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Abstract
Evolutionary processes have been described not only in biology but also for a wide range of human cultural activities includ-
ing languages and law. In contrast to the evolution of DNA or protein sequences, the detailed mechanisms giving rise to the 
observed evolution-like processes are not or only partially known. The absence of a mechanistic model of evolution implies 
that it remains unknown how the distances between different taxa have to be quantified. Considering distortions of metric 
distances, we first show that poor choices of the distance measure can lead to incorrect phylogenetic trees. Based on the well-
known fact that phylogenetic inference requires additive metrics, we then show that the correct phylogeny can be computed 
from a distance matrix � if there is a monotonic, subadditive function � such that �−1(�) is additive. The required metric-
preserving transformation � can be computed as the solution of an optimization problem. This result shows that the problem 
of phylogeny reconstruction is well defined even if a detailed mechanistic model of the evolutionary process remains elusive.

Keywords  Cultural evolution · Phylogenetic tree · Additive metric · Metric-preserving functions

Introduction

At the most abstract level, evolution can be seen as a con-
sequence of the generation of variation and selection. Since 
selection acts to remove entities from the system, it will 
eventually “die out” unless counteracted by some form of 
reproduction. Sustained evolution thus necessarily operates 

on populations of entities. The history of an evolutionary 
process can be recorded in the form of a directed graph: 
Dress et al. (2010b) considered the set Y  comprising “all 
organisms that ever lived on earth” arranged into a graph 
G with arcs (directed edges) connecting to nodes u and v 
whenever u was a “parent” of v , defined in a rather loose 
sense as having contributed directly to the genetic make-
up of v . These arcs encode not only father and mother in 
sexually reproducing populations, but also horizontal gene 
transfer, hybridization, the incorporation of retroviruses into 
the genome, etc. Since arcs encode ancestry, G is acyclic.

The very same construction applies to many other systems 
that are perceived as evolutionary. For example, in the evolu-
tion of languages one may consider the mutual influences of 
speakers or, even more fine grained, individual utterances 
as the basic entities (Croft 2000; Pagel 2009). The same 
is true for the transmission of cultural techniques, designs, 
and conventions (Mesoudi et al. 2006). Well-studied cases 
include the transmission of texts (Greg 1950), in particular 
manuscripts, and text reuse, i.e., the borrowing of parts of a 
corpus, with or without modifications, in the process of cre-
ating a new text, see, e.g., Seo and Croft (2008). Similarly, 
the revisions of the law as dissenting interpretations can be 
seen in this manner (Roe 1996). The common ground of 
these and presumably many other systems is that a limited 
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set of entities at some point or interval in time “informs” 
limited sets of entities in their (usually immediate) future.

The key result of Dress et al. (2010b) is that several types 
of clusters on the subset U ⊂ Y  of organisms that are cur-
rently alive can be defined from the structure of the graph 
G. Many of these form hierarchies and therefore define a 
tree. These clusters naturally take on the role of taxa, and 
the corresponding trees consequently are a meaningful rep-
resentations of the phylogenetic relationships among these 
taxa. The same interpretation is meaningful, as we argued 
above, also for many—but presumably not all—aspects of 
human cultural endeavors. Notions of cultural evolution (see, 
e.g., Flannery (1972), Mesoudi et al. (2006)) are therefore 
more than a convenient metaphor. Instead, for a given system 
of interest, one has to ask whether or not the correspond-
ing graph G shares key features with the one obtained from 
conceptualizing biological evolution. There is no a priori 
reason to assume, for instance, that G always gives rise to the 
tree-like abstraction that is at the heart of biological evolu-
tion. This is an inherently empirical question that needs to 
be answered for each “evolutionary” system under consid-
eration. Human languages, for instance, are a prime exam-
ple of an aspect of human activity that closely conforms to 
biological evolution.

The key point here is that a phylogenetic structure is an 
emergent phenomenon of the underlying evolutionary pro-
cess; it requires that there exists a level of aggregation in 
G that produces clusters adhering to an (essentially) hier-
archical structure. Although Dress et al. (2010b) provide 
a formal justification for phylogenetic reconstruction with 
their analysis of the graph G , their work does not attempt to 
provide a practical procedure to identify the relevant clus-
ters, i.e., the taxa. After all, these are defined in terms of the 
graph G , which of course is not directly observable. In fact, 
usually not even the set U of extant entities will be known 
completely, as we will have to be content with a subset of 
available data.

In general, neither the “true nature” of the elementary 
entities nor a complete description for each of them is avail-
able to us. Instead, we have to be content with measured 
representations. For instance, in molecular phylogenetics, it 
is customary to represent a taxon by a set of sequences (usu-
ally representing single copy protein coding genes) obtained 
from one or more individuals. Morphological approaches 
in phylogenetics use a list of characters such as features of 
bones or organs to represent a typical individual. The impact 
of the choice of representation on the results of phylogenetic 
reconstructions has long been recognized in morphological 
phylogenetics and has been the subject of a long-standing 
debate, see, e.g., Wiens (2001).

The fundamental assumption that is made in any type 
of similarity-based phylogenetic analysis is that similar-
ity of representations reflects evolutionary relatedness, 

i.e., proximity in G , and therefore also makes it possible 
to identify the hierarchical cluster systems that are defined 
in terms of G . This is well established, of course, in the 
case of molecular phylogenetics, where a detailed model 
of sequence evolution is available (Jukes and Cantor 1969; 
Tavaré 1986; Arenas 2015). Similarly, permutation distances 
directly count genomic rearrangement events (Hannenhalli 
and Pevzner 1995). The connection is much less clear for 
morphological phylogenetics, where choice and even the 
concept of “character” is under debate, see, e.g., Wagner 
(2001), Wagner and Stadler (2003) for a formal discussion. 
In many cases, it seems difficult to construct a theory that 
links distance or similarity measures directly to an underly-
ing evolutionary process. This is the case for instance in phy-
logenetic applications of distances between RNA secondary 
structures (Siebert and Backofen 2005) or the use of distance 
measures based on data compression (Cilibrasi and Vitanyi 
2005; RajaRajeswari and Viswanadha Raju 2017).

Phylogenetic methods have also been employed in the 
humanities. Relationships among languages, for instance, 
can be captured by using cognates (i.e., words with a com-
mon origin) as characters, see, e.g., Gray et al. (2011), Hol-
man and Wichmann (2017). Recently, sophisticated statisti-
cal approaches, that model, e.g., the importance of sound 
change, have been used to reconstruct language trees, see, 
e.g., Bhattacharya et al. (2018) for a recent overview. In 
stemmatics, differences between editions or manuscripts 
serve as characters from which the relationships, e.g., 
between the many different versions (O’Hara and Robinson 
1993; Barbrook et al. 1998; Marmerola et al. 2016) can be 
reconstructed. Occasionally, material artefacts are consid-
ered. Tëmkin and Eldredge (2007) studied used phylogenetic 
methods to study the history of certain musical instruments. 
A broader perspective of phylogenetic approaches in cultural 
evolution is discussed, e.g., by Mesoudi et al. (2006), Steele 
et al. (2010) or Howe and Windram (2011).

It is a well-known fact in sequence analysis that not all 
(reasonable) distance measures lead to faithful reconstruc-
tions of phylogenies. It is a well-established practice, in 
fact, to correct for back-mutations, i.e., to transform raw 
counts of diverged sequence positions, i.e., the Hamming 
or Levenshtein distances, into distance measures that can 
be interpreted as numbers of evolutionary events or diver-
gence times. Depending on the level of insights into the data, 
the simple Jukes–Cantor model (Jukes and Cantor 1969) 
or one of the many much more elaborate models (Tavaré 
1986; Arenas 2015) is used for this purpose. In the field 
of alignment-free sequence analysis, on the other hand, the 
focus is on the efficient computation of dissimilarity meas-
ures, without overt concern of the measure’s connection to 
a dynamical model of evolution (Vinga and Almeida 2003). 
One has observed, however, the distance measures that do 
well in a phylogenetic context also correlate very well with 
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model-based distances (Edgar 2004; Haubold et al. 2009; 
Leimeister and Morgenstern 2014). We suspect that this 
reflects the fact that a particular subclass of metrics, the 
so-called additive metrics, conveys complete phylogenetic 
information, see “Distance-based phylogenetics” section. 
We therefore make a strong assumption throughout this 
contribution:

Assumption A  Given a complete and correct model of the 
evolutionary dynamics on a suitable constructed space X , 
there is an additive metric distance measure t  on X that 
measures the cumulative change along each lineage.

An immediate consequence is that phylogenetic relation-
ships can be reconstructed unambiguously if t  is known. 
There is, of course, no reason to think that Assumption A 
holds in real life. In particular, it is certainly violated by all 
processes that lead to reticulate patterns in evolution, such 
as incomplete lineage sorting, horizontal gene transfer, and 
hybridization (Gontier 2015). The purpose of this contribu-
tion, therefore, is to ask how much (or how little) we need 
to know about the “true” metric t to be able to infer the 
correct phylogenetic tree T  . More precisely, we investigate 
here the consequence of distorted distance measurements: 
Suppose that instead of t we can infer from the data only a 
“deformed” dissimilarity measure d = �(t) , where � is an 
unknown function about which only some qualitative fea-
tures can be known. We then ask: How much information 
about t  , and thus the underlying phylogenetic tree, does d 
still convey?

Distance‑based phylogenetics

A map d ∶ X × X → ℝ
+

0
 is a metric if it satisfies, for all 

x, y, z ∈ X:

	(M0)	 d(x, x) = 0

	(M1)	 If d(x, y) = 0 then x = y.
	(M2)	 d(x, y) = d(y, x).
	(M3)	 d(x, y) + d(y, z) ≥ d(x, z).

Distance measures can be used for clustering and thus serve 
as a means of extracting hierarchical, i.e., tree-like, struc-
tures on a set of data.

The basis of distance-based phylogenetic methods is 
additive metrics, i.e., metrics that are representations of 
edge-weighted trees. Consider a tree T  with leaf-set X and a 
length function � defined on the edges of T . Recall that every 
pair of leaves x and y is connected by a unique path �xy in 
T  . The length of this path, i.e., the sum of its edge lengths, 
defines the distance dT (x, y) . Additive metrics are those 
that derive from a tree in this manner. A famous theorem 

(Buneman 1974; Cunningham 1978; Dobson 1974; Simões-
Pereira 1969) shows that additive metrics are characterized 
by the four-point condition: A metric is additive if and only 
if for any four points u, v, x, y ∈ X holds

	(MA)	d(u, v) + d(x, y) ≤ max

{
d(u, x) + d(v, y)

d(u, y) + d(v, x)
.

The appearance of additive metrics in evolutionary pro-
cesses can be justified rigorously for specific models. For 
example, Markovian processes on strings of fixed length lead 
to distances that can be estimated directly from the data: 
Denoting by cab(x, y) the fraction of characters in which x 
has state a and y has state b , which for each pair ( x, y ) can be 
arranged in a matrix �(x, y) =

(
ca,b(x, y)

)
a,b

 . Steel (1994) 

s h o w e d  t h a t  ( t h e  e x p e c t e d  v a l u e s  o f ) 
d(x, y) ∶= − ln |det(�(x, y)| form an additive metric. Well-
known results from phylogenetic combinatorics show that 
given an additive metric, the tree T  and its edge lengths can 
be reconstructed readily, see, e.g., the work of Apresjan 
(1966), Imrich and Stockiĭ (1972), Buneman (1974), Dress 
(1984), Bandelt and Dress (1992), Dress et al. (2010a). The 
well-known neighbor-joining algorithm (Saitou and Nei 
1987), a special case of a large class of agglomerative clus-
tering algorithms, furthermore, solves this problem effi-
ciently and was shown to always compute the correct tree 
when presented with an additive metric, see the survey by 
Gascuel and Steel (2006) and the references therein. Addi-
tivity of the underlying metric is also assumed in a recent 
generalization of phylogenetic trees that allows data points 
to appear not only as leaves but also as interior vertices of 
the reconstructed tree (Telles et al. 2013).

A stronger condition than additivity is ultrametricity, 
which is characterized by the strong triangle equation

	(MU)	d(x, z) ≤ max{d(x, y), d(y, z)}.

Condition (MU) means that all triangles are “isosceles with 
a short base”, i.e., the length of two sides of the triangles is 
equal and the third one is at least not longer than these two. 
Ultrametrics appear in phylogenetics under the assumption of 
the strong clock hypothesis, i.e., constant evolutionary rates 
(Dress et al. 2007). Dating of the internal nodes (Britton et al. 
2007) transforms an (additive) phylogeny into an ultrametric 
tree. Ultrametrics are a special case of additive metrics.

Real-life data sets, unfortunately, almost never satisfy 
the four-point condition. As a remedy, Sattah and Tversky 
(1977) and Fitch (1981) suggested to consider a “split rela-
tion” on pairs of objects, often referred to as quadruples, 
defined by

(1)uv‖xy ⟺ d(u, v) + d(x, y) <

�
d(u, x) + d(v, y)

d(u, y) + d(v, x)
.
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The relation ‖ has been studied extensively and, under cer-
tain additional conditions, can provide sufficient informa-
tion for reconstructing phylogenetic trees (Bandelt and Dress 
1986) or at least phylogenetic networks (Bandelt and Dress 
1992; Grünewald et al. 2009). The approximation of a given 
metric by additive metrics or ultrametrics given some meas-
ure of the goodness of fit has also received quite a bit of 
attention (Farach et al. 1996; Agarwala et al. 1998; Apos-
tolico et al. 2013).

Here, we ask under which conditions distance data that 
may deviate from additivity in a systematic manner still yield 
a phylogenetically (more or less) correct relation ‖ . This is 
different from the inference problems mentioned above: Our 
task is not to minimize a uniform error functional but to deal 
with systematic distortions of the distance measurements. In 
order to formalize the problem setting, we assume that the 
evolutionary process under consideration (operating on a space 
X ) generates an additive metric t ∶ X × X → ℝ

+

0
 . The catch 

is that we have no knowledge of X and we cannot directly 
access t . We can, however, obtain partial knowledge from 
representations. That is, there is a function � ∶ X → Y . The 
construction of the representation in Y depends on our theory 
of what is important about the evolving system. In molecular 
phylogenetics, Y may be chosen to be a space of sequences. 
In classical, morphology-based phylogenetics, the elements 
of Y are character-based descriptions of animals; attempts to 
use molecular structures for phylogenetic purposes might use 
RNA secondary structures or labeled graph representations of 
protein 3D structures; a historic linguist might choose word 
lists or grammatical features.

Once we have decided on representations, we can turn 
to measuring (dis)similarities between them. The concrete 
choice of a distance measure d̃ ∶ Y × Y → ℝ

+

0
 of course again 

depends on the theoretical conception of the underlying evo-
lutionary process. We can easily reinterpret d̃ as a distance 
measure on X by setting

It is easy to see that d ∶ X × X → ℝ is a metric whenever d̃ 
is a metric and � ∶ X → Y  is injective, i.e., whenever our 
representation is good enough to distinguish objects in X . 
There is no a priori reason to make this assumption, how-
ever. Consider, for example, RNA secondary structures as 
a function of the primary sequences. This map is highly 
redundant (Schuster et al. 1994); for example, most tRNAs 
share the standard clover-leaf structure despite very different 
sequences and divergence times that pre-date the common 
ancestor of all extant life forms (Eigen et al. 1989); distances 
between secondary structures therefore do not reflect all evo-
lutionary processes. Formally, d is not a metric but only a 
pseudometric in this case: It does not satisfy axiom (M1) any 
longer. We will ignore this complication here and assume for 
simplicity that d ∶ X × X → R+

0
 is a metric.

(2)d(x, y) ∶= d̃(𝜑(x),𝜑(y)).

The metric d is of interest for phylogenetic purposes if 
it quantifies evolutionary divergence in a meaningful way. 
That is, we are concerned with the information about the 
underlying additive metric t  that can be extracted from 
d . Without additional assumptions on the relationships 
between t  and d , however, nothing much can be said. At 
the very least, our representation (Y , d̃) should be good 
enough to recognize whether one of two objects y or z has 
diverged further from a given reference point x than the 
other. Hence, we assume that for all x, y, z ∈ X:

	(m0)	 t(x, y) < t(x, z) implies d(x, y) < d(x, z).

In the absence of at least this very weak form of mono-
tonicity, we cannot really hope to recover information 
about t  from measuring d . To our knowledge, property 
(m0) has not received much attention in the past. The fol-
lowing, stronger condition, however, has been considered 
extensively:

	(m1)	 t(x, y) < t(u, v) implies d(x, y) < d(u, v)

for all u, v, x, y ∈ X . This property is known as (strong) 
monotonicity (Kruskal 1964) and lies at the heart of non-
metric multi-dimensional scaling, a set of techniques that 
aim at approximating dissimilarity data by a Euclidean met-
ric (Borg and Groenen 2005). A commonly used criterion is 
to minimize the violations of condition (m1). It is interesting 
to note in this context that, given any input metric d , there 
is a always a Euclidean metric � that is connected with d by 
strong monotonicity, provided the embedding space is of 
sufficiently high dimension (Agarwal et al. 2007). In our 
context, it will be interesting to investigate whether there is 
an analogous result for additive metrics.

If we insist, in addition, that ties are preserved, i.e., 
that t(x, y) = t(u, v) is equivalent to d(x, y) = d(u, v) , then 
there exists an increasing function � ∶ ℝ

+

0
→ ℝ

+

0
 such that 

d = �(t) . In the following, we will consider this (more 
restrictive) setting in some detail.

Metric‑preserving functions

Definition 1  A function � ∶ ℝ
+

0
→ ℝ

+

0
 is metric-preserving 

if for every metric t ∶ X × X → ℝ
+

0
 the function d = �◦t is 

also a metric on X.

Consider the following properties:

	(Z1)	 �(t) = 0 if and only if t = 0 (amenable)
	(Z2)	 �(t + u) ≤ �(t) + �(u) (subadditive)
	(Z3)	 � is non-decreasing.
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A theorem by Kelley (1955, p. 131) states that (Z1), (Z2), 
and (Z3) together are sufficient conditions for � to be metric-
preserving. One can show, furthermore, that (Z1) and (Z2) 
are necessary (Corazza 1999). Property (Z3) is sufficient 
but not necessary, as shown by several examples of metric-
preserving functions that fail to be non-decreasing (Doboš 
1998; Corazza 1999). A necessary and sufficient condition 
(Wilson 1935; Borsik and Doboš 1981; Das 1989) is that � 
is amenable, (Z1), and satisfies

	(Z*)	 max
w=|t−u| �(w) ≤ �(t) + �(u).

It can also be shown that any concave amenable function is 
metric preserving (Doboš 1998). If d = �◦t satisfies (m0), 
then (Z3) holds. We therefore restrict ourselves to amena-
ble, subadditive, non-decreasing functions. Furthermore, we 
assume for convenience that � is continuous.

We say that � is a.m.-preserving (ultrametric-preserving) 
if �◦t is an additive metric whenever t is an additive metric 
(ultrametric). It was shown recently that a function � pre-
serves ultrametricity if and only if it is amenable (Z1) and 
non-decreasing (Z3) (Pongsriiam and Termwuttipong 2014). 
In Appendix, we prove:

Lemma 1  If �  is a.m.-preserving, then it is also 
ultrametric-preserving.

This implies in particular that an a.m.-preserving func-
tion is non-decreasing. It will not come as a surprise that 
nonlinear distortions do not preserve additivity.

Theorem 1  If � is a.m.-preserving, then �(t) = �t + � holds 
for all t > 0 with �, � ≥ 0.

A proof can be found in Appendix. The importance of 
this theorem lies in the fact that any nonlinear distortion of 

the metric t necessarily destroys additivity and thus, depend-
ing on the algorithm employed, may result in the reconstruc-
tion of an incorrect phylogeny.

Given the importance of the relation ‖ , it is natural to 
ask whether—or under what conditions—at least this rela-
tion is preserved. The example in Fig. 1 shows, however, 
that the relation ‖ is not necessarily preserved under trans-
formations satisfying (Z1), (Z2), and (Z3). The example of 
Fig. 1 is reminiscent of the effect of long branch attrac-
tion (LBA) in parsimony-based methods (Felsenstein 1978; 
Bergsten 2005), which can also be understood the conse-
quence of underestimating the impact of homoplasy, i.e., 
“back-mutations.”

Multiple features

A reasonable approach to devise a distance measure for a 
set of objects is to use a representation in terms of a collec-
tion of features, i.e., to consider a product space Y =

∏
i Yi 

with distance measures d̃i ∶ Yi × Yi → ℝ
+

0
 independently 

defined for each of the features. Each feature can be seen 
as an independent representation, �i ∶ X → Yi , and thus, 
we may reinterpret the d̃i as different distance measures on 
X, i.e., di ∶ X × X → ℝ

+

0
 with di(x, y) ∶= d̃i(𝜑i(x),𝜑i(y)) . In 

this setting, it seems most natural to assume that di is just a 
pseudometric.

It is well known that any nonnegative linear combina-
tion of pseudometric d ∶=

∑
i aidi with ai ≥ 0 is again a 

pseudometric. To avoid trivial cases, assume ai > 0 . Then, 
d is a metric whenever x ≠ y implies that there is a feature 
i such that di(x, y) > 0 . The most general ways to combine 
metrics are given by the generalized metric-preserving trans-
forms, i.e., functions � ∶ (ℝ+

0
)N → ℝ

+

0
 with the property that 

d = �(t1,… , tn) is a metric whenever each ti , 1 ≤ i ≤ N , is a 

Fig. 1   Metric-preserving transformations do not preserve the relation 
‖ . The distance matrix � corresponds to the tree in the middle and, 
according to Eq.  (1), satisfied uv‖xy . The function � satisfies (Z1), 
(Z2), (Z3) and is smooth. The transformed distance matrix � = � (�) 
is presented by the networks shown on the r.h.s. (computed with 

SplitsTree (Huson and Bryant 2006). Here, d(u, y) + d(x, v) is the 
distance pair with the shortest distance sum, i.e., it corresponds to the 
quadruple uy‖xv . This split corresponds to the longer one of the two 
side lengths of the box
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metric (Das 1989). These functions have a characterization 
that naturally generalizes (Z1) and (Z*) to multiple arguments.

Theorem  2  If � ∶ (ℝ+

0
)N → ℝ

+

0
 transforms additive met-

rics di consistent with the same underlying tree T  into a 
metric �(d1,… , dN) that is again compatible with T  , then 
� = �L + �D where

	 (i)	 �L ∶ (ℝ+

0
)N → ℝ

+

0
, (t1,… , tN) ↦

∑N

i=1
aiti with ai ≥ 0

,
	 (ii)	 �D  is  a nonnegative l inear combination 

(t1,… , tN) ↦
∑N

i=1
bid

D
i

 where dD
i

 is the standard 
discrete metric applied to the ith component, i.e., the 
argument of ti.

	 (iii)	 for each i , at least one of ai and bi is nonzero.

Proof  Suppose all component metrics dj are discrete except 
for di , i ≠ j . Then, di ↦ �(d1,… , dj,… , dN) is linear with 
nonnegative slope for di > 0 as an immediate consequence 
of Theorem 1, i.e., condition (i) is necessary. Theorem 1 
furthermore implies that the contribution for each feature i is 
necessarily of the form aiti + bid

D
i

 with ai, bi ≥ 0 . To ensure 
that we have a metric, each constituent must be a metric, i.e., 
at least one of ai and bi must be nonzero. � □

In essence, Theorem 1 characterizes the distance measures 
that are “good” for phylogenetic purposes: These exactly are 
the ones that are linear combinations of distance measures that 
themselves are additive. In particular, therefore, alignment-
free phylogenetic methods are guaranteed to work only when 
their distance measure approximates an additive measure, or, 
equivalently, when they approximate a distance for which a 
transformation to an additive distance is known (and used for 
the phylogenetic reconstruction).

Inferring � transformations

The theoretical considerations above lead to the conclusion 
that the key problem for phylogenetic inference from data 
without a completely understood underlying model is to find 
monotonic transformations that make the original data as addi-
tive as possible before applying distance-based phylogenetic 
methods. It is important to realize that this is not the same 
problem as extracting the additive part of a given metric using, 
e.g., split decomposition. To see this, consider the metric dis-
tance matrix

(3)� =

⎛⎜⎜⎜⎝

0.000 0.503 0.551 0.753

0.503 0.000 0.259 0.593

0.551 0.259 0.000 0.551

0.753 0.593 0.551 0.000

⎞⎟⎟⎟⎠
.

The transformation t = −10 ln(1 − d) recovers the additive 
metric of Fig. 1 (up to small rounding errors) and thus recov-
ers the tree in Fig. 1. Its split decomposition, on the other 
hand, yields the network on the r.h.s. of the figure with iso-
lation indices �(xv|uy) = 0.066 and �(xy|uv) = 0.045 . Any 
reasonable methods for fitting an additive tree thus will pick 
up the a quadruple with the xv‖uy from these distances.

Consider now a function � that, given a metric distance 
matrix � = (d(x, y))x,y as input, produced a “best-fitting” 
additive metric distance matrix of the same dimension as 
output. More formally, denote by �n the set of all metrics 
on n points, and let � =

⋃
n>1 �n.

Definition 2  A function � ∶ � → � is a.m.-consistent if the 
following conditions are satisfied:

	 (i)	 If � ∈ �n, then �(�) ∈ �n is an additive metric.
	 (ii)	 If � ∈ �n is an additive metric, then � = �(�).

The neighbor-joining algorithm (Saitou and Nei 1987) is 
a well-known example of an a.m.-consistent function � (Gas-
cuel and Steel 2006). Another example is the non-prime part 
of the split decomposition (Bandelt and Dress 1992). Given 
a distance matrix � and an a.m.-consistent function � , a nat-
ural measure for the deviation from additivity is |� − �(�)| 
with some matrix norm | . | . In particular, |� − �(�)| = 0 if 
and only if � is an additive metric.

Let us now return to Assumption A and characterize dis-
tances that derive from additive metrics in a simple manner:

Lemma 2  Let � be a metric distance matrix, let � be an 
a.m.-consistent function, suppose � is invertible, increasing, 
and subadditive, and let | . | be a matrix norm. Then, there is 
an additive distance matrix � with � = �(�) if and only if 
|� − �(�(�−1(�)))| = 0.

Proof  Invertibility of � implies that � = �(�) is equivalent 
to � = �−1(�) . Now � = �(�) = �(�−1(�)) if and only if � is 
additive. Using invertibility of � again, this is in turn equiva-
lent to � = �(�) = �(�(�−1(�))) . Since the matrix norm | . | 
vanishes only for the 0-matrix, the Lemma follows. � □

Lemma 2 immediately suggests to search for � by mini-
mizing the error functional

By Lemma 2, � derives from an additive metric if and only 
if a � with �(�) = 0 exists. Otherwise, we obtain an approxi-
mately additive source metric �−1(�) that then serves as the 
best available input for phylogenetic reconstruction. In this 
case, the values of �(�) as well as the estimate �−1(�) that is 

(4)�(�) ∶= |� − �(�(�−1(�)))|.
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found by minimizing �(�) will in general depend on both the 
a.m.-consistent function � and the matrix norm | . |.

As a proof of principle, we first produced an artificial 
distance matrix � by transforming distance of a randomly 
generated tree with 100 leaves using the Jukes–Kantor rule 
(Jukes and Cantor 1969) corresponding to a four-letter 
alphabet and scaling the mutation rate such that back-muta-
tions play a role but distances are not completely saturated. 
We then make the assumption that the measured data might 
depend on the unknown additive scale via a stretched expo-
nential transformation of the form

with unknown parameters a , b , and c . Figure 2(top) shows 
that the correct values of a = 3∕4 and c = 1 can be inferred 
by using Eq.  (4) to minimize the discrepancy �(�) . In 
“Appendix 2,” we show more formally that the parameter b 

(5)�(t) ∶= a(1 − exp(−b tc))

is arbitrary and hence cannot be inferred. Intuitively, this fol-
lows from the fact that b only scales the time axis and hence 
constitutes a purely additive transformation of the distance, 
which canceled in Eq. (4) by the application of �−1.

Real-life distance data of course are not perfectly addi-
tive. We therefore simulated sequence data by introduc-
ing substitutions independently at each sequence position 
according to a first order Markov process along all edges of 
a given phylogenetic tree. In order to tune the level of noise, 
we considered different linear combinations of the theoreti-
cal and the simulated data, see “Appendix 2” for details. 
We found that the estimation of � via Eq. (4) works well 
for small levels of sampling noise. For large noise levels, 
however, there are systematic biases. These appear to depend 
strongly on the choice of the matrix norm | . | . Clearly, a 
better understanding of the numerical problems associated 
with this inference problem will be necessary before the con-
ceptually simple workflow proposed here can be applied to 
real-life data.

Discussion and conclusions

It has been realized already in the early days of compu-
tational phylogenetics that suitable transformation of dis-
tance data, e.g., using the Jukes–Cantor transformation, can 
increase the additivity and thus conceivably improve the 
quality of phylogenetic reconstructions (Vach 1992). A main 
insight in this contribution is that it is, at least in principle, 
possible to infer the correct distance transformation from the 
measured data only. As a consequence, the correct inference 
of phylogenetic relationships is possible not only for additive 
distances but also for the large class of distances that arise 
from additive metrics with a monotonic metric-preserving 
function.

At the same time, our results suggest that there are limits 
to phylogenetic inference. Whenever the available data can-
not be transformed into an additive metric (at least approxi-
mately, i.e., up to measurement noise), there seems little 
hope to justify the interpretation of the results of hierarchical 
clustering (which of course can be performed on any kind of 
distance or similarity data) as a phylogeny. It is important 
to note, however, that our discussion has focused on metric-
preserving functions, i.e., “uniform” transformations of the 
distance data. It is entirely possible to employ more general 
schemes that further extend the realm of phylogenetically 
meaningful data. For instance, the results of “Multiple fea-
tures” section show that for data comprising multiple types 
of descriptors, distances extracted from the different sub-
classes c can be transformed with different functions �c . 
Such an approach might even be useful to distinguish phylo-
genetically informative from problematic classes of features.

Fig. 2   Empirical estimation of a transformation � . Top: The relevant 
parameters a and c of the stretched exponential transform Eq. (5) can 
be estimated with the help of Eq.  (4). Plotting �(� ) as a function of 
the parameters a and c in Eq. (5) shows that the minimal discrepancy 
is indeed found at the theoretical values a = 3∕4 and c = 1 used to 
generate the transformed distance matrix � corresponding to a tree 
with 100 leaves.  The color scale on the r.h.s. of the panel refers to 
ln(1 + �(� )) . Below: The two small panels show the effect of increas-
ing levels of measurement noise (left: � = 0.1 , right: � = 0.2 , see 
“Appendix 2” for details)
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On a more conceptual level, our results show that 
detailed mechanistic models of the underlying evolution-
ary process are not logically necessary for phylogenetic 
inference. It is, in fact, sufficient that the measured dis-
tance data can be transformed to an additive metric by 
means of a monotonic metric-preserving function. This is 
not to say that a mechanistic understanding of the process 
is not useful or desirable. After all, a mechanistic model 
will, at the very least, typically imply the functional form 
of the transformation function � . The inference of � from 
real-world data remains an important open problem. The 
issue to be explored is not only the limiting effect of 
measurement noise and inherent deviations from addi-
tivity due to horizontal gene transfer, incomplete lineage 
sorting, etc., but also numerical issues such as the fact 
that, in large trees, a substantial fraction of all pairwise 
distances takes values very close to the diameter of the 
tree. This seems to cause a particular susceptibility to 
measurement noise. Systematic simulation studies well 
beyond the scope of this contribution will be required to 
address this issues.

A potential alternative to Eq. (4) is the minimization 
of some measure of tree-likeness for the transformed 
matrix �−1(�) . Attractive candidates are the correspond-
ing parameters of statistical geometry (Eigen et al. 1988; 
Nieselt-Struwe 1997) and the related “ �-plots” advocated 
by Holland et al. (2002). It is not obvious, however, how 
these measures react to the changes in scale invariably 
introduced by � . This issue does not arise in the context of 
Eq. (4) because the effects cancel due to the appearance 
of both �−1 and �.

It is interesting to note that our results also provide an 
a posteriori explanation for the observation that align-
ment-free methods work best in phylogenetic applications 
when the distances correlate well with alignment-based 
distances (Haubold et al. 2009; Morgenstern et al. 2017; 
Thankachan et  al. 2017). It will be interesting to see 
whether other types of distances, such as compression 
distances (Kocsor et al. 2006; Penner et al. 2011), admit 
a transformation that makes them approximately additive.

Finally, several mathematical questions arise naturally 
from the results presented here. First, we may ask whether 
it is possible to replace condition (m1) by weaker require-
ments, such as (m0)? Even more generally, to what extent 
can arbitrary rate variations be accommodated? We know 
of course that they are harmless in an underlying addi-
tive metric—but what is the most general distortion that 
can be accommodated? Complementarily, it will be of 
interest to characterize the functions that preserve circu-
lar (Kalmanson 1975) and weakly decomposable metrics 
(Bandelt and Dress 1992), respectively.
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Appendix 1: Proofs

Proof of Lemma 1  Since every ultrametric is additive, an 
a.m.-preserving function must transform every ultrametric 
into an additive metric. Being a function, � in particular 
transforms isosceles triangles into isosceles triangles. In 
particular, it preserves equilateral triangles.

Consider the set of ultrametrics q on 4 points satisfying  
uv‖xy . The four isosceles triangles are u|xy, v|xy, x|uv, and y|uv .  
Therefore, q(u, x) = q(u, y) > q(x, y), q(v, x) = q(v, y) > q(x, y),  
q(x, u) = q(x, v) > q(u, v), and q(y, u) = q(y, v) > q(u, v),

i.e., c ∶= q(u, x) = q(u, y) = q(x, v) = q(y, v) >; q(x, y), q(u, v). 
If the �-transformed additive metric satisfies uv‖�xy, then 
these four triangles still have short base. Recall that q is 
an ultrametric if and only if every triangle is isosceles 
with short basis or equilateral. Therefore, �◦q is again 
an ultrametric. Otherwise, suppose ux‖�vy holds w.r.t. 
to the transformed metric. Then, additivity thus implies 
𝜁(q(u, x)) + 𝜁(q(v, y)) <𝜁 (q(u, v)) + 𝜁(q(x, y)) = 𝜁(q(u, y))+

�(q(x, v)), i.e., 2𝜁 (c) < 2𝜁 (c) , a contradiction. The same 
result is obtained assuming uy‖�vx . In the degenerate case, 
no quadruple exists and thus �(q(u, v)) + �(q(x, y)) = 2� (c) . 
Since q(u, v) and q(x, y) can vary independently of each 
other, � must be constant, and thus, �◦d is the trivial dis-
crete metric, which is also an ultrametric. Hence, � is ultr-
ametric-preserving on any subset of four points and thus in 
particular also preserves ultrametricity of all triangles. □

Proof of Theorem 1  The discrete metric is additive; hence, 
any function � that is constant on ℝ+ is a.m.-preserving. As 
a consequence of Lemma 1 and Pongsriiam and Termwut-
tipong 2014, we know that any a.m.-preserving function is 
amenable and non-decreasing. In the following, we there-
fore assume that � is amenable, not constant on ℝ+ , and 
non-decreasing.

Consider the set of additive metrics on four points sat-
isfying tuv + txy < tux + tvy = tuy + tvx . Then, for some 
� sufficiently small, the metric t′ defined by t� = t except 
t�
ux
= tux + � and t�

vx
= tvx + � is again an additive. Thus, 

�(tux + �) − � (tvx + �) = tuy − tvy , a constant. It is easy to see 
that tvx and tux can be chosen arbitrarily (first choose an iso-
lation index � for uv‖xy such that 𝛼 < min(tvx, tux) and then 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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pick tuv and txy sufficiently small). Thus, for every a, b > 0 
and sufficiently small |�| , we have �(a + �) = �(b + �) + hab . 
Let us fix a and consider the partial function ha ∶ b ↦ hab . 
Suppose ha is not constant. Then, then there is a point 
b�� ∶= inf{b� > b|hab ≠ hab� } . Since we know that ha is con-
stant in a neighborhood of b , we have b′′ > b . By construc-
tion hab� = hab for all b� ∈ [b, b��) . But ha is also constant 
in an open neighborhood of b′′ , which has a non-empty 
intersection with [b, b��) . Thus, hab = hab�� , a contradiction. 
Renaming the arguments, there is a function h such that

for all a > 0 and x > 0.
R e p l a c i n g  a  b y  pa  f o r  p ∈ ℕ  y i e l d s 

�(x + pa) − �(x) = h(pa) ,  while substituting x  with 
x + (p − 1)a yields �(x + pa) − �(x + (p − 1)a) = h(a) . 
Substituting p by p − 1 and adding the resulting equation 
lead to �(x + pa) − �(x + (p − 2)a) = 2h(a) and thus even-
tually �(x + pa) − �(x) = ph(a) . Taken together, we have 
h(pa) = ph(a) . Replacing a by a / p shows h(a) = ph(a∕p) 
and thus p�h(a) = ph(p�a∕p) for all p, p� ∈ ℕ . That is, 
h(pa) = ph(a) for all p ∈ ℚ . Since � is non-decreasing, we 
see that a ↦ h(a) = �(x + a) − � (x) is also non-decreasing. 
Therefore, p�h(a) ≤ h(pa) ≤ p��h(a) holds for all p ∈ ℝ and 
all p�, p�� ∈ ℚ with p′ ≤ p ≤ p′′ . Using the well-known fact 
that ℚ is dense in ℝ conclude that h(pa) = ph(a) holds for all 
p ∈ ℝ . In particular, we have h(a) = ah(1) . Substituting this 
into Eq. (6) and setting x = 1 yield �(a + 1) − � (1) = ah(1) . 
Setting x = a + 1 and rearranging the terms, finally, yield

for all x > 0 . The theorem now follows by observing that 
both the slope h(1) and the intercept �(1) − h(1) must be 
nonnegative since � is amenable and non-decreasing. □

Appendix 2: On the example of Fig. 2

In Fig. 2, we considered distance data generated from an 
additive tree using a transformation of the form Eq. (5), 
which has the inverse �−1(u) = (−(1∕b) ln(1 − u∕a))1∕c , 
with parameters a , b , c fixed a some values a0 , b0 , c0 , which 
we pretend not to know. Transforming them with �−1 with 
the correct value a0 but arbitrary choices of b and c yields 
transformed distances

The coefficients b0 and b appear only in the multiplicative 
factor (b0∕b)1∕c, and this does not affect additivity of the 
metric because the function � must satisfy �(��) = ��(�) for 

(6)�(x + a) − �(x) = h(a)

(7)�(x) = h(1)x + (�(1) − h(1))

(8)q = �−1
b,c
(�b0,c0 (t)) =

c

√
b0

b
tc0∕c.

input matrices close to � that are almost additive. It follows 
that the scaling factor b0 of the time axis cannot be inferred 
by minimizing the discrepancy in Eq. (4). This does not 
matter for phylogenetic reconstruction, however, because the 
scaled distance matrix �� corresponds to the same phylo-
genetic tree as � . In contrast, choosing an exponent c ≠ c0 
causes a nonlinear distortion and thus causes a nonzero dis-
crepancy in data. It is also easy to see that any choice of 
a ≠ a0 also causes a nonzero discrepancy, and hence, a can 
be inferred.

In order to construct a data set with tunable levels of sam-
pling error, we used the tree � as “scaffold” to simulate the 
evolution of four-letter sequences of length N = 10000 for 
100 time units with an per site substitution rate of � = 0.007 . 
Denote by �H the empirically determined scaled Ham-
ming distances for a particular instance of the simulated 
sequences. By construction, the expected distance matrix for 
this model is �∗ = �(�) with a = 3∕4 and c = 1 . Hence, the 
sampling variance can be tuned by using linear combinations 
of �∗ and �H . We used convex combinations of the form 
� = (1 − �)�∗ + ��H . Note that the limit � → 0 corresponds 
to sequences of infinite length, which allow an arbitrarily 
accurate estimation of the expected distances.
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