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Methods that allow for the manipulation of genes or their products have been highly fruitful
for biomedical research. Here, we describe a method that allows the control of protein abundance by
a genetically encoded regulatory system. We developed a dormant N-degron that can be attached to
the N-terminus of a protein of interest. Upon expression of a site-specific protease, the dormant
N-degron becomes deprotected. The N-degron then targets itself and the attached protein for
rapid proteasomal degradation through the N-end rule pathway. We use an optimized tobacco
etch virus (TEV) protease variant combined with selective target binding to achieve complete and
rapid deprotection of the N-degron-tagged proteins. This method, termed TEV protease induced
protein inactivation (TIPI) of TIPI-degron (TDeg) modified target proteins is fast, reversible,
and applicable to a broad range of proteins. TIPI of yeast proteins essential for vegetative growth
causes phenotypes that are close to deletion mutants. The features of the TIPI system make it a
versatile tool to study protein function in eukaryotes and to create new modules for synthetic or
systems biology.
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Introduction

Regulation of protein activity by gene disruption/deletion,
RNAi, promoter shut-off, temperature sensitive alleles, che-
mical inhibition/inactivation, constitutive protein destabiliza-
tion, and heat or small molecule-regulated N-degrons for
induced protein degradation (Dohmen et al, 1994; Stack et al,
2000; Mnaimneh et al, 2004; Dohmen and Varshavsky, 2005;
Banaszynski et al, 2006; Suter et al, 2006; Boutros and
Ahringer, 2008) are highly useful tools to study protein
function. A restriction immanent to these methods is the
difficulty to induce protein degradation/inactivation in a
highly selective manner, for example, in a specific tissue or
during a particular cell-cycle or developmental stage. Methods
to overcome some of these limitations exist, for example, the
Cre/lox system for the genetically encoded and regulated

excision of a gene from the chromosome (Sauer, 2002). In this
case, the time required to establish the phenotype is decided
mainly by the stability of the protein. Another method relies on
regulated cleavage of target proteins by the tobacco etch virus
(TEV) protease inside living cells (Henrichs et al, 2005; Pauli
et al, 2008; Satoh and Warren, 2008). This system requires
a priori knowledge about the structure of a protein to be able to
introduce the TEV protease cleavage site into a target protein
and to render its function sensitive to site-directed proteolysis.
Alternatively, proteolysis sensitive sites could be identified by
means of functional assays. However, ectopically driven
proteolytic fragmentation may only affect a specific subset of
the functions of a protein.

Complete degradation of proteins has been achieved using
N-degrons; this degradation mechanism is conserved from
bacteria to higher eukaryotes (Varshavsky, 1997). N-degrons
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constitute natural or artificial amino-terminal tags that are
proteolytically processed, thereby leading to the exposure of
an amino acid other than methionine at the amino terminus of
a protein. The exposed amino acid serves as a recognition
signal for poly-ubiquitylation and subsequent proteasomal
degradation through the N-end rule pathway in eukaryotes
(Bachmair et al, 1986). It determines the degradation rate of
the protein with half-life times ranging between a few minutes
(e.g. 2–3 min for arginine, phenylalanine, and aspartic acid) up
to 420 h (e.g. serine or methionine) (Bachmair et al, 1986;
Mogk et al, 2007).

Results and discussion

To create an N-degron that is activated only upon the
conditional expression of a specific activator, we developed a
degron that is protected at its N-terminus by an attached
peptide that can be removed by proteolysis using the site-
specific TEV protease (Parks et al, 1994). The TEV protease has
been used in vivo in many different organisms (bacteria, yeast
cells, drosophila, and mammalian cell culture) without
negative side effects (Uhlmann et al, 2000; Kapust et al,
2002; Wehr et al, 2006; Pauli et al, 2008). Initially, we
generated a fusion of a seven amino acid long TEV protease
recognition site to the N terminus of an earlier developed
N-degron (Suzuki and Varshavsky, 1999). The TEV protease
cleaves between positions 6 and 7 of the recognition site. The
enzymatic activity of TEV is somewhat flexible towards
changes in the sequence, especially at position 7 (Kapust
et al, 2002), which becomes the new N-terminal amino acid (in
the following termed residue X) after proteolytic cleavage.
Destabilizing amino-acid residues at the amino terminus
(position X) target a protein for rapid destruction if the N-
degron contains a sequence that allows the attachment of
ubiquitin (Varshavsky, 1997). To monitor the cleavage, we
fused a fluorescent protein to the N terminus of the TEV
protease recognition site. To improve the processivity of the
TEV protease, we enhanced the binding of the TEV protease to
its substrate. We fused the N-degron construct with the TEV
protease recognition site to the SF3b155381�424 protein
domain. This domain is specifically recognized by the human
spliceosome subunit p14 (Spadaccini et al, 2006), which we in
turn fused to the TEV protease (named p14–TEV). Further-
more, we identified, by chance, a mutated allele of p14 (called
p14*), which enhanced cleavage significantly. In summary, we
have constructed a dormant N-degron that is constituted of a
reporter, followed by a TEV protease recognition site (includ-
ing residue X), an N-degron and SF3b155381�424 (in the
following termed Reporter–TDegX-tag, e.g. GFP–TDegF-tag).
This dormant N-degron can be deprotected by the expression
of the p14*–TEV fusion protein (pTEV). An overview of the
TEV protease induced protein inactivation (TIPI) system is
shown in Figure 1. The mechanism underlying the enhanced
activity of the p14*–TEV fusion versus p14–TEV is not clear, as
the responsible mutation lies within a stretch of amino acids in
p14 that is not involved in binding of p14 to SF3b155381�424

(data not shown; Schellenberg et al, 2006; Spadaccini et al,
2006). For details on the development of the TIPI system, see
Supplementary information.

SF3b
X- Target protein

Ubr1Proteasome

Target ORF

Promoter

pTEV

Promoter
(GAL1)

Signal (galactose)A

Target protein
Spacer

Spacer

SF3b

Spacer

ENLYFQ - X

TEV p14

B

C

+
Spacer

SF3b
X-
N-degron

Target protein

D

Reporter TDegX

Spacer

Reporter

Reporter

Figure 1 TEV protease induced protein instability (TIPI). The principle of TIPI,
a method to genetically control abundance of proteins with an N terminus
exposed to the cytoplasm or nucleus. (A) The GFP–TDegX-tag is fused to the 50-
end of the target open reading frame (target ORF), directly in front of the ATG.
The gene for pTEV expression is regulated by a controllable promoter; in this
study, we used the galactose responsive GAL1-promoter in yeast. (B) Upon
expression of pTEV, the pTEV protease binds to the GFP–TDegX-target protein.
Binding is mediated by interaction of p14 with SF3B155381�424. This interaction
directs efficient cleavage of the GFP–TDegX-tag by the TEV protease at its
consensus site (ENLYFQ-X). (C) Cutting of the GFP–TDeg-tag leads to
deprotection of the dormant N-degron that is part of the GFP–TDegX-tag. The N-
degron is constituted by the new N-terminal amino acid X and a sequence that
promotes efficient poly-ubiquitylation by Ubr1p (Suzuki and Varshavsky, 1999).
The exposed amino acid X determines the fate of the protein. In yeast, X¼A, C,
G, M, P, S, T, and V lead to stable proteins, whereas X¼ D, E, F, H, I, K, L, N, Q,
R, W, and Y render proteins instable (half lives¼2–30 min) (Bachmair et al,
1986). (D) The target protein is poly-ubiquitylated by Ubr1p and degraded by the
proteasome.
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We used Saccharomyces cerevisiae as a model organism to
develop and test the TIPI system. As a target protein, we used
the non-essential, soluble, and freely diffusible protein Don1p
(Maeder et al, 2007). Don1p is a protein with a role only in
yeast sporulation, and it is absent in vegetatively growing cells
(Knop and Strasser, 2000). We monitored the processing and
degradation of the GFP–TDegX–Don1p fusion proteins as a
function of pTEV expression (driven by the inducible GAL1-
promoter) using western blotting and antibodies specific for
GFP or Don1p. The amino acid at position X of the GFP–
TDegX-tag is predicted to influences both, the cleavage
efficiency of pTEV and the half-life of the target protein. We
found that X¼Phe (F; GFP–TDegF) and X¼Asp (D; GFP–
TDegD) provide optimal combinations of both, excellent
cleavage followed by rapid protein degradation resulting in
very low Don1p protein amounts upon pTEV expression
(Figure 2A–C). Degradation is dependent on the E3 protein,
which is encoded by the ubiquitin-protein ligase gene UBR1
(Figure 2A), indicating proteasomal degradation by the N-end
rule pathway (Bartel et al, 1990). Furthermore, repression of
pTEV expression rapidly restores protein levels of the target
protein (Figure 2B). The TEV protease cleaved target protein is
not degraded in strains lacking Ubr1p or if the TDegM-tag is
fused to the target protein (Figure 2A and B). This excludes
that addition of the TDegF-tag or expression of the TEV
protease caused side effects that act on target protein
production. The use of different residues at position X enables
specific modulation of the cleavage efficiency (e.g. TDegK) and
the degradation rate (e.g. TDegH) (Figure 2C). In summary,
TIPI is a new method suitable for the precise post-translational
regulation of protein abundance.

The published crystal structure of the TEV protease (Phan
et al, 2002; Nunn et al, 2005) allowed us to predict a TEV
protease mutation, which improved its proteolytic activity
by redefining the protein border at the C terminus. Using
this modified pTEV, called pTEVþ , efficient cleavage of
the protease was enhanced, as observed by improved
processing of the GFP–TDegX–Don1p reporter in cells where
its expression was driven by the very strong GPD-promoter
(Figure 2D).

We used live cell imaging to obtain the kinetics of protein
depletion by TIPI. We used the red fluorescent protein mKate
as a target, N-terminally tagged with the CFP–TDegX-tag,
yielding the construct CFP–TDegX–mKate. The pTEVþ

protease (under control of the inducible GAL1 promoter) was
N-terminally tagged with the yellow fluorescent protein (YFP)
citrine (YFP–pTEVþ ). Using this setup, we observed rapid
depletion of mKate fluorescence upon YFP–pTEVþ expression
in wild type, but not in ubr1D cells or if a CFP–TDegM–mKate
construct was used (Figure 2E). Quantification of the cellular
fluorescence intensities in the yellow and red channel revealed
rapid depletion of TDegF–mKate within the first hour of YFP–
pTEVþ expression (Figure 2F). After 3–4 h of YFP–pTEVþ

expression, we noticed some residual red fluorescence. This
is because of the loss of YFP–pTEVþ encoding plasmids in a
subpopulation of cells (as confirmed by microscopy)
and, therefore, incomplete processing of CFP–TDegF–mKate.
Such residual levels do not occur in the experiments
where chromosomally integrated constructs were used
(Figure 2A–C).

Together, these results show that TIPI is a valuable method
to induce the depletion of a protein. We used a controllable
promoter to induce pTEV protease expression, but the method
is easily adapted to a developmental process using distinct
drivers for pTEV expression, which are only active at specific
stages or in specific cell types. Protein depletion is easily
followed in live cells; this allows correlating protein abun-
dance with phenotype establishment.

To test whether TIPI is able to deplete S. cerevisiae proteins
sufficiently to cause a phenotype similar to the corresponding
gene-deletion, we fused the GFP–TDegF-tag to several soluble
(nuclear and cytoplasmic) and membrane proteins, which are
all essential for vegetative growth of S. cerevisiae. The amino
terminus of all chosen proteins is either exposed to the
cytoplasm or the nucleoplasm. The GFP–TDegX–tagged fusion
proteins revealed localizations that were comparable to the
corresponding C-terminally GFP-tagged proteins (Huh et al,
2003) (Supplementary Figure 2A). Expression of pTEV led
to the cleavage of the fusion proteins (Supplementary Figure
2B) and to the inhibition of cell growth, which was either
completely abolished (in 6/8 tested proteins) or reduced
(Cdc15p and Nud1p) (Figure 3A). Growth was rescued by a
UBR1 deletion or by using GFP–TDegM that contains a
stabilizing amino acid (Figure 3A and data not shown).
Importantly, expression of pTEV or pTEVþ protease alone did
not affect growth of yeast cells (Figure 3A and B). Strong
production of the target protein GFP–TDeg–Cdc14p using the
ADH1 promoter (Janke et al, 2004) required the presence of
the more active pTEVþ protease to result in a growth
phenotype (Figure 3B). The use of the pTEV protease was
sufficient to abrogate Cdc14 function, if the target protein was
expressed from the weaker CYC1 promoter (Janke et al, 2004)
(Figure 3A). Surprisingly, TIPI of the integral membrane
proteins GFP–TDegF–Sec12p, GFP–TDegF–Pma1p, and GFP–
TDegF–Alr1p resulted in non-viable cells. This indicates that
these proteins are accessible to the degradation machinery,
which may be the case prior or during their insertion into the
membrane, or at their final localization. We analyzed whether
pTEV is able to cut efficiently near the plasma membrane and
found complete cutting within 3–4 h after induction of pTEV
expression (Supplementary Figure 3). Up to now, there is no
report of membrane proteins being degraded through the
N-end rule pathway. It may be that degradation of these
proteins is assisted by other ubiquitylation triggered degrada-
tion pathways, for example, through endocytosis and vacuolar
degradation (Hicke, 1997; Hicke and Dunn, 2003).

TIPI of Cdc5p, Cdc14p, and Cdc48p, three proteins involved
in cell-cycle regulation, led to cell-cycle defects: predominantly
anaphase arrest in the case of GFP–TDegF–Cdc5p (55±3%
versus 3±2% in the wild type) and increased frequency of
metaphase arrested cells in the case of GFP–TDegF–Cdc14p
(32±10% versus 3±3% in the wild type) and GFP–TDegF–
Cdc48p (41±21% versus 3±3% in the wild type)
(Figure 3C). The cell-cycle defects of GFP–TDegF–Cdc5p and
GFP–TDegF–Cdc48p match the ones reported in the literature
for temperature sensitive mutants (Hartwell et al, 1973;
Frohlich et al, 1991). For GFP–TDegF–Cdc14p, we noticed a
predominant arrest in metaphase (Figure 3C), whereas cdc14
temperature sensitive mutants arrest in anaphase and exhibit
defects in exit of mitosis (Charles et al, 1998). This phenotype
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Figure 2 TIPI mediates rapid degradation of proteins in yeast. (A) TIPI leads to rapid degradation of GFP–TDegD-tagged proteins. GFP–TDegD–DON1 was expressed
chromosomally using the constitutive ADH1 promoter. Expression of pTEV or GFP–pTEV was induced by the addition of galactose (2% final concentration) to the culture. Samples
of logarithmically growing yeast cells were removed from the culture at the indicated time points and subjected to western blotting. For detection of reporter constructs, anti-GFP and
anti-Don1p antibodies were used. Detection of tubulin was used as a loading control. Positions of cleaved and uncleaved species are indicated in the figure. Strains used were either
wild type or deleted for the gene UBR1 (ubr1D) as indicated. The strains we used in this experiment are described in Supplementary Table I, and their construction is indicated in
Supplementary Table III. (B) Depletion of proteins by TIPI is reversible. GFP–TDegF–DON1 and GFP–TDegM–DON1 were expressed chromosomally using the constitutive ADH1
promoter. To induce pTEV expression galactose was added (at time point 0 h), repression of pTEV expression was done by adding glucose (at time point 3 h). Western blotting was
performed as described in panel A. A # indicates the position of a non-specific band. (C) Modulation of protein abundance using different versions of GFP–TDegX. Protein levels of
cleaved and uncleaved GFP–TDegF-, GFP–TDegM-, GFP–TDegK-, or GFP–TDegH–Don1p were assessed in crude extracts of yeast cells before and after 3 h of pTEV
expression. GFP–TDegX constructs were expressed chromosomally from the ADH1-promoter. Western blotting was performed as described in Figure 2A. (D) C-terminal truncation
of pTEV protease enhances proteolytic activity. Protein levels of cleaved and uncleaved GFP–TDeg–Don1p were assessed before and after 3 h of pTEV or C-terminally truncated
pTEVþ expression. Strong overexpression of GFP–TDegD–DON1 constructs was achieved using the strong GPD-promoter. Western blotting was performed as described in panel
A. (E) Protein depletion by TIPI can be followed by live cell imaging. Plasmid encoded CFP–TDegF–mKATE and CFP–TDegM–mKATE were expressed constitutively under control
of the ADH1 promoter in wild-type cells and cells lacking UBR1 (ubr1D). Expression of pTEVþ (plasmid encoded) was induced by the addition of galactose (2% final concentration)
to the cells. Images of the cells were taken at the indicated time points. (F) Quantification of the experiment shown in (E). Images from the cells used in (E) were recorded after
induction of YFP–pTEVþ . Automated quantitative image analysis was used to measure the cellular fluorescence of the different fluorescent protein reporters in 1000 to 3000 cells
per strain (error bars represent the standard error of the mean). The yeast strains that were used to perform the experiments (A–F) are listed in Supplementary information. The
genotypes are given in Supplementary Table I, the plasmids are described in Supplementary Table II.
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may indicate that deprotection of the degron in GFP–TDegF–
Cdc14p leads to a Cdc14p species that interferes with an early
mitotic function (Bloom and Cross, 2007) or that the
commonly used cdc14 temperature sensitive mutants do not
block this function completely. In the absence of TEV protease,
no difference between GFP–TDegF-tagged and control cells
was found (data not shown). TIPI of Sec12p, a membrane
protein involved in ER to Golgi transport caused a prominent
enrichment of the high molecular weight precursor forms of
carboxypeptidase Y (CPY) (Figure 3D), indicative for impaired
transport of proCPY to the vacuole where it is proteolytically
processed (Kaiser and Schekman, 1990).

Our experiments demonstrate that TIPI enables the con-
struction of conditional mutants: the regulated induction of
pTEV expression enables the depletion of proteins from cells
by targeted degradation. In conclusion, our yeast work
demonstrates that protein depletion by TIPI is very quick;
another advantage is that live cell imaging can be used to
follow protein inactivation. This allows the comparison of
protein abundance to phenotype establishment.

The high conservation of the N-end rule pathway in
eukaryotic organisms (Mogk et al, 2007) suggests that TIPI
could be useful in many different cell types and model
organisms. Alternative implementations of TIPI could be
developed, for example, using small molecule-regulated
binding (Bayle et al, 2006) of the TEV protease to the N-
degron. This, or the use of another site-specific protease for
which a specific inhibitor is available, may provide additional
ways to control the deprotection of the N-degron. Instead of
using the TEV protease to deprotect the N-degron, one could
also use the split-ubiquitin-system. This system was originally
developed to detect protein–protein interactions (Wittke et al,
2000). Here, conditional expression of one half of ubiquitin
and its specific targeting to a substrate carrying the other half,
for example, using the p14–SF3b155 interaction, would trigger
the removal of the reconstituted ubiquitin by the ubiquitin
proteases (Johnsson and Varshavsky, 1994) and would lead to
target protein destabilization.

One attractive application of TIPI is to use it for develop-
mental studies in higher eukaryotes. Distinct drivers or
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Figure 3 TIPI of essential yeast proteins causes lethal phenotypes. (A) TIPI of essential proteins leads to impaired growth phenotypes. Serial dilutions (1:10) of yeast
cultures (genotypes of yeast strains are indicated) were spotted on synthetic complete media containing either raffinose or galactose/raffinose and incubated at 301C for
3 days. GFP–TDegF fusions were expressed either from the ADH1 (PADH1) or the CYC1 (PCYC1) promoter (as indicated). (B) pTEVþ protease exhibits increased activity
as compared with pTEV. Experimental conditions were the same as described in (A) using strains that express the indicated constructs. (C) TIPI of Cdc5p, Cdc14p or
Cdc48p leads to cell-cycle defects. Cell-cycle phenotypes were assessed after 3 h of pTEV expression in GFP–TDegF–CDC5, GFP–TDegF–CDC14 and GFP–TDegF–
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size, spindle morphology, and DNA segregation. (D) TIPI of Sec12p leads to impaired secretion. Samples of control cells and TDegF–Sec12p expressing cells were
taken before (�) and after 3 h (þ ) of pTEV protease induction and subjected to western blotting. The secretory marker protein carboxypeptidase Y (CPY) was detected.
mCPY, mature, vacuolar form of CPY; p1þ p2CPY, ER and Golgi glycosylated forms of CPY. The yeast strains that were used to perform the experiments (A–D) are
listed in Supplementary information. The genotypes of these strains are given in Supplementary Table I.
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promoters specific to developmental stages, tissues, and cell
types are available for model organisms like worm, Drosophila,
or mice. They should be applicable for selective induction of
pTEV or pTEVþ protease expression. The specificity of the
expression system used will decide how precisely the effects of
TIPI-mediated protein inactivation can be linked to the process
under investigation. In addition, it is essential to conduct the
experiments in animals that lack the functional wild-type
protein (e.g. by using a mutant, gene knock-out animal, or
gene downregulation by RNAi-based methods). Control
experiments without expressed TEV protease will report
whether the TIPI-tag constricts the function of the target
protein. Overproduction of the target protein should be
avoided, as it may interfere with the function of the protein
and with its downregulation by the TIPI system. The use of
stable variants of the TIPI tag, for example, TDegM, provide
further controls for the effect of the N-degron.

In conclusion, the TIPI system provides a method for
efficient regulation of protein abundance in functional studies
and for the creation of regulatory modules in synthetic biology.

Materials and methods

Yeast strains, plasmids, and growth conditions

All yeast strains used in this study were derived from the S288C strain
ESM356-1 (Pereira et al, 2001). Genotypes are listed in Supplementary
Table I. Manipulation of yeast strains using PCR targeting was
performed as described (Janke et al, 2004). Standard methods for
yeast strain construction were used otherwise (Sherman, 2002).
Supplementary Table II lists the plasmids used to construct the yeast
strains (Supplementary Table I), as indicated in Supplementary Table
III. The gene encoding the TEV protease was isolated from TEV-
infected tobacco leaves by PCR. The mutation S219V that inhibits
autoproteolysis (Kapust et al, 2001) was introduced along with
mutations that increase the solubility of the TEV protease (van den
Berg et al, 2006). The codons for leucine and arginine were exchanged
to optimize expression in yeast cells. The amino-acid sequences of the
GFP–TDegX-tag and p14–TEV protease are provided in Supplementary
Figure 4. Cloning details and nucleotide sequences are available upon
request.

Standard preparations of growth media were used as described
(Sherman, 2002). Growth tests were performed on synthetic complete
media plates supplemented either with 2% raffinose or with 2%
raffinose and 2% galactose. Cells used for immunodetection of tagged
proteins by western blotting were grown in liquid synthetic complete
media supplemented with 2% raffinose. TEV protease expression was
induced by adding 2% galactose. TEV protease expression was
repressed by the addition of 2% glucose. Cells used for fluorescence
microscopy were grown in low-fluorescence media (Sheff and Thorn,
2004) supplemented with 2% raffinose.

Western blotting, antibodies, and
immunofluorescence

Aliquots of cells from growing cultures were taken for crude protein
extract preparation and western blotting using the protocol described
in Janke et al (2004). Polyclonal rabbit anti-CPY, rabbit anti-tubulin,
and rabbit anti-GFP antibodies were used to detect CPY, tubulin, and
GFP (Finger et al, 1993; Maier et al, 2008). Immunofluorescence
microscopy was performed as described in Maier et al, 2008.

Light microscopy and quantification

Live cell imaging was performed as described earlier (Taxis et al,
2006). Briefly, the cells were grown to logarithmic growth phase,

adhered to concanavalin A coated glass-bottom-dishes (MaTek Corp.)
and imaged in bright field and green fluorescence (Supplementary
Figures 2A and 3) or bright field, cyan, yellow, and red fluorescence
(Figure 2E). For quantification, cells were segmented from image
backgrounds using yellow fluorescence images. Subsequently, cell
outlines were transformed into masks used to measure pixel intensities
of all fluorescent channels. Images of yeast cells expressing no
fluorescent proteins were used to measure background fluorescence.
Quantification data shown in Figure 2E were obtained by imaging
between 1000 and 3000 cells for each time point and each yeast strain.
Image processing, segmentation, and quantification were performed
using the software imageJ. Background subtraction, normalization
(time point 0 h for RFP, time point 4 h for YFP), calculation of the mean
fluorescence and the standard error of the mean were done using the
software Excel (Microsoft Corp.).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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