Expectation value of neural activity in noiseless and noisy neural 
nets with Poisson distributed connectivities
Following the assumptions of previous papers it was
shown that the expectation value of the neural activity
<αn+1> at t = (n+1) τ, i.e. the average value of αn+1 gener-
ated by a collection of netlets with identical statistical
parameters (µ+, µ-, h, K+, K-, A, θ) and the same αn at t =
nτ, is given by:

<αn+1> = (1-αn) P (αn, θ)  (1)

where P(αn, θ) is the probability that a neuron receives
post synaptic potentials (PSPs) exceeding its threshold at
time t = (n+1)τ. Thus:

Here Pl and Qm are the probabilities that a neuron will
receive l and m EPSPs and IPSPs respectively, and are
given by (3):

PI = exp (-αn (1-h) µ+) (αn (1-h) µ+)l/l!

Qm = exp (-αn h µ-) (αn hµ-)m/m!  (3)

In addition, the upper limits in the double sum mmax and
lmax are given by (4):

lmax = A αn (1-h) µ+

mmax = Aαnhµ-  (4)

Taking into account equations (2) and (3), equation (1)
takes the form:
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Similarly for Poisson nets with noise: if Pl and Qm are the
probabilities that a given neuron receives I EPSPs and m
IPSPs at time t = (n+1)τ, they are given by equation (3).
But if Tδ (θ) is the probability that the instantaneous
threshold value is θ or less than θ, this is given by (6):

Therefore the firing probability per neuron is then given
by (7):

where lmax and mmax are given by equation (4).

Finally, the expectation value of the activity is given by
(8):

<αn+1> = (1-αn) P (αn, θ)  (8)

b) Expectation value of neural activity in neural nets with Poisson 
distributed connectivities with chemical markers and noise
Similarly, the expectation value of the activity <αn+1> for
an isolated neural net with two chemical markers a and b
is given by (9):

where PI, Qi, P'l, Q'i', are the probabilities that a given neu-
ron will receive l EPSPs, i IPSPs or l'-EPSPs, i'-IPSPs, at
time t = (n+1)τ in the subsystems a or b respectively. These
probabilities are given by (10):

Pl = exp (-αn µa
+ (1-ha) ma) (-αn µa

+ (1-ha) ma)l/l!

Qi = exp (-αn µa
- ha ma) (-αn µa

- ha ma)i/i!

P'l' = exp (-αn µb
+ (1-hb) (1-ma)) (-αn µb

+ (1-hb) (1-ma))l'/
l'!

Q'i' = exp (-αn µb
- hb (1-ma)) (-αn µb

- hb (1-ma))i'/i'!  (10)

The upper limits in the sums in equation (9) are given by
(11):

lmax = A αn µa
+ (1-ha) ma

lmax' = A αn µb
+ (1-hb) (1-ma)

imax = A αn µa
- ha ma

imax' = A αn µb
- hb (1-ma)  (11)

Finally,  (θa) and  (θb) are defined as the probabil-

ities that the instantaneous neural thresholds are equal to
or less than θa and θb in subsystems a and b respectively
and are given by (12):

b) Expectation value of neural activity in neural nets with Gaussian 
connectivities in the absence of chemical markers
Let the total PSP of a neuron at t = (n+1)τ be given by:

en+1 = lK+ + mK-  (13)

where l and m are the numbers of EPSPs and IPSPs respec-
tively. If both l and m are large, their distributions may be
approximated by Gaussian distributions about their

respective average values  and

. The distribution of en+1 is therefore also nor-
mal, since the probabilities for l and m are mutually inde-
pendent, and its variance is the sum of the variances of l
and m. Therefore the average PSP will be given by (14):

where K = [µ+ (1-h) K+ + µ-h K-]  (14)

The variance of en+1, call it , is then given by (15):

 = αn [µ+ (1-h) (K+)2 + µ-h (K-)2]  (15)

The probability that the PSP exceeds a threshold  now
becomes:

Equation (16) in conjunction with equation (1) gives val-
ues for <αn+1> at t = (n+1)τ.

Let T(θ') be the probability that the instantaneous thresh-
old of a neuron is θ' or less than θ'. This is given by (17):
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Here δ is the standard deviation of the Gaussian distribu-
tion of the noise. Finally, the probability that a neuron
will receive PSPs that will exceed the threshold at time t =
(n+1)τ is given by (18):

Since l and m are very large numbers, the double sum can

be approximated by  and therefore:

Then the expectation value of <αn+1> of the activity at time
t = (n+1)τ will be:

<αn+1> = (1-αn) P(αn, δn+1, δ)  (20)

c) Expectation value of neural activity in noisy neural nets with 
chemical markers and Gaussian distributed connectivities
In a neural netlet of A neurons with two chemical markers
a and b, let the fractional numbers corresponding to each
chemical marker be ma and mb, and the fractions of inhib-
itory neurons for each chemical marker be ha and hb,
respectively. Also, let αnA be the active neurons in the net-
let at t = nτ. Then at t = (n+1)τ the numbers of EPSPs and
IPSPs that will appear in the subsystems with a and b
markers will be:

la = A αn µa
+ (1-ha) ma

ia = A αn µa
- ha ma

lb = A αn µb
+ (1-hb) mb

ib = A αn µb
- hb mb  (21)

On the average, the numbers of EPSPs and IPSPs that
appear per neuron in subnets with a and b markers will
be:

 = αn µa
+ (1-ha) ma

 = αn µa
- ha ma

 = αn µb
+ (1-hb) mb

 = αn µb
- hb mb  (22)

As stated in our previous papers [5-12] the total PSP input
to a neuron with a and b markers at t = (n+1)τ will be
given by (23):

ea,n+1 = laK+ + iaK-

eb,n+1 = lbK+ + ibK-  (23)

(Here it is assumed that )

If the quantities la, lb, ia and ib are sufficiently large, their
distributions may be approximated by Gaussian distribu-
tions about their average values, given by (22). Then the
average PSPs for the two markers a and b will be given by
(24):

and their variances will be given by (25):

Therefore the probability that a neuron with marker a or
b will receive a certain number of EPSPs or IPSPs that will
shift the membrane potential closer to or further away
from the instantaneous threshold will be given by (26):

where:

Thus, the probabilities  and  that the

instantaneous threshold of a neuron in subsystems a and

b is equal to or less than  or  will be given by (28):
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Consequently, as stated in our previous paper [8], the fir-
ing probabilities P(αn, δn+1, δa) and P'(αn, δn+1, δb) that a
neuron in subpopulations a and b, respectively, will
receive PSPs exceeding threshold at time t = (n+1)τ will be
given by (29):

Since the quantities la, ia, lb and ib are sufficiently large, the
double sum in equations (29) will be substituted by the
probabilities of the average values of la, ia and lb, ib for
each marker a and b and will be given by (30):

Then according to our previous papers [5-12], the expec-
tation value of activity in this netlet with two markers a
and b at time t = (n+1)τ will be given by (31):

The general case for an isolated noisy net with N markers
m1, m2,..., mN, where mi is the fraction of neurons with the
ith marker, is described by an equation analogous to the
equation for two markers (31). This general equation for
such a netlet at time t = (n+1)τ is:

Theoretical analysis
The electromagnetic fields generated in neural networks with Poisson 
or Gauss connectivities
Let us consider an isolated neural network with structural
parameters A, µ+, µ- and h, and initial activity αn at time t
= nτ. The potential generated in this network due to this
initial activity will be equal to the summation of all the
PSPs [7] and will be given by (33):

Vn = αn (A µ+ (1-h) - A µ-h)  (33)

Similarly, the potential generated by the neural activity
αn+1 at the next time interval t = (n+1)τ will be given by
(34):

Vn+1 = αn+1 (A µ+ (1-h) - A µ-h)  (34)

By combining equations (33) and (34) and assuming
spherical brain symmetry, the potential difference ∆V can
be obtained. As is known from classical physics, this gen-
erates a magnetic field Bn given by (35):

Choosing ∆t = 1 ms, the above equation takes the follow-
ing form:

where µo and εo are the magnetic permeability and dielec-
tric constant of the medium respectively.

When the neural network is characterized by two chemical
markers a and b, the potentials created at the synapses of
the neurons with the a and b markers will be given by
(37):

Vna = αn (A µa
+ (1-ha) ma - A µa

- ha ma)

Vnb = αn (A µb
+ (1-hb) mb - A µb

- hb mb)  (37)

On the other hand, the total voltages created at the syn-
apses of the neurons at times t = nτ and t = (n+1)τ will be
given by (38):

Vn = Vna + Vnb = αn A [(µa
+ (1-ha) ma + µb

+ (1-hb) mb) - (µa
-

ha ma + µb
- hb mb)]

Vn+1 = αn+1 A [(µa
+ (1-ha) ma + µb

+ (1-hb) mb) - (µa
- ha ma +

µb
- hb mb)]  (38)

Therefore the potential difference between these two time
intervals, taking into account equations (38), is given by
(39):

∆V = Vn+1 - Vn = (αn+1 - αn) A [(µa
+ (1-ha) ma + µb

+ (1-hb)
mb) - (µa

- ha ma + µb
- hb mb)]  (39)

Thus, as stated previously, this potential difference will
create a magnetic field Bn, which is given by (40):
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where the neural activity αn+1 refers to a Poisson or Gauss
distribution of connectivities as given in the previous
section.

In the general case, where the neural net has N chemical
markers, equation (40) takes the form:

Experimental procedure
We compared the theoretical results with the experimen-
tal findings obtained using MEG measurements from 10
epileptic patients and 10 healthy volunteers. Informed
consent for the methodology and the aim of the study was
obtained from all participants prior to the procedure.

Biomagnetic measurements were performed using a sec-
ond order gradiometer SQUID (Model 601, Biomagnetic
Technologies Inc.), which was located in a magnetically
shielded room with low magnetic noise. The MEG record-
ings were performed after positioning the SQUID sensor
3 mm above the scalp of each patient using a reference sys-
tem. This system is based on the International 10–20 Elec-

trode Placement System [13] and uses any one of the
standard EEG recording positions as its origin; in this
study we used the P3, P4, T3, T4, F3, and F4 recording
positions [14-16]. Around the origin (T3 or T4 for tempo-
ral lobes) a rectangular 32-point matrix was used (4 rows
× 8 columns, equidistantly spaced in a 4.5 cm × 10.5 cm
rectangle) for positioning of the SQUID [14-16]. The
MEG was recorded from each temporal lobe at each of the
32 matrix points of the scalp for 32 s and was band-pass
filtered with cut-off frequencies of 0.1 and 60 Hz. The
MEG recordings were digitized using a 12 bit precision
analog-to-digital converter with a sampling frequency of
256 Hz, and were stored in a PC peripheral memory for
off-line Fourier statistical analysis. The method, by its
nature (i.e. temporal and spatial averaging), eliminates
short-term abnormal artifacts in any cortical area, while it
retains long-lasting localized activation phenomena. We
used the x2 – fitting method to analyze the MEG data [17].

This method was based on the following equation (42):

The MEG recorded from an epileptic patient over an interval of 1 s durationFigure 1
The MEG recorded from an epileptic patient over an interval of 1 s duration. The x-axis represents the time sequence and the 
y-axis the magnetic field.
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where:

Qi: is the number of elements in the ith interval of the nor-
malized MEG histogram

Ti: is the number of elements in the ith interval of the nor-
mal distribution with the same mean value and standard
deviation as the normalized MEG histogram

k: is the number of intervals

n = k-1: the degrees of freedom of the system

In our case n = 7 and the critical value for distinguishing
the Poisson from the Gauss distribution was 14.1 (xcr

2 =
14.1). If the estimated value of the x2 was greater than
14.1, the distribution was Poisson; otherwise it was
Gauss.

Results
Using the x2-fitting method it was found that the MEG
recordings from epileptic patients had Poisson distribu-
tions whereas those from normal subjects had Gauss dis-
tributions. The Poisson connectivity derived from the

theoretical model represents the state of epilepsy, whereas
the Gauss connectivity represents normal behavior. The
magnetic field derived from the theoretical model was
approximately in the same order as the recorded MEG in
both conditions. Furthermore, the MEG data obtained
from epileptic areas had higher amplitudes than those
from normal regions and were comparable with the theo-
retical magnetic fields from Poisson and Gauss
distributions.

Figure 1 shows the MEG recorded from an epileptic
patient; figure 2 illustrates the MEG recorded from a
healthy volunteer.

Figures 3 and 4 show the magnetic fields derived from the
theoretical model with Poisson and Gauss distributions
respectively.

Discussion
Over the past three decades, neural nets have been inten-
sively studied from several points of view. An area of con-
siderable importance is that of biological nets, i.e. models
of nets designed to imitate the structures and functions of
human and other living brains and thus enhance our

The MEG recorded from a healthy subject over an interval of 1 s durationFigure 2
The MEG recorded from a healthy subject over an interval of 1 s duration. The x-axis represents the time sequence and the y-
axis the magnetic field.
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understanding of learning, memory, understanding etc.
Widely used models include the pioneering work of
McCulloch and Pitts [18], which treats assemblies of
neurons as logical decision elements, the mathematical
formalism of Caianiello [19] using the "neuronic equa-
tion", and probabilistic neural structures [5,6] that moni-
tor the net activity, i.e. the fraction of neurons that
become active per unit time. All these models have had a
measure of success in improving our understanding of
functions such as those mentioned above.

The effect of structure on function and dynamic behavior
in neural nets has been also a subject of considerable
interest in recent years. In the so-called probabilistic nets
we have an assembly comprising a large number of neu-
rons, randomly positioned in space, that have only partial
connectivity; i.e. each neuron is connected to only a very
small fraction of the total number of neurons in the sys-
tem, randomly chosen. The principal idea is that this con-
nectivity is given by the binomial distribution. In earlier
work, probabilistic neural nets were investigated using
Poisson or Gauss distributions of interneuronal connec-

tivity; the main conclusion was that when a neuron was
connected to a relatively small number of units, a Poisson
distribution law was appropriate but if it was connected to
a large number of units then a Gaussian law was a fairly
good approximation [10-12]. Thus, Poisson neuronal
nets may be viewed as approximately Gaussian whenever
the number of synaptic connections is relative large.

In this study we measured the MEG of epileptic patients
and normal subjects in order to compare the theoretical
neural net model [10-12] with real data. Analyzing the
MEG data by x2-fitting revealed that the MEG recordings
from epileptic areas had Poisson distributions [17]. This
finding is consistent with the correspondence between
Poisson distributions and low numbers of internal neural
connections, and with the synchronization of neural
activity during an epileptic seizure [20,21]. Moreover, the
MEG recordings from epileptic areas showed higher
amplitudes than those from normal regions, comparable
with the results from the theoretical neural model with
Poisson and Gauss distributions respectively (Figs. 1, 2, 3,
4).

The magnetic field derived from the theoretical model with Poisson distributionFigure 3
The magnetic field derived from the theoretical model with Poisson distribution. The x-axis represents the time sequence and 

the y-axis the magnetic field. Parameters: ma = 0.6, θa = 5,  = 15, ha = 0; mb = 0.2, θb = 4,  = 192, hb = 0.01; mc = 0.1, θc = 

3,  = 34, hc = 0.01; md = 0.1, θd = 3,  = 32, hd = 0; K± = 1.

µa
+ µb

±

µc
± µd

+
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If a nerve cell is characterized by a given firing threshold
which, when exceeded, results in spike discharge, two ana-
tomical situations can be contrasted: one in which only a
few synaptic contacts reach the cell in question, and a sec-
ond in which the cell receives a large number of synaptic
inputs. Suppose, in either case, that firing is dependent on
the simultaneous excitation of a certain percentage of the
total synaptic input (assuming that the ratio of excitatory
and inhibitory synapses is the same in both situations so
that the inhibitory inputs may be disregarded for the
moment). Then it is clear that firing in neurons with a
large number of synaptic inputs would require the syn-
chronized activation of a substantial number of synapses;
whereas in neurons with few synapses, firing may ensue
even from a single excitatory synapse. Thus, a system in
which neurons receive small numbers of synaptic connec-
tions is likely to exhibit a less "controlled" pattern of activ-
ity – and also "spontaneous" discharges [22]. The inverse
problem in MEG measurements is the search for
unknown sources by analysis of the measured field data.
To handle this task one must first study the forward prob-
lem, i.e. how the magnetic field and the electrical poten-

tial arise from a known source. For practical purposes one
also has to choose appropriate models for the source and
the biological object as a conductor. Sarvas [23] described
basic mathematical and physical concepts relevant to the
forward and inverse problems and discussed some new
approaches. Especially, he described the forward problem
for both homogenous and inhomogenous media. He
referred to the Geselowitz's formulae and presented a sur-
face integral equation to handle a piecewise homogenous
conductor and a horizontally layered medium. Further-
more, he discussed the non-uniqueness of the solution of
the magnetic inverse problem and studied the difficulty
caused by the contribution of the electric potential to the
magnetic field outside the conductor.

The Poisson distribution corresponds to epileptic areas
and the Gauss distribution to normal regions. The approx-
imation of the theoretical neural net model to real MEG
data provides a mathematical approach to the structure of
brain function and indicates the need for further studies.

The magnetic field derived from the theoretical model with Gauss distributionFigure 4
The magnetic field derived from the theoretical model with Gauss distribution. The x-axis represents the time sequence and 

the y-axis the magnetic field. Parameters: ma = 0.7, θa = 6,  = 14, ha = 0; mb = 0.08, θb = 4,  = 240, hb = 0.02; mc = 0.02, θc 

= 4,  = 400, hc = 0.0; md = 0.1, θd = 4,  = 337, hd = 0; me = 0.1, θe = 4,  = 294, he = 0.03; K± = 1.
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Appendix
The subscript i is a marker label and indicates the proper-
ties of a subpopulation in the netlet characterized by the
ith marker.

Structural parameters of the neural net
τ Synaptic delay

A Total number of neurons in the netlet

hi Fraction of inhibitory neurons

 The average number of neurons receiving excitatory
postsynaptic potentials (EPSPs) from one excitatory
neuron

 The average number of neurons receiving inhibitory
postsynaptic potentials (IPSPs) from one inhibitory
neuron

 The size of PSP produced by an excitatory neuron of
the netlet

 The size of PSP produced by an inhibitory neuron of
the netlet

mi Fractions of neurons carrying the ith marker in the
netlet

θi Firing thresholds of neurons

Statistical parameters
δi Standard deviation of the Gaussian distribution of the
neural firing thresholds in the ith subpopulation

Dynamical parameters
n An integer giving the number of elapsed synaptic delays

αn The activity, i.e. the fractional number of active neu-
rons in the netlet at time t = nτ
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