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ABSTRACT: This research is centered on examining the
magnetic characteristics of organic molecules, with a particular
emphasis on magnetic susceptibility, an essential physical property
that provides insights into molecular microstructures and reaction
processes. Traditional approaches for determining and calculating
magnetic susceptibility are generally inefficient and demanding. To
overcome these challenges, we have introduced a novel approach
using quantitative structure−property relationships, which effi-
ciently elucidates the relationship between the structural properties
of molecules and their molar magnetic susceptibility. In our study,
we utilized a comprehensive database comprising molar magnetic
susceptibility data for 382 organic molecules. We applied six
distinct molecular fingerprinting methods�RDKit Fingerprint, Morgan Fingerprint, MACCS Keys, atom pair fingerprint, Avalon
Fingerprint, and topology fingerprint�as feature inputs for training seven different machine learning models, namely random forest,
AdaBoost, gradient boosting, extra trees, elastic net, support vector machine, and multilayer perceptron (MLP). Our findings
revealed that the integration of the atom pair fingerprint with the MLP model yielded R2 values of 0.88 and 0.90 in the validation and
test sets, respectively, showcasing exceptional predictive accuracy. This advancement significantly expedites research and
development processes related to the magnetic properties of organic molecules. Moreover, by employing this effective predictive
method, it is expected to considerably reduce both experimental and computational expenses while maintaining high accuracy. This
development represents a breakthrough in the rapid screening and prediction of properties for various compounds, offering a new
and efficient pathway in this field of study.

■ INTRODUCTION
Molar magnetic susceptibility, χm, is a critical physical quantity
that offers substantial insights into the magnetic characteristics
of organic molecules and various materials. It serves as an
essential physicochemical property, defining a compound’s
reaction to an external magnetic field. When a material is
subjected to a magnetic field, denoted as H, it experiences an
induced magnetization, M, which represents the magnetic
moment per unit volume. This induction process is described
by the relationshipM = κH,1−4 where κ signifies the volumetric
magnetic susceptibility. Given that H and M share the same
units, κ is a dimensionless quantity.
In the realms of chemistry and materials science, the molar

magnetic susceptibility χm is a more applicable parameter. It is
calculated by multiplying the volumetric magnetic suscepti-
bility (κ) by the molar volume of the compound. Alternatively,
it can be expressed as the product of κ and the molar mass of
the compound divided by its density. This approach offers a
practical and insightful way to understand and quantify the
magnetic properties of substances in response to magnetic
fields, playing a pivotal role in the study of their magnetic

behavior. The formula for molar magnetic susceptibility can be
expressed as

V
M

m m= =
(1)

where Vm is the molar volume of the substance, M is the molar
mass, and ρ is the mass density.
The definition of molar magnetic susceptibility is particularly

significant because it accounts for the quantity of a substance,
enabling standardized comparisons of magnetic properties
across various materials.5−9 This parameter is instrumental in
identifying the diamagnetic or paramagnetic nature of
compounds and finds widespread application in coordination
chemistry, molecular magnetism, and material science.
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Historically, the measurement of the molar magnetic
susceptibility has depended on intricate experiments and
procedures that are often time-consuming.
In addition to direct measurements, methods like Monte

Carlo simulations,10 first-principle calculations,11 multivariate
linear regression,12−14 and neural networks13 have been
employed to simulate and study the molar magnetic
susceptibility of substances. While these techniques can yield
precise data, their speed and efficiency are becoming
increasingly insufficient to satisfy the demands of rapidly
progressing research and industrial applications. The field of
materials science is continuously evolving with the introduc-
tion of new materials, intensifying the need for quick and
accurate prediction of molar magnetic susceptibility. This
urgency underscores the necessity for more efficient
approaches that can keep pace with the advancements in this
domain, ensuring timely and accurate analysis of magnetic
properties in a broad range of materials.
In recent years, machine learning, as a powerful tool for data

analysis, has shown tremendous potential in cheminformatics
and materials science, particularly in predicting the physical
and chemical properties of substances. Estrada et al. utilized
the TOSS-MODE method and semiempirical models to
predict diamagnetic properties.15 Zhokhova et al. employed
descriptors based on the fragment composition of explanatory
molecules and a parameter Vx reflecting the molecular volume
to predict the magnetic susceptibility of compounds.16 Mu et
al. have utilized molecular graph adjacency matrices mχ′ and
variable atomic valency connectivity mχ″ indices to propose
variable molecular connectivity indices and their inverse
indices as feature values for predicting the molar magnetic
susceptibility of substances.12 Afantitis et al. have established a
QSPR model, selecting three physical topological descriptors
from 30 to predict the magnetic susceptibility of organic
molecules.17 Previous research has made strides in expediting
the prediction of molar magnetic susceptibility in organic
molecules through machine learning methods. However, the
features used in these methods, ranging from molecular
connectivity indices to physical topological descriptors, still
necessitate computations using specific professional software.
These features, while not exceedingly complex, do require a
level of familiarity with specialized tools, for example, the
calculation of physical topological descriptors such as polar
surface area (PSAr), principal moment of inertia X (PMIX),
and diameter (Diam) typically involves software like AutoDock
and Gaussian. Similarly, molecular connectivity indices are
often computed using applications such as ChemDraw or
Open Babel. As a result, a considerable amount of time is
required not only to learn how to use these software tools but
also to perform the necessary calculations. This step remains a
significant aspect of the process, indicating that while machine
learning has streamlined some aspects of predicting molar
magnetic susceptibility, the preparatory stages still involve a
substantial investment of time and effort in learning and using
specialized computational methods.
In this study, we aimed to rapidly predict the molar magnetic

susceptibility of organic molecules using machine learning
techniques and succeeded in developing a model that can
directly predict this property from molecular structures. Our
innovative model enables the prediction of an organic
molecule’s molar magnetic susceptibility simply by inputting
its simplified molecular input line entry system (SMILES)
string, which represents the molecule’s structure. To identify

the most effective predictive model, we investigated various
combinations of molecular fingerprints and machine learning
algorithms. Our machine learning model, trained on an
extensive data set, effectively discerned the complex relation-
ship between molecular structure and its physical properties.
This capability allows for the rapid prediction of the magnetic
properties of unknown substances. Our method not only
accelerates the process of examining magnetic properties but
also significantly reduces the costs associated with exper-
imental and computational methods, all while maintaining high
accuracy.
The implications of this research are substantial. It enhances

our understanding of the magnetic properties of organic
molecules and accelerates the discovery and development of
new materials. Additionally, the application of this model
extends to various related fields, marking a significant
advancement in the study and application of materials science
and molecular magnetism.

■ METHODS
Method Overview. The data for this study were sourced

from the “CRC Handbook of Chemistry and Physics”
(International Standard Book Number: 978-1-4987-5429-3,
available in PDF format). The data set includes the
diamagnetic values of approximately 400 common organic
compounds. Table 1 lists the molar magnetic susceptibility χm

and volumetric magnetic susceptibility κ values for some of
these compounds. All data sets used in this work are open
source at (https://github.com/ZHANGYNing/Diamagnetic-
Susceptibility-of-Organic-Compounds).
It is noteworthy that the susceptibility values listed in Table

1 of our study are all negative, signifying that the substances
under consideration are diamagnetic. The majority of the
volumetric magnetic susceptibility values in our data set
represent substances in either a solid or liquid state at room
temperature, with a smaller portion accounting for substances
in a liquefied gaseous state. This diversity in the states of
matter covered by our data prompted our decision to use the
molar magnetic susceptibility as the prediction value in this
research.
In conventional practice, the molar magnetic susceptibility is

typically presented in units compatible with the CGS
(Centimeter-Gram-Second) system. However, for integration
into SI (International System of Units) equations, these values
need to be multiplied by 4π to conform to the SI unit system.

Table 1. Values of Molar Magnetic Susceptibility and
Volumetric Magnetic Susceptibility for Some Organic
Compounds

name mol. form −χm/10−6 cm3 mol−1 −κ/10−6

acenaphthene C12H10 109.9 0.871
acenaphthylene C12H8 111.6 0.659
acetaldehyde C2H4O 22.2 0.395
acetamide C2H5NO 33.9 0.573
acetic acid C2H4O2 31.8 0.553
acetic anhydride C4H6O3 52.8 0.56
acetone C3H6O 33.8 0.457
acetonitrile C2H3N 27.8 0.532
acetophenone C8H8O 72.5 0.62
acetyl chloride C2H3ClO 39.3 0.553

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c10469
ACS Omega 2024, 9, 14368−14374

14369

https://github.com/ZHANGYNing/Diamagnetic-Susceptibility-of-Organic-Compounds
https://github.com/ZHANGYNing/Diamagnetic-Susceptibility-of-Organic-Compounds
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c10469?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


In the SI system, the unit of magnetic field strength H is
ampere per meter (A/m−1).
Our research aimed to develop a predictive model that

directly correlates molecular structure with molar magnetic
susceptibility. This approach is intended to facilitate more
efficient predictions of the magnetic properties of organic
molecules. As illustrated in Figure 1, our initial step involved

representing the molecules in our data set using various
molecular fingerprinting techniques, such as RDKit fingerprint
and Morgan fingerprint. This was done to thoroughly capture
the chemical characteristics of these molecules.
To achieve optimal model development and assessment, we

partitioned the data into three distinct sets: training, validation,
and test sets. The training set was employed for the model’s
initial training phase. The validation set played a critical role in
fine-tuning the model parameters during training, ensuring the
optimization of the model’s performance and its ability to
generalize. The test set was crucial for evaluating the final
performance of the model, confirming its efficacy in accurately
predicting the characteristics of previously unseen data. This
structured approach ensured the comprehensive and effective
development of the predictive model.
After the meticulous processing and division of the data, our

study involved the utilization of various machine learning
models for the purpose of training. These models included
multilayer perceptrons (MLP), support vector machines
(SVM), and random forests, among others. Each model was
subjected to comprehensive training and fine-tuning processes
to ensure that it achieved optimal predictive performance. The
effectiveness of these models was assessed by comparing their
performance on both the validation and test sets. This
comparison was crucial for identifying the model that
demonstrated the most superior performance in terms of
prediction accuracy.

Molecular Fingerprinting. Molecular fingerprinting is a
digital representation method that converts chemical structures
into a series of numerical codes. This representation is widely
used in cheminformatics, facilitating the rapid comparison and
analysis of similarities and differences between different
molecules using computer algorithms. Moreover, the funda-
mental principles and algorithms for generating molecular
fingerprints have been extensively studied.18−23 In this study,
we directly utilized RDKit (http://www.rdkit.org/) to

compute six different types of molecular fingerprints, which
are listed below. These molecular fingerprinting methods each
have their unique characteristics, offering a diverse range of
perspectives and tools for studying the relationship between
molecular structure and their molar magnetic susceptibility.

• RDKit fingerprint.24 This method generates bit vectors
based on the substructures and chemical features of the
molecule. It is suitable for rapid screening and
comparison of molecular similarity.

• Morgan fingerprint (circular fingerprint).24 Similar to
the widely used extended-connectivity fingerprints
(ECFP) in chemistry, this method generates fingerprints
based on the circular neighborhood of atoms around a
molecule. It is applicable for predicting the similarity and
properties of complex molecular structures.

• MACCS keys fingerprint.24,25 This fingerprint includes
166 predefined chemical structure keys, representing
various chemical features that may appear in a molecule.
It is commonly used for compound database searches
and molecular similarity comparisons.

• Atom pair fingerprint.24,26 Describes the distance and
type between pairs of atoms. It is suitable for capturing
features related to the distances between atoms within a
molecule.

• Avalon fingerprint.24 A fingerprint based on hashing
algorithms. It can generate larger bit vectors, providing a
rich molecular description.

• Topology fingerprint.24 Based on the molecular top-
ology, such as the arrangement of rings and bonds. It is
suitable for describing the overall architecture and
topological characteristics of a molecule.

Model Building. In our work, given that quantitative
structure−property relationships (QSPR) predict properties
from molecular structures,27 typically involving complex
nonlinear relationships, we experimented with various machine
learning models, selecting the one that performed best on the
given data set. Throughout the development of these models,
we conducted meticulous parameter tuning and cross-
validation to ensure optimal performance on our data set.
We compared these models across different data sets (training,
validation, and test sets) to assess their effectiveness in
predicting the molar magnetic susceptibility of organic
molecules. This multimodel comparison process not only
enhanced our understanding of the data but also provided a
solid foundation for ultimately selecting the most suitable
model.

• Random forest (RF).28 An ensemble learning method
that builds multiple decision trees and combines their
predictions to enhance accuracy and stability.

• AdaBoost.29 An adaptive boosting algorithm that
sequentially connects multiple weak learners, gradually
adjusting the weight of each learner to improve model
performance.

• Gradient boosting (GB).30 Adds weak learners sequen-
tially, optimizing each addition based on the residuals of
the previous step to enhance predictive capabilities.

• Extra trees (ET).31 Similar to Random Forest but uses a
more random method of splitting in tree construction,
aimed at reducing variance.

• Elastic net (EN).32 Combines features of Lasso and
Ridge regression, optimizing model performance
through adjustment of regularization parameters.

Figure 1. Schematic illustration of the workflow.
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• Support vector machine (SVM).33 A powerful classifier
that finds the optimal hyperplane in high-dimensional
space to separate different categories.

• Multi-layer perceptron (MLP).34 A neural network-
based method with strong nonlinear fitting capabilities,
suitable for predicting complex data patterns.

Model Evaluation. In this study, we employed three
primary statistical metrics to evaluate the performance of the
selected machine learning models: the coefficient of determi-
nation (R2), the root-mean-square error (RMSE), the mean
squared error (MSE), and the mean absolute error (MAE).
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In these metrics, yi is the actual value, yi is the predicted
value, y̅ is the average of actual values, and n the number of
samples. We used these indicators for a comprehensive
evaluation of all models. R2 offers insights into the overall
fitting of the model; RMSE, MSE, and MAE measure the
model’s prediction error from different perspectives. By
comparing the performance of different models on these
metrics, we were able to objectively determine which models
are best at predicting the molar magnetic susceptibility of the
organic molecules. This comprehensive evaluation approach
ensured that our analysis was both thorough and unbiased,
providing a solid basis for the final selection of the model.

■ RESULTS AND DISCUSSION
In our study, we initially utilized various molecular fingerprints
as input features and trained multiple machine learning
models. The coefficient of determination (R2) heatmap
analysis, as shown in Figure 2, revealed that the atom pair
fingerprint was the most effective feature for training. This
finding underscores the impact of factors such as interatomic
distances, atom types, their connectivity, and the arrangement
of electrons in three-dimensional space on the molar magnetic
susceptibility of organic molecules. Molar magnetic suscepti-
bility, a key physical quantity measuring a molecule’s magnetic
response in an external field, is heavily influenced by the
electron distribution within the molecule and the interactions
between atoms. The atom pair fingerprint, capturing the
distances and relationships between atom pairs within a
molecule, effectively encodes these critical aspects of electron
arrangement and interatomic interactions, which are crucial for
predicting molar magnetic susceptibility.
Among the evaluated machine learning models, the MLP

demonstrated the highest performance. As a deep feed-forward
neural network, MLP excels at fitting complex functions,
enabling it to discern more intricate relationships and patterns
than traditional linear models. MLP’s hidden layers allow it to
represent higher-level and more complex features, which may
be challenging for linear models. Additionally, the nonlinear
activation functions in MLP, such as ReLU, Sigmoid, or Tanh,
enable it to effectively learn and fit nonlinear relationships.
Optimized through algorithms such as gradient descent, MLP
can adjust weights to better fit training data and make precise
predictions. Consequently, the combination of the atom pair
fingerprint with MLP achieved an (R2) of 0.9 on the test set,
with MSE and MAE values of 0.14 and 0.0015, respectively.
As shown in Figure 3, the combination of atom pair

fingerprint with MLP demonstrated high consistency between
predicted and actual values across training, validation, and test
sets, further validating the model’s accuracy in predicting the
molar magnetic susceptibility of organic molecules. The

Figure 2. (R2) heatmap for different models and fingerprints.
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histogram of prediction errors for the validation and test sets,
displayed in Figure 4, shows that the errors are approximately
normally distributed and centered around zero, indicating that
the model’s predictions are neither systematically biased nor
overly uncertain. Figure 5 displays the performance of different
models in terms of MSE and MAE, objectively proving the
superiority of the combination of MLP and atom pair
fingerprint in predicting the molar magnetic susceptibility of
organic molecules.
In conclusion, the atom pair fingerprint provided MLP with

a comprehensive set of input features, enhancing the model’s
understanding and learning of the complex relationship
between molar magnetic susceptibility and molecular structure.
This combination not only bolstered the model’s robustness
against noise and outliers but also established a highly effective

tool for predicting the molar magnetic susceptibility of organic
molecules.

■ CONCLUSIONS
In this study, we used six types of molecular fingerprints as
features to train seven different machine learning models. The
comparative analysis revealed that the combination of the atom
pair fingerprint and MLP exhibited exceptional performance in
predicting the molar magnetic susceptibility of organic
molecules, as evidenced by an (R2) value of 0.9, a MAE of
0.0014, and a MSE of 0.15. This outcome underscores the
effectiveness of atom pair fingerprint in capturing critical
molecular features that influence magnetic susceptibility, and it
also demonstrates the potent capability of MLP in processing
complex data and learning nonlinear relationships.
Moreover, the methodology and findings of this study are of

substantial importance in advancing the research and develop-
ment of the magnetic properties of organic molecules. The
integration of machine learning models into this research field
not only expedites the research process but also significantly
reduces the costs associated with experiments and computa-
tional analyses, all while maintaining high accuracy. This
innovative approach opens up new avenues for the rapid
screening and property prediction of compounds, which could
have a significant impact in various domains, including material
science, pharmaceutical design, and other related fields. The
application of these advanced machine learning techniques in
predicting molar magnetic susceptibility represents a major
step forward in the understanding and development of new
materials and compounds. In our future work, we plan to apply
our model to a variety of molecular data sets to enhance its
applicability and robustness. Additionally, exploring other
advanced machine learning techniques, such as deep learning
and ensemble methods, will be part of our ongoing efforts.
This will not only expand the capabilities of our model but also
offer a wider perspective on the application of machine
learning in the prediction of chemical properties.

Figure 3. Diagram showing the scatter of the experimental and
predicted values of magnetic susceptibility according to the combined
models of MLP and atom pair fingerprint.

Figure 4. Histogram of prediction errors for the validation set and test set.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c10469
ACS Omega 2024, 9, 14368−14374

14372

https://pubs.acs.org/doi/10.1021/acsomega.3c10469?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10469?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10469?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10469?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10469?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10469?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10469?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10469?fig=fig4&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c10469?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


■ AUTHOR INFORMATION
Corresponding Authors

Lai Wei − Xinjiang Laboratory of Phase Transitions and
Microstructures in Condensed Matter Physics, College of
Physical Science and Technology, Yili Normal University,
Yining 835000, China; Email: lweiphy@sina.com

Tongfei Shi − School of Chemical Engineering and Light
Industry, Guangdong University of Technology, Guangzhou
510006, People’s Republic of China; Xinjiang Laboratory of
Phase Transitions and Microstructures in Condensed Matter
Physics, College of Physical Science and Technology, Yili
Normal University, Yining 835000, China; orcid.org/
0000-0002-6763-2200; Email: tfshi@gdut.edu.cn

Authors
Yining Zhang − Xinjiang Laboratory of Phase Transitions and
Microstructures in Condensed Matter Physics, College of
Physical Science and Technology, Yili Normal University,
Yining 835000, China

Sijie Xing − Alibaba Cloud Big Data Application College,
Zhuhai College of Science and Technology, Zhuhai 519041,
China

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.3c10469

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was funded by the National Natural Science
Foundation of China (grant no. 22073093).

■ REFERENCES
(1) Selwood, P. W. Magnetochemistry, 2nd ed.; Interscience
Publishers New York: New York, 1956.
(2) Vulfson, S. G. Molecular Magnetochemistry; Gordon & Breach:
Amsterdam, 1998.
(3) Dorfman, Y. G. Diamagnetism and the Chemical Bond; American
Elsevier Publishing Co.: New York, 1965.

(4) Atkins, A. T. Physical Chemistry; Oxford University Press:
Oxford, 1986.
(5) Himanen, L.; Geurts, A.; Foster, A. S.; Rinke, P. Data-Driven
Materials Science: Status, Challenges, and Perspectives. Adv. Sci.
2019, 6, 1900808.
(6) Kim, C.; Chandrasekaran, A.; Huan, T. D.; Das, D.; Ramprasad,
R. Polymer Genome: A Data-Powered Polymer Informatics Platform
for Property Predictions. J. Phys. Chem. C 2018, 122, 17575−17585.
(7) Ramprasad, R.; Batra, R.; Pilania, G.; Mannodi-Kanakkithodi, A.;
Kim, C. Machine learning in materials informatics: recent applications
and prospects. npj Comput. Mater. 2017, 3, 54.
(8) Schleder, G. R.; Padilha, A. C. M.; Acosta, C. M.; Costa, M.;
Fazzio, A. From DFT to machine learning: recent approaches to
materials science-a review. J. Phys. Mater. 2019, 2, 032001.
(9) Zhang, Y.; Wen, C.; Wang, C.; Antonov, S.; Xue, D.; Bai, Y.; Su,
Y. Phase prediction in high entropy alloys with a rational selection of
materials descriptors and machine learning models. Acta Mater. 2020,
185, 528−539.
(10) Khveshchenko, D. V.; Meshkov, S. V. Particle in a random
magnetic field on a plane. Phys. Rev. B: Condens. Matter Mater. Phys.
1993, 47, 12051−12058.
(11) Putz, M. V.; Russo, N.; Sicilia, E. Atomic radii scale and related
size properties from density functional electronegativity formulation.
J. Phys. Chem. A 2003, 107, 5461−5465.
(12) Mu, L. L.; He, H. M.; Yang, W. H. Improved QSPR Study of
Diamagnetic Susceptibilities for Organic Compounds Using Two
Novel Molecular Connectivity Indexes. Chin. J. Chem. 2009, 27,
1045−1054.
(13) Mu, L. L.; Feng, C. G. Topological research on molar
diamagnetic susceptibilities for inorganic compounds. MATCH
Commun. Math. Comput. Chem. 2007, 58, 591−607.
(14) Estrada, E. Modelling the diamagnetic susceptibility of organic
compounds by a sub-structural graph-theoretical approach. J. Chem.
Soc., Faraday Trans. 1998, 94, 1407−1410.
(15) Estrada, E.; Gutierrez, Y.; González, H. Modeling diamagnetic
and magnetooptic properties of organic compounds with the TOSS-
MODE approach. J. Chem. Inf. Comput. Sci. 2000, 40, 1386−1399.
(16) Zhokhova, N. I.; Baskin, I.; Palyulin, V. A.; Zefirov, A. N.;
Zefirov, N. S. Fragment descriptors in QSPR: Application to magnetic
susceptibility calculations. J. Struct. Chem. 2004, 45, 626−635.
(17) Afantitis, A.; Melagraki, G.; Sarimveis, H.; Koutentis, P. A.;
Markopoulos, J.; Igglessi-Markopoulou, O. Development and

Figure 5. MSE and MAE heatmaps for different models and fingerprints.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c10469
ACS Omega 2024, 9, 14368−14374

14373

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lai+Wei"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:lweiphy@sina.com
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tongfei+Shi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-6763-2200
https://orcid.org/0000-0002-6763-2200
mailto:tfshi@gdut.edu.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yining+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sijie+Xing"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10469?ref=pdf
https://doi.org/10.1002/advs.201900808
https://doi.org/10.1002/advs.201900808
https://doi.org/10.1021/acs.jpcc.8b02913?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.8b02913?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41524-017-0056-5
https://doi.org/10.1038/s41524-017-0056-5
https://doi.org/10.1088/2515-7639/ab084b
https://doi.org/10.1088/2515-7639/ab084b
https://doi.org/10.1016/j.actamat.2019.11.067
https://doi.org/10.1016/j.actamat.2019.11.067
https://doi.org/10.1103/PhysRevB.47.12051
https://doi.org/10.1103/PhysRevB.47.12051
https://doi.org/10.1021/jp027492h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp027492h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/cjoc.200990175
https://doi.org/10.1002/cjoc.200990175
https://doi.org/10.1002/cjoc.200990175
https://doi.org/10.1039/a709032c
https://doi.org/10.1039/a709032c
https://doi.org/10.1021/ci000041e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci000041e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci000041e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s10947-005-0037-2
https://doi.org/10.1007/s10947-005-0037-2
https://doi.org/10.1002/qsar.200730083
https://pubs.acs.org/doi/10.1021/acsomega.3c10469?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10469?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10469?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10469?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c10469?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


evaluation of a QSPR model for the prediction of diamagnetic
susceptibility. QSAR Comb. Sci. 2008, 27, 432−436.
(18) Cereto-Massagué, A.; Ojeda, M. J.; Valls, C.; Mulero, M.;
Garcia-Vallvé, S.; Pujadas, G. Molecular fingerprint similarity search
in virtual screening. Methods 2015, 71, 58−63.
(19) Dong, J.; Cao, D. S.; Miao, H. Y.; Liu, S.; Deng, B. C.; Yun, Y.
H.; Wang, N. N.; Lu, A. P.; Zeng, W. B.; Chen, A. F. ChemDes: an
integrated web-based platform for molecular descriptor and finger-
print computation. J. Cheminf. 2015, 7, 60.
(20) Rahaman, O.; Gagliardi, A. Deep Learning Total Energies and
Orbital Energies of Large Organic Molecules Using Hybridization of
Molecular Fingerprints. J. Chem. Inf. Model. 2020, 60, 5971−5983.
(21) Botu, V.; Ramprasad, R. Adaptive machine learning framework
to accelerate ab initio molecular dynamics. Int. J. Quantum Chem.
2015, 115, 1074−1083.
(22) Que, Y.; Ren, S.; Hu, Z.; Ren, J. Machine Learning Prediction
of Critical Temperature of Organic Refrigerants by Molecular
Topology. Processes 2022, 10, 577.
(23) Townsend, J.; Micucci, C. P.; Hymel, J. H.; Maroulas, V.;
Vogiatzis, K. D. Representation of molecular structures with persistent
homology for machine learning applications in chemistry. Nat.
Commun. 2020, 11, 3230.
(24) James, C.; Weininger, D.; Delaney, J. D. Daylight Theory
Manual Version 4.9; Daylight Chemical Information Systems, Inc.:
Laguna Niguel, CA, USA, 2011.
(25) Durant, J. L.; Leland, B. A.; Henry, D. R.; Nourse, J. G.
Reoptimization of MDL keys for use in drug discovery. J. Chem. Inf.
Comput. Sci. 2002, 42, 1273−1280.
(26) Carhart, R. E.; Smith, D. H.; Venkataraghavan, R. Atom pairs as
molecular features in structure-activity studies: definition and
applications. J. Chem. Inf. Comput. Sci. 1985, 25, 64−73.
(27) Gantzer, P.; Creton, B.; Nieto-Draghi, C. Inverse-QSPR for de
novo Design: A Review. Mol. Inf. 2020, 39, 21.
(28) Breiman, L. Random forests. Mach. Learn. 2001, 45, 5−32.
(29) Bauer, E.; Kohavi, R. An empirical comparison of voting
classification algorithms: Bagging, boosting, and variants. Mach. Learn.
1999, 36, 105−139.
(30) Natekin, A.; Knoll, A. Gradient boosting machines, a tutorial.
Front. Neurorob. 2013, 7, 21.
(31) Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees.
Mach. Learn. 2006, 63, 3−42.
(32) Zou, H.; Hastie, T. Regularization and variable selection via the
elastic net. J. Roy. Stat. Soc. B Stat. Methodol. 2005, 67, 301−320.
(33) Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn.
1995, 20, 273−297.
(34) Mat Isa, N. A.; Mamat, W. Clustered-Hybrid Multilayer
Perceptron network for pattern recognition application. Appl. Soft
Comput. 2011, 11, 1457−1466.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c10469
ACS Omega 2024, 9, 14368−14374

14374

https://doi.org/10.1002/qsar.200730083
https://doi.org/10.1002/qsar.200730083
https://doi.org/10.1016/j.ymeth.2014.08.005
https://doi.org/10.1016/j.ymeth.2014.08.005
https://doi.org/10.1186/s13321-015-0109-z
https://doi.org/10.1186/s13321-015-0109-z
https://doi.org/10.1186/s13321-015-0109-z
https://doi.org/10.1021/acs.jcim.0c00687?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.0c00687?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.0c00687?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/qua.24836
https://doi.org/10.1002/qua.24836
https://doi.org/10.3390/pr10030577
https://doi.org/10.3390/pr10030577
https://doi.org/10.3390/pr10030577
https://doi.org/10.1038/s41467-020-17035-5
https://doi.org/10.1038/s41467-020-17035-5
https://doi.org/10.1021/ci010132r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci00046a002?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci00046a002?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci00046a002?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/minf.201900087
https://doi.org/10.1002/minf.201900087
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1007515423169
https://doi.org/10.1023/A:1007515423169
https://doi.org/10.3389/fnbot.2013.00021
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1007/bf00994018
https://doi.org/10.1016/j.asoc.2010.04.017
https://doi.org/10.1016/j.asoc.2010.04.017
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c10469?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

