Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4,8-Dimethoxyfuro[2,3-b]quinoline (y-fagarine)

Yong Liu,^a Kou Wei^a and Jianshe Yang^{b*}

^aMedical College, Northwest University for Nationalities, Lanzhou 730030, Gansu Province, People's Republic of China, and ^bLife Sciences College, Northwest Normal University, Lanzhou 730030, Gansu Province, People's Republic of China Correspondence e-mail: yangjianshe008@sohu.com

Received 24 May 2011; accepted 25 June 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.129; data-to-parameter ratio = 13.0.

The title molecule, C₁₃H₁₁NO₃, a natural compound extracted from Phellodendron chinense, exhibits a near planar framework: the mean deviations from the furo[2,3-b] guinoline ring system and from the whole molecule (not including the H atoms) are 0.006 and 0.062 Å, respectively.

Related literature

For the anti-HIV properties of furoquinolines, see: Wang et al. (2009); Cheng et al. (2005). For a related furoquinoline structure, see: Napolitano et al. (2003).

Experimental

Crystal data

C. H. NO.	V
$M_{-} = 229.23$	Z
Orthorhombic, <i>Pbca</i>	Μ
a = 12.491 (5) Å	μ
b = 12.155 (5) Å	Т
c = 14.466 (5) Å	0.

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1998) $T_{\min} = 0.976, T_{\max} = 0.979$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.129$ S = 1.052047 reflections

 $= 2196.4 (14) Å^{3}$ = 8 lo Kα radiation $= 0.10 \text{ mm}^{-1}$ = 296 K $.25 \times 0.22 \times 0.21 \text{ mm}$

11659 measured reflections 2047 independent reflections 1278 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.068$

157 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.14 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Financial support from the Fundamental Research Funds for the Central Universities in NWSUAF (QN2009048) and the Excellent Young Funds 211020712 is greatly appreciated.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2360).

References

Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cheng, M.-J., Lee, K.-H., Tsai, I.-L. & Chen, I.-S. (2005). Bioorg. Med. Chem. 13. 5915-5920
- Napolitano, H. B., Silva, M., Ellena, J., Rocha, W. C., Vieira, P. C., Thiemann, O. H. & Oliva, G. (2003). Acta Cryst. E59, o1503-o1505.
- Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, M., Ji, T. F., Yang, J. B. & Su, Y. L. (2009). Zhongyaocai, 32, 208-210.

supplementary materials

Acta Cryst. (2011). E67, o1907 [doi:10.1107/S1600536811025062]

4,8-Dimethoxyfuro[2,3-b]quinoline (γ -fagarine)

Y. Liu, K. Wei and J. Yang

Comment

Furoquinoline is a planar unit, and its derivatives have been found to be potent anti-HIV compounds (Wang *et al.*, 2009; Cheng *et al.*, 2005). In the course of exploring new anti-HIV agents, we obtained a natural product, 4,8-dimethoxyfuro[2,3-*b*]quinoline, from *phellodendron chinense*. Here we report the structure and isolation of title compound.

The furo [2,3-b] quinoline ring system is near planar, exhibiting mean deviation of 0.006 Å. The two methoxy substitutional groups are nearly coplanar with the furo [2,3-b] quinoline ring system. The maximum distance from the four atoms of the two methoxy groups to the furo [2,3-b] quinoline framework mean plane is 0.300 (6) Å, for atom C14.

The title molecule crystallizes in space group *Pbca*, which is different from that of the closely related 4,7,8-trimethoxy-furo[2,3-*b*]quinoline ($P2_1/c$, Napolitano *et al.*, 2003). There are no classic hydrogen bonds in the crystal structure of the title compound.

Experimental

Phellodendron chinense (500 g) and 85% ethanol (1 L) were added to a 2 L flask. After refluxing the mixture for 5 h, the mixture was cooled to 300 K and filtrated. After the filtrate being condensed to 100 mL in water bath, the remains were extracted with ethyl acetate and dried over Na₂SO₄. After removing the solvent, the crude product was purified by a silica gel column using hexane/acetone, 3/1, as eluent, to give the title compound (1.10 g). Then the compound was dissolved in THF, and colorless crystals were formed on slow evaporation, at room temperature over one week.

Refinement

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.93 (for aromatic H) or 0.96 Å (for methyl groups), with $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5U_{eq}(C \text{ of methyl})$.

Figures

Fig. 1. The molecular structure of **I** with, displacement ellipsoids drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.

4,8-Dimethoxyfuro[2,3-b]quinoline

Crystal data

C₁₃H₁₁NO₃ $M_r = 229.23$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 12.491 (5) Å b = 12.155 (5) Å c = 14.466 (5) Å V = 2196.4 (14) Å³ Z = 8

Data collection

Bruker APEXII CCD diffractometer	2047 independent reflections
Radiation source: fine-focus sealed tube	1278 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.068$
φ and ω scans	$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1998)	$h = -15 \rightarrow 13$
$T_{\min} = 0.976, \ T_{\max} = 0.979$	$k = -13 \rightarrow 14$
11659 measured reflections	$l = -16 \rightarrow 17$

F(000) = 960

 $\theta = 2.7 - 24.2^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$ T = 296 K

Block, colourless

 $0.25\times0.22\times0.21~mm$

 $D_{\rm x} = 1.386 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1884 reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.044$	H-atom parameters constrained
$wR(F^2) = 0.129$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0376P)^{2} + 0.5982P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
2047 reflections	$\Delta \rho_{max} = 0.14 \text{ e } \text{\AA}^{-3}$
157 parameters	$\Delta \rho_{min} = -0.12 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
0 constraints	Extinction coefficient: 0.0037 (8)
Drimory store site location, structure inversiont direct	

Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

x y z $U_{\rm iso}^{*}/U_{\rm eq}$

C1	1.0282 (3)	0.2044 (2)	-0.15171 (19)	0.0791 (8)
H1	1.0559	0.2307	-0.2072	0.095*
C2	1.0798 (2)	0.21016 (18)	-0.07253 (17)	0.0654 (7)
H2	1.1474	0.2401	-0.0627	0.078*
C3	1.01087 (17)	0.16075 (15)	-0.00386 (14)	0.0474 (5)
C4	1.00926 (16)	0.13961 (15)	0.08969 (14)	0.0476 (5)
C5	0.91729 (17)	0.08795 (16)	0.12813 (14)	0.0484 (5)
C6	0.9100 (2)	0.06319 (18)	0.22317 (16)	0.0651 (7)
H6	0.9662	0.0807	0.2627	0.078*
C7	0.8204 (2)	0.0136 (2)	0.2568 (2)	0.0819 (9)
H7	0.8159	-0.0021	0.3196	0.098*
C8	0.7351 (2)	-0.0142 (2)	0.1989 (2)	0.0835 (9)
H8	0.6746	-0.0480	0.2233	0.100*
C9	0.7403 (2)	0.00804 (18)	0.1070 (2)	0.0684 (7)
C10	0.83121 (17)	0.06121 (16)	0.06827 (16)	0.0524 (6)
C12	0.91869 (19)	0.12867 (17)	-0.05247 (15)	0.0544 (6)
C13	1.18328 (18)	0.2155 (2)	0.12003 (19)	0.0788 (8)
H13A	1.2177	0.1688	0.0755	0.118*
H13B	1.2303	0.2269	0.1716	0.118*
H13C	1.1667	0.2850	0.0920	0.118*
C14	0.5786 (3)	-0.0878 (3)	0.0754 (3)	0.1463 (17)
H14A	0.6090	-0.1531	0.1020	0.219*
H14B	0.5337	-0.1076	0.0242	0.219*
H14C	0.5367	-0.0501	0.1211	0.219*
N1	0.83129 (15)	0.08188 (15)	-0.02441 (14)	0.0603 (5)
01	0.92925 (15)	0.15576 (15)	-0.14407 (11)	0.0756 (5)
O2	1.08678 (12)	0.16444 (13)	0.15127 (10)	0.0655 (5)
O3	0.66204 (14)	-0.01773 (15)	0.04411 (16)	0.0967 (7)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.102 (2)	0.0731 (17)	0.0625 (18)	0.0109 (16)	0.0183 (17)	0.0169 (14)
C2	0.0779 (17)	0.0560 (14)	0.0623 (16)	0.0018 (12)	0.0185 (14)	0.0051 (12)
C3	0.0573 (13)	0.0387 (10)	0.0461 (12)	0.0039 (9)	0.0084 (10)	-0.0004 (9)
C4	0.0533 (13)	0.0420 (11)	0.0475 (13)	0.0008 (9)	0.0042 (11)	-0.0061 (9)
C5	0.0569 (13)	0.0397 (11)	0.0487 (13)	0.0001 (10)	0.0111 (11)	-0.0039 (9)
C6	0.0844 (18)	0.0595 (14)	0.0515 (15)	-0.0051 (13)	0.0160 (13)	-0.0006 (11)
C7	0.109 (2)	0.0672 (17)	0.0693 (18)	-0.0039 (16)	0.0394 (18)	0.0059 (14)
C8	0.076 (2)	0.0610 (16)	0.114 (3)	-0.0144 (14)	0.0458 (18)	-0.0081 (16)
C9	0.0574 (15)	0.0513 (13)	0.097 (2)	-0.0045 (12)	0.0184 (15)	-0.0099 (14)
C10	0.0535 (14)	0.0390 (11)	0.0647 (16)	0.0026 (10)	0.0100 (12)	-0.0055 (10)
C12	0.0681 (16)	0.0475 (12)	0.0476 (14)	0.0119 (11)	-0.0006 (12)	-0.0002 (10)
C13	0.0597 (15)	0.0896 (19)	0.0872 (19)	-0.0186 (14)	0.0017 (14)	-0.0050 (15)
C14	0.097 (2)	0.120 (3)	0.221 (5)	-0.061 (2)	0.023 (3)	-0.039 (3)
N1	0.0608 (13)	0.0559 (12)	0.0641 (14)	0.0049 (9)	-0.0062 (10)	-0.0050 (10)
O1	0.0975 (14)	0.0816 (12)	0.0476 (10)	0.0149 (10)	-0.0040 (10)	0.0084 (8)
O2	0.0644 (10)	0.0786 (11)	0.0535 (10)	-0.0168 (8)	0.0009 (8)	-0.0068 (8)

supplementary materials

O3	0.0616 (11)	0.0872 (13)	0.1413 (19)	-0.0202 (10)	0.0027 (12)	-0.0185 (12)
Geometric p	oarameters (Å, °)					
C1—C2		1.316 (3)	C8—4	С9	1.35	8 (4)
C1-01		1.375 (3)	C8—]	H8	0.93	00
C1—H1		0.9300	С9—	03	1.37	(2 (3)
C2—C3		1.446 (3)	С9—	C10	1.42	2 (3)
С2—Н2		0.9300	C10–	-N1	1.36	64 (3)
C3—C4		1.378 (3)	C12-	-N1	1.29	96 (3)
C3—C12		1.404 (3)	C12-	-01	1.37	2 (3)
C4—O2		1.350 (2)	C13–	-02	1.42	29 (3)
C4—C5		1.422 (3)	C13–	-H13A	0.96	600
C5—C6		1.410 (3)	C13–	-H13B	0.96	600
C5-C10		1.418 (3)	C13-	-H13C	0.96	00
С6—С7		1.361 (3)	C14–	-O3	1.42	0 (3)
С6—Н6		0.9300	C14-	-H14A	0.96	00
С7—С8		1.397 (4)	C14–	-H14B	0.96	600
С7—Н7		0.9300	C14—	-H14C	0.96	00
C2—C1—O	1	113.2 (2)	C8—4	C9—C10	120	.9 (3)
С2—С1—Н	1	123.4	O3—	C9—C10	114.	3 (2)
01—С1—Н	1	123.4	N1—	C10—C5	123	.87 (19)
C1—C2—C3	3	106.5 (2)	N1—	С10—С9	118.	1 (2)
С1—С2—Н	2	126.7	C5—	С10—С9	118.	0 (2)
С3—С2—Н	2	126.7	N1—	C12—O1	119.	3 (2)
С4—С3—С	12	115.35 (19)	N1—	С12—С3	131	.0 (2)
C4—C3—C2	2	139.6 (2)	01—	С12—С3	109	.8 (2)
C12—C3—C	22	105.1 (2)	O2—	С13—Н13А	109	.5
O2—C4—C	3	126.58 (19)	O2—	С13—Н13В	109	.5
O2—C4—C	5	114.85 (19)	H13A	—С13—Н13В	109	.5
C3—C4—C	5	118.56 (19)	O2—	С13—Н13С	109	.5
С6—С5—С	10	119.8 (2)	H13A	—С13—Н13С	109	.5
C6—C5—C4	1	121.8 (2)	H13B	—С13—Н13С	109	.5
C10—C5—C	24	118.35 (19)	O3—	C14—H14A	109	.5
C7—C6—C	5	119.7 (2)	O3—	C14—H14B	109	.5
С7—С6—Н	6	120.1	H14A		109	.5
С5—С6—Н	5	120.1	O3—	C14—H14C	109	.5
C6—C7—C8	3	121.3 (3)	H14A	—C14—H14C	109	.5
С6—С7—Н	7	119.3	H14B		109	.5
С8—С7—Н	7	119.3	C12-	-N1—C10	112.	91 (19)
C9—C8—C'	7	120.2 (2)	C12-	-01—C1	105	.51 (19)
С9—С8—Н	8	119.9	C4—4	O2—C13	119.	57 (18)
С7—С8—Н	8	119.9	C9—	O3—C14	116.	6 (3)
C8—C9—O	3	124.8 (2)				
01—C1—C	2—С3	0.2 (3)	C4—4	C5—C10—C9	179	.04 (18)
C1—C2—C	3—C4	-178.6 (2)	C8—4	C9—C10—N1	-17	9.6 (2)
C1—C2—C3	3—C12	-0.2 (2)	03—	C9—C10—N1	0.7	(3)
C12—C3—C	C4—O2	-178.62 (18)	C8—	C9—C10—C5	1.4	(3)
C2—C3—C4	4—O2	-0.3 (4)	O3—	C9—C10—C5	-17	8.24 (18)

C12—C3—C4—C5	0.4 (3)	C4—C3—C12—N1	-0.1 (3)
C2—C3—C4—C5	178.7 (2)	C2-C3-C12-N1	-179.0 (2)
O2—C4—C5—C6	-1.2 (3)	C4—C3—C12—O1	178.92 (17)
C3—C4—C5—C6	179.67 (19)	C2-C3-C12-O1	0.1 (2)
O2—C4—C5—C10	178.73 (17)	O1—C12—N1—C10	-179.06 (18)
C3—C4—C5—C10	-0.4 (3)	C3-C12-N1-C10	-0.1 (3)
C10—C5—C6—C7	0.1 (3)	C5-C10-N1-C12	0.1 (3)
C4—C5—C6—C7	-179.9 (2)	C9-C10-N1-C12	-178.82 (18)
C5—C6—C7—C8	0.4 (4)	N1-C12-O1-C1	179.27 (19)
C6—C7—C8—C9	0.0 (4)	C3—C12—O1—C1	0.1 (2)
С7—С8—С9—О3	178.7 (2)	C2-C1-O1-C12	-0.2 (3)
C7—C8—C9—C10	-1.0 (4)	C3—C4—O2—C13	-1.7 (3)
C6-C5-C10-N1	-179.89 (19)	C5—C4—O2—C13	179.32 (19)
C4C5C10N1	0.2 (3)	C8—C9—O3—C14	-10.6 (4)
C6—C5—C10—C9	-1.0 (3)	C10—C9—O3—C14	169.1 (2)

