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Altering T cell trafficking to mucosal regions can enhance immune responses towards
pathogenic infections and cancers at these sites, leading to better outcomes. All-trans-
retinoic acid (ATRA) promotes T cell migration to mucosal surfaces by inducing
transcription of the mucosal-homing receptors CCR9 and a4b7 via binding to retinoic
acid receptors (RARs), which heterodimerize with retinoid X receptors (RXRs) to function.
However, the unstable nature and toxicity of ATRA limit its use as a widespread treatment
modality for mucosal diseases. Therefore, identifying alternatives that could reduce or
eliminate the use of ATRA are needed. Rexinoids are synthetically derived compounds
structurally similar to ATRA. Originally named for their ability to bind RXRs, rexinoids can
enhance RAR-mediated gene transcription. Furthermore, rexinoids are more stable than
ATRA and possess an improved safety profile, making them attractive candidates for use
in clinical settings. Here we show that select novel rexinoids act as ATRA mimics, as they
cause increased CCR9 and a4b7 expression and enhanced migration to the CCR9
ligand, CCL25 in vitro, even in the absence of ATRA. Conversely, other rexinoids act
synergistically with ATRA, as culturing cells with suboptimal doses of both compounds
resulted in CCR9 expression and migration to CCL25. Overall, our findings show that
rexinoids can be used independently or synergistically with ATRA to promote mucosal
homing of T cells in vitro, and lends support for the prospective clinical use of these
compounds in immunotherapeutic approaches for pathogenic infections or cancers at
mucosal surfaces.

Keywords: migration, mucosal, rexinoids, retinoic acid, retinoid, T-cell, toxicity, vitamin A
INTRODUCTION

Mucosal surfaces represent a main entryway for pathogens to anatomic access and are common sites
for cancer development. Enhancing immunity at these regions can provide better protection and
improve strategies for treating these diseases. Our previous work in mouse models has shown that
increasing the migration of vaccinia virus (VACV)-specific memory T cells to mucosal regions
org January 2022 | Volume 13 | Article 7464841
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during vaccination boosts protection at these sites during
VACV challenge (1). Correlative evidence also exists in non-
human primate models; in rhesus macaques, the use of an
attenuated cytomegalovirus (CMV) vaccine vector for simian
immunodeficiency virus (SIV) increases effector T cell numbers at
mucosal regions, resulting in vastly improved control and clearance
of SIV following viral challenge (2, 3). In humans, clinical
evidence further suggests that enhancing immune presence at
mucosal sites corresponds positively with protection (4–9).
Individuals with vitamin A deficiencies exhibit severely impaired
mucosal immunity, resulting in increased susceptibility to infections
(10–13). As the heightened immune protection seen is
predominantly a result of increased effector T cell presence in the
mucosal regions, identifying ways to promote T cell migration to
these areas is likely to improve resistance to diseases affecting these
areas (1, 14, 15).

Effector T cell trafficking to and entry into mucosal regions is
governed by their expression of receptors that instigate mucosal
homing, including C-C chemokine receptor type 9 (CCR9) and
a4b7 integrin (a4b7) (1, 15–17). Upregulation of these mucosal
homing receptors during T cell activation is dependent on
signaling via retinoic acid receptor, a type II nuclear receptor
that heterodimerizes with another nuclear receptor, the retinoid
X receptor, to mediate transcription (12, 15, 17). Both the RAR
and RXR possess a, b, and g isotypes, with activation of the
RARa/RXRa heterodimer implicated in transcription of CCR9
and the a4 subunit of a4b7, via cooperation NFATc2 (12, 15, 16,
18–21). Binding of all-trans retinoic acid (ATRA), a biologically
active vitamin A metabolite and the most abundant naturally
occurring pan-RAR ligand, to the ligand-binding pocket (LBP)
of the RAR triggers activation of the heterodimer, ultimately
resulting in RAR-mediated transcription (22–24).

Like the RAR, the RXR also possesses an LBP, and ligand
bound to both the RAR and RXR has been shown to enhance
transcription of retinoid-dependent genes (18, 23, 25, 26).
However, identification of endogenously occurring RXR
ligands has remained limited. 9-cis-retinoic acid (9cRA), a
naturally occurring stereoisomer of ATRA, has been reported
as a high affinity RXR ligand, however its detection in vivo
remains elusive (27–29). Fatty acids such as docosahexaenoic
acid and phytanic acid are also capable of binding the RXR,
however endogenously occurring levels are likely too low to
activate the receptor under most physiologic scenarios (28, 29).
The challenge to conclusively identify naturally occurring RXR
ligands has led many groups to utilize synthetic agonists, which
have since been coined ‘rexinoids’.

Despite studies showing that ATRA can promote the
expression of mucosal T cell homing proteins and subsequent
migration to mucosal sites in vivo, resulting in better protection
against mucosal infection, little is known about the effect of
rexinoids on effector T cells. The functional similarity seen
between rexinoids and ATRA in experimental models indicates
that these synthetic small molecules may be able to exert similar
effects as ATRA on effector T cells, by influencing their migration
to mucosal-associated regions (30, 31). The ability of rexinoids to
bind the RXR suggests that they may improve the impact of
Frontiers in Immunology | www.frontiersin.org 2
endogenous ATRA on T cell mucosal-related function.
Additionally, reports that some rexinoids bind to the RAR
indicates they may be able to mimic the effect ATRA has on T
cell activity (30, 32).

Here we assessed the ability of a panel of rexinoids (Figure 1) to
induce expression of CCR9 and a4b7 and to promote T cell
migration in vitro. These rexinoids include a fluorobexarotene
analog, A18, halogenated bexarotene analogs A20-A22, rexinoids
A30-A41 which are described in our previous work and references
therein, and rexinoids A52-A63 which are again described in our
prior work and citations therein (33–36). A subset of rexinoids
(A18, A20, and A41) were capable of exerting this effect
independently of ATRA, suggesting these compounds can act as
ATRAmimics while retaining lower toxicity and enhanced stability.
Conversely, other rexinoids (A55, A56, and A57) displayed synergy
with suboptimal doses of ATRA to enhance CCR9 expression.
Moreover, treatment with ATRA mimics induced T cell migration
in vitro towards the CCR9 ligand CCL25, while treatment with the
ATRA cooperating rexinoids also resulted in improved migration.
Furthermore, preliminary in vivo data suggest rexinoid treatment is
accompanied by reduced toxicity compared to ATRA. Together,
these data suggest that rexinoids may have potential to be used as a
novel immunotherapeutic treatment modality for mucosal diseases
by either replacing ATRA-based strategies or by being used in
conjunction with non-toxic ATRA levels to bolster efficacy.
MATERIALS AND METHODS

Rexinoid and ATRA Preparation
A panel of novel rexinoids and bexarotene (BEX) were
generously donated by the Wagner, Marshall, and Jurutka labs
at 1mM and diluted in 95% ethanol (Koptec) or DMSO (Sigma-
Aldrich) to 2x105 nM. Powdered all-trans retinoic acid (Sigma-
Aldrich) was dissolved in DMSO and stored in the dark at -20C.
Lymphocyte Isolation and Culture
Spleens were harvested from B6.Cg-Tcratm1MomTg(TcrLCMV)
327Sdz/TacMmjax (P14), B6.Cg-PtprcaPepcbTg(TcrLCMV)
1Aox/PpmJ (SMARTA), or C57BL/6-Tg(TcraTcrb)1100Mjb/J
(OT-1) transgenic mice (Jackson Labs) and mechanically
dissociated into a single cell suspension using a 70mm nylon
mesh strainer (Fisherbrand). All mouse experiments were
conducted under institutional care and use committee
approval. T cells were stimulated with 1mg/mL of appropriate
viral peptide (LCMV gp33-41, LCMV gp61-80, or OVA257-264,
respectively) (GenScript; Anaspec). Cells were cultured in a 96-
well plate for 8 days using RPMI complete medium (10% FBS,
1% PSG 100X) supplemented with 2.5x10-5 mg/mL IL-2 (Gibco)
and 100nM of indicated rexinoid treatment or ATRA in a final
volume of 200mL. 8 day treatment timeframe was determined
using a time course assay (Supplementary Figure 1). Fresh
culture medium with IL-2 and rexinoid or ATRA was replaced
every 48 hours. Vitamin A deficient media was made using
charcoal-stripped FBS (ThermoFisher).
January 2022 | Volume 13 | Article 746484
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Flow Cytometry
Expression of mucosal homing receptors was determined using
flow cytometry. Cells were stained with a 1:100 dilution of the
following fluorochrome-conjugated anti-mouse monoclonal
antibodies: CCR9 (CW-1.2) and a4b7 (DATK32). P14 cells
were further stained with Thy1.1 (HIS51) and CD8a (53-6.7);
SMARTA cells were further stained with CD4 (GK1.5) and Va2
(B20.1); OT-1 cells were further stained with CD8a (53-6.7)and
Va2 (B20.1). All antibodies were purchased from ThermoFisher.
Flow cytometry data were collected using a BD LSR Fortessa flow
cytometer (BD Biosciences) and analyzed using FlowJo 8.8.7
software. Graphs were created using Prism 8 software
(GraphPad). Error bars indicate SD from the mean. Data from
SMARTA mice included in Supporting Information.

In Vitro Migration Assay
P14 or SMARTA splenocytes, processed and cultured as described
above for 7 days, were plated into the upper chamber of a 96 well
HTS Transwell plate insert with 3.0um pore size (Corning) at a
Frontiers in Immunology | www.frontiersin.org 3
concentration of 5x105 cells in 75 mL of chemotaxis buffer (RPMI
mediumcontaining 0.1%FBS). RecombinantmouseCCL25/TECK
protein (R&D Systems) was reconstituted to 10 mg/mL in 1X PBS
(GenClone) containing 0.1% FBS, resuspended in 235 mL
chemotaxis buffer at a concentration of 250nM, and plated into
the lower chamber.Controlwells receivednochemokine.Cellswere
incubated for 6hours at 37C in5%CO2. Live cells thatmigrated into
the lower chamber were subjected to a 1:2 trypan blue stain and
manually quantified using a Neubauer improved C-Chip
hemocytometer (INCYTO). Assays using P14 splenocytes were
performed in triplicate, while those using SMARTA splenocytes
were performed in duplicate. Graphs were created using Prism 8
software. Statistical significance calculated using 2-way ANOVA.
Data from SMARTA mice included in Supporting Information.

In Vivo Toxicity
6-12 week old female Balb/cJ mice (Jackson Labs) were inoculated
via the tail vein with 1x106 K7M2 cells (ATCC; cells not tested for
mycoplasma) at day 0, and treated daily for 14 days with either
FIGURE 1 | Structures of select rexinoids from the tested panel of rexinoids.
January 2022 | Volume 13 | Article 746484
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40mg/kg of vehicle control (n=4), ATRA (n=5), or rexinoid A55
(n=5) delivered via intraperitoneal (i.p.) injection, or 100mg/kg
vehicle control (n=5),ATRA(n=5), or rexinoidA41 (n=6)delivered
via oral gavage. Treatment timeframe was determined using
previous unpublished data showing lung tumor establishment by
Day 14 (data not shown). K7M2 cells were cultured using DMEM
complete medium (10% FBS, 1% PSG 100X) under sterile
conditions. Vehicle control, ATRA, and rexinoids were dissolved
using DMSO and diluted to working concentrations using soybean
oil (Sigma-Aldrich). Mouse weights were taken every 24 hours
during the course of treatment. For liver toxicity, serum used to
measure alanine transaminase (ALT) levels was obtained following
cardiac puncture at Day 14, and analyzed using liquid ALT reagent
kits (Pointe Scientific). Graphs created using Prism 8 software.

Statistical Analyses
One-way and two-way Analysis of Variance (ANOVA) were
used for data analysis to establish the impacts of rexinoid and/or
ATRA on the percentage of CCR9 and a4b7 expression. Follow-
up tests for pairwise comparisons among groups were also
performed post-ANOVA using Fisher’s Least Significant
Difference (LSD) test. All tests were performed at the a = 0.05
significance level in JMP Pro 16, a statistical software package.
RESULTS

Effector CD8+ T Cells Increase Expression
of CCR9 and a4b7 In Vitro Following
Rexinoid Treatment
ATRA is capable of modifying T cell expression of the mucosal
homing markers CCR9 and a4b7. As rexinoids have displayed
functional similarity to ATRA in other studies, we sought to
determine if our panel of novel rexinoids could also modulate T
cell expression of CCR9 and a4b7. To do this, splenocytes isolated
from naïve P14 mice, expressing a transgenic TCR specific for the
H-2Db restricted GP33-41 peptide of LCMV, were activated in vitro
and culturedwith a panel of 40 rexinoids for 8 days.Many rexinoids
administered at 100nMwere able to significantly enhance CD8+ T
cell expression of CCR9, compared to negative controls
(Figures 2A–C). Culture with the FDA approved rexinoid
bexarotene (BEX) also significantly enhanced CCR9 expression
on responding T cells compared to negative controls (Figure 2C).
Interestingly, rexinoid A41 improved T cell expression of CCR9
better thanBEX, identifying a candidate thatmay possess improved
functional efficacy compared to a current existing treatment.
Rexinoid treatment also significantly enhanced a4b7 expression at
day 8 of activation compared to negative controls, with A41 again
outperforming BEX (Figure 2D).

The Ability of Rexinoids to Enhance
CCR9 Expression on Effector T Cells
Is Independent of Antigen and MHC
Specificity
As rexinoids had a pronounced effect on CCR9 expression, our
subsequent experiments focused primarily on the expression of
Frontiers in Immunology | www.frontiersin.org 4
this chemokine receptor as an indicator of mucosal homing
protein expression. To determine if the change in T cell
expression of CCR9 was antigen or MHC specific, we cultured T
cells from either SMARTA and OT-1 mice, TCR transgenic mice
expressing TCR specific for different peptide (LCMV GP61-80 and
OVA257-264, respectively) presented in the context of a different
MHC (H2-IAb and H-2Kb, respectively). Rexinoid treatment of T
cells from these other TCR transgenic mouse strains also resulted
in increased CCR9 expression (Figures 3A, B). Moreover, the
patterns of increased expression were similar to that obtained for T
cells from P14 mice, with no significant differences seen between
CD8 and CD4 T cells (p= >0.05). These data suggest that the
ability of rexinoids to modulate T cell expression of CCR9 is not
limited by antigen specificity or MHC. Moreover, both CD4 and
CD8 T cells are able to increase expression of mucosal
homing proteins.

Some Rexinoids Act Independently of
ATRA to Enhance T Cell Expression
of CCR9
We next sought to determine which rexinoids were capable of
altering CCR9 expression independently of ATRA. As charcoal
stripping FBS removes lipophilic substances from the serum,
including ATRA and other vitamin A derivatives, we
supplemented RPMI medium with charcoal stripped FBS in place
of standard FBS to create appropriate ATRA deficient culture
conditions. P14 T cells were cultured as described above with the
indicated rexinoids but without ATRA. The ability of a majority of
the rexinoids to alter T cell expression of CCR9 declined to
background levels when vitamin A/ATRA was removed from the
medium, indicating their dependence on ATRA for increased
expression of mucosal homing proteins (Figure 4A and
Supplementary Figure 2). However, some rexinoids (A18, A20,
A41) retained their ability to enhance CCR9 expression, despite the
lack of vitamin A/ATRA in the culture medium. Overall, these
findings demonstrate that select rexinoids can mimic the effects of
ATRA in enhancing T cell expression of CCR9, while retaining
enhanced safety and stability profiles.

Some Rexinoids Act Synergistically
With ATRA to Enhance T Cell
Expression of CCR9
In order to test whether other rexinoids may act synergistically with
ATRA, we cultured T cells from P14 mice as described above in
charcoal-stripped media that had been supplemented with
suboptimal amounts of ATRA (0.1nM) and rexinoids (1nM);
neither ATRA nor rexinoids at these concentrations caused
expression of CCR9 above background levels (rexinoids only
Figure 4A, ATRA only Figure 4B). T cells cultured with selected
rexinoids and ATRA at suboptimal concentrations showed
significantly improved expression of CCR9 (boxed region
Figures 4B, C) compared to treatment with an equivalent dose of
ATRA alone (Figure 4B) or rexinoid alone (Figure 4A). These data
suggest that select rexinoids act synergistically with ATRA to
promote CCR9 expression. This is supported by previously
published in vitro data that shows low activation of RAR (Table 1).
January 2022 | Volume 13 | Article 746484
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The ability of these rexinoids to cooperate with lower concentrations
ofATRA in vitro suggests apotential strategy touse these compounds
in cooperation with physiological levels of vitamin A levels in vivo to
promote T cell migration to mucosal regions.

Rexinoid Treatment Improves Chemokine-
Mediated Migration of Effector T Cells
To evaluate the ability of rexinoid-treated T cells to migrate
towards chemokine, we performed an in vitro transwell
migration assay using the CCR9 ligand CCL25. P14 or
SMARTA splenocytes were cultured as described above with
Frontiers in Immunology | www.frontiersin.org 5
selected rexinoids that showed the potential to act as an ATRA
mimic (A18, A20, A41), or rexinoids that showed synergistic
activity with ATRA (A55, A56, A57). Following culture, cells were
seeded into the upper well of a transwell plate and incubated to
allow for migration through the cell-permeable membrane
towards CCL25 in the lower chamber. CD8+ T cells treated
with the ATRA mimicking rexinoids A18 and A41 displayed
significant migration towards CCL25 (Figure 5A). Notably, A41
treatment significantly increased CD8+ T cell migration compared
to ATRA treatment (Figure 5A). CD8+ T cells treated with the
ATRA cooperating rexinoids A55, A56, or A57 also showed
A

B

D

C

FIGURE 2 | Rexinoid treatment enhances CCR9 and a4b7 expression on effector CD8+ T cells in vitro. Splenocytes obtained from a naïve P14 mouse were
stimulated with GP33-41 peptide and cultured for 8 days with a large panel of novel rexinoids delivered at a 100nM concentration (treatment every 48 hours). Cells
were then analyzed for changes in expression of CCR9 and a4b7. Analysis was performed using flow cytometry. (A) Antigen-specific effector CD8+ T cells gated
using appropriate markers. (B) CCR9 expression is upregulated on antigen-specific effector CD8+ T cells following ATRA treatment given over an 8 day time course.
(C) shows % positive CCR9 expression on antigen-specific effector CD8+ T cells following 8 day rexinoid treatment. Experiment performed in triplicate. (D) a4b7
expression on antigen-specific effector CD8+ T cells following 8 day rexinoid treatment. Experiment performed in duplicate. Connecting letters report used to
determine statistical significance, with ordered differences report used to compare p-values between groups (* = p < 0.05, ** = p < 0.005, **** = p < 0.0001). All
error bars represent SD from the mean.
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significantly better migration towards CCL25 (Figure 5B). These
results indicate that treatment with ATRA mimicking or ATRA
cooperating rexinoids induces effector T cell migration, with some
rexinoids outperforming ATRA and BEX. Rexinoid-treated CD4+
T cells displayed increased migration when treated with A41 and
A56 (Supplementary Figure 3).

Rexinoid Treatment Displays Lower
Toxicity Potential In Vivo Compared
to ATRA
To measure the in vivo toxicity of rexinoid treatment, we used an
establishedmetastatic osteosarcoma(mOS)mousemodel forwhich
ATRA has previously been used. Briefly, Balb/cJ mice were
inoculated with K7M2 cells via tail vein injection prior to daily
i.p. treatment with vehicle control or a previously established
effective dose of 40mg/kg ATRA or 40mg/kg rexinoid A55. As a
measure of toxicity, mouse weights were taken every 24 hours over
the course of treatment.Mice that were treated with vehicle control
or rexinoid A55 displayed minimal weight changes during the
courseof treatment,whilemice treatedwithATRAhadsignificantly
higher weight loss (Figure 6A), skin erythema, and fur loss (images
Frontiers in Immunology | www.frontiersin.org 6
not shown). In vivo toxicity was further examined using a high
concentration of treatment delivered orally. Balb/cJ mice were
similarly inoculated with K7M2 cells, and treated daily with a
predetermined dose of 100mg/kg vehicle control, ATRA, or
rexinoid A41, delivered via oral gavage. Mice treated with vehicle
control or rexinoid A41 displayed minimal weight changes, while
ATRA-treatedmice displayed significant losses following treatment
onset (Figure 6B). ATRA-treated mice were removed from study
after 5 days treatment, due to rapid physical decompensation. Balb/
cJ mice treated with an oral dose of 40mg/kg ATRA also showed
greater elevation of the liver enzyme ALT at day 14 compared to
mice treated with 40mg/kg vehicle control, A55, or A41
(Supplementary Figure 4). Together, these findings suggest that
rexinoids are better tolerated and less toxic than ATRA when
delivered as a therapeutic modality.
DISCUSSION

Identifying compounds that can favorably alter T cell migration
to mucosal surfaces has the potential to improve immune
A

B

FIGURE 3 | Rexinoid treatment enhances CCR9 expression on effector T cells of different antigen specificity in vitro. Splenocytes obtained from naïve SMARTA and
OT-1 mice were stimulated with GP61-80 peptide and OVA257-264, respectively, and cultured for 8 days with the same panel of novel rexinoids delivered at a 100nM
concentration (treatment every 48 hours). Cells were then analyzed for changes in expression of CCR9. Analysis was performed using flow cytometry. (A) CCR9
expression on antigen-specific effector CD4+ T cells from SMARTA mice following rexinoid treatment (black circles) superimposed onto results from Figure 2C (gray
squares). SMARTA experiment performed in duplicate. (B) CCR9 expression on antigen-specific effector CD8+ T cells from OT-1 mice following rexinoid treatment
(black circles) superimposed onto results from Figure 2C (gray squares). OT-1 experiment performed in duplicate. All error bars represent SD from the mean.
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responses towards diseases at these surfaces. Here we tested a
panel of novel rexinoids for their ability to both influence effector
T cell expression of mucosal homing markers CCR9 and a4b7
and to affect their migration towards a mucosally expressed
Frontiers in Immunology | www.frontiersin.org 7
chemokine in vitro. Our results show that many rexinoids are
capable of enhancing CCR9 and a4b7 expression on responding
T cells. Several rexinoids induced T cell expression of CCR9
independently, mimicking the naturally occurring biologic
A

B

C

FIGURE 4 | Rexinoids can enhance effector CD8+ T cell expression of CCR9 independently or in combination with ATRA. Splenocytes obtained from P14 mice
were stimulated with GP33-41 peptide and cultured either with 100nM rexinoids in vitamin A deficient media (top), or in vitamin A deficient media supplemented with
suboptimal doses of rexinoids and ATRA. After 8 day culture, effector CD8+ T cells were analyzed for expression of CCR9 using flow cytometry. (A) Rexinoids A18,
A20, A41 and BEX are able to significantly enhance CCR9 expression independent of ATRA presence, compared to no treatment. Rexinoids A18 and A41 also
significantly enhance CCR9 expression, compared to BEX. Experiment performed in triplicate. Connecting letters report used to determine statistical significance,
with ordered differences report used to compare p-values between groups (* = p < 0.05, ** = p < 0.005, **** = p < 0.0001). (B) Suboptimal doses of several
rexinoids cooperate with suboptimal doses of ATRA to enhance CCR9 expression. Boxed region identifies rexinoids that had minimal effect on CCR9 expression
when previously delivered at 100nM. (boxed region 3A; graph representative of one experiment). (C) Replicate data obtained from culturing cells with suboptimal
doses of rexinoid and ATRA. Rexinoids selected were those that showed high cooperativity with ATRA from 3B (boxed region). Suboptimal doses of selected
rexinoid combined with suboptimal ATRA significantly improved CCR9 expression, compared to suboptimal ATRA alone (** = p < 0.005, **** = p < 0.0001). Rexinoid
dosages lower than 1nM did not result in enhanced CCR9 expression. Experiment performed in triplicate. All error bars represent SD from the mean.
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ATRA, while others worked synergistically with subtoxic doses
of ATRA to enhance expression, indicating a potential to
cooperate with vitamin A present in vivo. Furthermore, both
ATRA mimicking and ATRA cooperating rexinoids were seen to
improve T cell migration towards the CCR9 ligand CCL25, with
some outperforming bexarotene and ATRA. These findings
introduce several rexinoids that can imprint T cells with a
mucosal homing phenotype and influence their migration, and
may have clinical relevance in treating mucosal diseases.

In addition to CCR9 and a4b7, the expression of a myriad of
other genes have also been shown to be under the control of RAR
signaling, including those that inhibit cell cycle progression and
promote apoptosis (37–42). These discoveries have led to ATRA
being used clinically as an anti-cancer drug; combination
treatments that include ATRA have been successful in
A

B

FIGURE 5 | Treatment with ATRA independent and ATRA cooperating rexinoids enhances effector CD8+ T cell migration towards the mucosally expressed chemokine
CCL25 in vitro. Splenocytes obtained from P14 mice were stimulated with GP33-41 peptide and cultured for 7 days with 100nM selected rexinoids or 10nM ATRA. Cells were
then subjected to a Boyden chamber assay. 5x105 splenocytes resuspended in chemotaxis buffer were seeded into the top insert of a 96 well HTS Transwell plate and
allowed 6 hours to migrate through a membrane (3.0um pore size) towards CCL25 (250nM concentration) plated in the lower chamber. Cells were then isolated from the
bottom chamber and manually counted using a hemocytometer. (A)Migration following cell culture with ATRA independent rexinoids or ATRA. T cell migration towards
CCL25 was significantly improved when cells were cultured with A18 and A41 (adjusted p values = 0.0009 and < 0.0001, respectively). Treatment with A18 or A41 also
significantly improved migration towards CCL25 compared to no treatment given (adjusted p values = 0.004 and 0.0001, respectively). Treatment with A41 also significantly
improved migration compared to treatment with ATRA (adjusted p value = 0.0008). All ATRA independent rexinoids and ATRA tested in triplicate. (B)Migration following cell
culture with ATRA cooperating rexinoids or BEX. Migration towards CCL25 was significantly improved when cells were cultured with A55, A56, and A57 (adjusted p values =
0.001, 0.01, and 0.02, respectively). Treatment with A55 or A56 significantly improved migration towards CCL25 compared to no treatment given (adjusted p values = 0.01
and 0.02, respectively). A55, A56, and BEX rexinoids tested in duplicate, A57 rexinoid tested in triplicate. Statistics were calculated using a two-way ANOVA (* = p < 0.05,
** = p < 0.005, *** = p < 0.0005, **** = p < 0.0001). All error bars represent SD from the mean. ns, not significant.
TABLE 1 | RXR EC50 values in nM and % RAR activation at 100nM selected
rexinoids.

Compound RXR EC50 Value
(nM) +/- (SD)

RAR % Activation at
100 nM +/- (SD)

A18 43 (5) 25 (6)
A20 90 (14) 13 (2)
A41 71 (10) 48 (10)
A55 13.8 (1.5) 19 (9)
A56 40.9 (0.6) 21 (8)
A57 18.2 (0.4) 16 (6)
BEX 53 (6) 23 (5)
Values obtained from previously published data (32, 34–36). % RAR activation determined
from measurements of RAR/RARE reporter activity in transfected cells, rexinoid activity
divided by ATRA activity (see ref). Rexinoids included in table were found in this study to
either mimic ATRA activity (A18, A20, A41) or cooperate with subtoxic dosages of ATRA
(A55, A56, A57) to enhance T cell activity.
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inducing cancer remission, most notably with acute
promyelocytic leukemia (APL), a disease marked by an RARa
translocation (43–45). Unfortunately, these favorable results are
dampened by adverse side effects attributed to ATRA usage.
Various toxicities, including hepatotoxicity due to retinyl ester
buildup in hepatic stellate cells (HSCs), and mucocutaneous
toxicity, have been reported in cancer patients receiving ATRA
treatment (46–49). Here we confirmed that mice treated with
ATRA fare poorly, as evidenced by their severe weight loss,
physical appearance, and higher ALT levels. An additional
complication seen with ATRA use is differentiation syndrome
(DS), which can be life-threatening (49–52). Surprisingly, similar
adverse health effects have also been reported following the use of
synthetic vitamin A derivatives such as isotretinoin and acitretin,
which has led us to postulate that the toxicities seen may be due to
aberrant activation of the other RAR isoforms (53–55). This is
supported by the finding that RARg deficient mice show resistance
to ATRA-mediated toxicity (56). Additionally, activation of all
three RAR isoforms have been shown to display teratogenic
potential (57). As the ATRA cooperating rexinoids demonstrate
high selectivity for the RXR, their use could avoid such toxicity.
Furthermore, the widespread use of ATRA is limited due to its
instability when exposed to ubiquitous elements such as ultraviolet
(UV) light, ambient temperatures, and oxygen (49, 58). The
improved stability of rexinoids compared to ATRA is another
attractive characteristic; their long shelf life and resistance to
Frontiers in Immunology | www.frontiersin.org 9
fluctuations in temperature, UV light, or oxygen presence makes
them more durable treatment options.

In animal models of lung cancer, rexinoid use has been seen
to mediate similar antiproliferative and proapoptotic effects on
cancer cells as is observed with ATRA (59, 60). Importantly,
rexinoid treatment has been shown to be better tolerated than
ATRA in both animal and human models. Clinical trial results
show that bexarotene, which is currently used as a treatment
modality for patients with cutaneous T cell lymphoma (CTCL),
can be safely administered at dosages of 300mg/m2/day, while
side effects are seen with ATRA dosages higher than 45mg/m2/
day (49, 61–67). However, it is currently unknown for most
rexinoids whether they are behaving as ATRA mimics or acting
in synergy with ATRA. Here we have not only identified RXR
ligands that act similarly to ATRA in altering mucosal homing
capabilities, but we have further determined if this effect is
dependent on ATRA or not. The rexinoids capable of exerting
their effect independently of ATRA have the potential to replace
ATRA in therapeutic settings, as they could provide a similar
efficacy with a considerably reduced ability to induce toxicity.
ATRA cooperating rexinoids also have potential for use in
treatment settings; combining these compounds with a much
lower dose of ATRA may enhance ATRA mediated effects while
minimizing toxicity side effects.

It is well-established that effector T cell infiltration into
affected tissues positively correlates with protection from viral
A

B

FIGURE 6 | Mice inoculated with K7M2 cells were treated daily with either vehicle control (n=4), rexinoid A55 (n=5), or ATRA (n=4), delivered i.p. at a previously
determined concentration of 40mg/kg for 14 days, or with vehicle control (n=5), rexinoid A41 (n=6), or ATRA (n=5) delivered orally at 100mg/kg for 14 days. (A) Mice
that received A55 treatment i.p. had weight loss similar to negative control mice, while mice that received ATRA treatment displayed significantly larger weight losses
during treatment (** = p < 0.005, **** = p < 0.0001). (B) Mice that received high dose oral A41 treatment showed slight weight gain, while ATRA-treated mice
displayed significant weight loss that necessitated removal from study (** = p < 0.005, **** = p < 0.001). All error bars represent SD from the mean.
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infection and tumor regression, therefore identifying methods
that can specifically impact their migratory ability may improve
immune responses in these microenvironments (1, 14, 68, 69).
Our discovery of several rexinoids that favorably modulate T cell
mucosal homing abilities in vitro indicates that they may be
useful as an adjuvant during vaccination towards viruses that
infect mucosal surfaces, and in immunotherapies targeting
tumors that form at mucosal sites. We have previously shown
in mouse models that ATRA has the potential to function as an
adjuvant; i.p. injection of ATRA during vaccination increases the
number of virus specific T cells to mucosal regions and boosts
protection during viral challenge (1). However, this treatment is
physically taxing to the mice, resulting in weight loss and
inflammation at the injection site. Changing the route of
delivery may improve tolerability, however the tradeoff is a
reduction in ATRA bioavailability. Our preliminary in vivo
work has shown that mice are not subject to the same physical
discomforts following rexinoid treatment delivered via i.p.
injection, as observed by their minimal weight loss during
treatment (Figure 6A). Furthermore, high dose rexinoid
delivered orally was well-tolerated, which could compensate for
reduced bioavailability when delivered a more preferable route,
unlike high dose ATRA (Figure 6B). Thus, administering either
the ATRA mimicking or ATRA cooperating rexinoids via the
same route as ATRA may result in similar immune modulating
activity, without the associated pathology.

Adoptive cell transfer (ACT) and immune checkpoint blockade
(ICB) are immunotherapies currently showing great promise as
cancer treatment modalities (70–73). The ability of our rexinoids
to modulate T cell migration suggests that their use in tandem
with either ACT or ICB therapy may enhance the efficacy of these
treatments by directing more effector T cells to tumors at mucosal
sites. With ACT, the treatment of ex vivo expanded tumor-specific
T cells with rexinoids prior to re-infusion can result inmore T cells
effectively homing to the mucosal tumor, which would result in
tumor reduction and possible elimination while avoiding the
majority of toxicity issues associated with ATRA use in vivo.
ICB therapy using a combination of PD-L1 and CTLA-4 blocking
antibodies has been shown to reverse tumor-specific effector T cell
exhaustion and increase the number of tumor-infiltrating
lymphocytes (TILs) present, resulting in improved anti-tumor
immune responses (68, 72, 74). Inhibitory interactions between
TILs and tumor cells are blocked by anti-PD-L1, while the use of
anti-CTLA-4 likely both promotes the activation of new tumor-
specific T cells and overcomes regulatory T cell inhibitory
pathways. Although promising, this approach currently displays
limited efficacy in a subset of patients (69, 75, 76). This may be due
to the newly activated T cells ineffectively migrating to the tumor
site, resulting in the current TILs becoming overwhelmed, and
subsequent re-loss of function. Coupling this ICB approach with
our identified rexinoids may ameliorate treatment efficacy towards
mucosal cancers by better directing the migration of newly
activated tumor-specific T cells to these sites. This would result
in larger numbers of functional effector T cells present in the
mucosal tumors, resulting in improved cancer control and
patient survival.
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While this work focuses on immune function resulting from
interactions between the RXR and RAR, it should be noted that
the RXR is promiscuous. It is an essential partner for a multitude
of other receptors, all of which require heterodimeric formation
with the RXR to exert their function (26, 77). Rexinoids that
did not affect RAR/RXR mediated transcription in terms of
CCR9 and a4b7 expression may play a role in mediating
expression of non-immune RAR/RXR dependent genes, or
may influence the expression of genes under the control of
other RXR heterodimers. The potential of rexinoid treatment
to beneficially regulate a variety of biological processes is an
exciting and growing research area.
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GLOSSARY

9cRA 9-cis-retinoic acid
a4b7 a4b7 integrin
ACT Adoptive cell transfer
APL Acute promyelocytic leukemia
ATRA All-trans-retinoic acid
BEX Bexarotene
CCL25/TECK Chemokine ligand 25/Thymus-expressed chemokine
CCR9 C-C chemokine receptor 9
CD4 Cluster of differentiation 4
CD8 Cluster of differentiation 8
CMV Cytomegalovirus
CTCL Cutaneous T-cell lymphoma
CTLA-4 Cytotoxic T lymphocyte antigen 4
DMEM Dulbecco’s Modified Eagle Medium
DMSO Dimethylsulfoxide
DS Differentiation syndrome
FBS Fetal bovine serum
HSC Hepatic stellate cell
ICB Immune checkpoint blockade
i.p. intraperitoneal
LBP Ligand binding pocket
LCMV Lymphocytic choriomeningitis virus
MHC Major histocompatibility complex
mOS Metastatic osteosarcoma
PD-L1 Programmed death-ligand 1
RAR Retinoic acid receptor
RPMI Roswell Park Memorial Institute Medium
RXR Retinoid X receptor
SIV Simian immunodeficiency virus
TCR T-cell receptor
TIL Tumor infiltrating lymphocyte
UV Ultraviolet
VACV Vaccinia virus
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