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Abstract

Drought stress as one of the most devastating abiotic stresses affects agricultural and horti-

cultural productivity in many parts of the world. The application of melatonin can be consid-

ered as a promising approach for alleviating the negative impact of drought stress. Modeling

of morphological responses to drought stress can be helpful to predict the optimal condition

for improving plant productivity. The objective of the current study is modeling and predicting

morphological responses (leaf length, number of leaves/plants, crown diameter, plant

height, and internode length) of citrus to drought stress, based on four input variables includ-

ing melatonin concentrations, days after applying treatments, citrus species, and level of

drought stress, using different Artificial Neural Networks (ANNs) including Generalized

Regression Neural Network (GRNN), Radial basis function (RBF), and Multilayer Percep-

tron (MLP). The results indicated a higher accuracy of GRNN as compared to RBF and

MLP. The great accordance between the experimental and predicted data of morphological

responses for both training and testing processes support the excellent efficiency of devel-

oped GRNN models. Also, GRNN was connected to Non-dominated Sorting Genetic

Algorithm-II (NSGA-II) to optimize input variables for obtaining the best morphological

responses. Generally, the validation experiment showed that ANN-NSGA-II can be consid-

ered as a promising and reliable computational tool for studying and predicting plant mor-

phological and physiological responses to drought stress.

Introduction

It is well documented that drought significantly affects agricultural and horticultural produc-

tivity in many parts of the world [1]. Indeed, drought and heat stresses as a direct effect of

global climate change lead to the disruptions in morphological, physiological, biochemical,

and molecular responses of the plants [2, 3]. Therefore, plant growth and development, as well

as agricultural productivity, are remarkably influenced by water scarcity as a major environ-

mental restriction [4]. Drought stress also decreases canopy size, photosynthetic potential due
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to the acceleration of the leave senescence and chlorophyll degradation which ultimately leads

to the lower crop yield [5–7]. In recent years, genetic engineering methods have been sug-

gested as promising approaches for improving plant tolerance to different stresses in particular

drought stress. However, genetic manipulation (GM) methods are unacceptable in many parts

of the world due to GM product restriction and can be also considered as complicated, time-

consuming, and expensive methods [8]. Nowadays, the application of inexpensive, economic,

efficient, and promising compounds such as melatonin have been significantly attracted many

plant biologists for improving plant tolerance to different abiotic and biotic stresses. Melatonin

is categorized as a novel plant growth regulator (PGR) which exists in various levels in differ-

ent plant cells and tissues [9, 10]. Melatonin has a direct function in alleviating various stresses

via scavenging both reactive nitrogen species (RNS) and reactive oxygen species (ROS) and

plays also an indirect role in improving the photosynthesis, recovering leaf ultrastructure,

increasing antioxidant activities, and stimulating and regulating plant growth regulators in

plants [10, 11]. Therefore, it is necessary to apply exogenous melatonin for coping adverse

environmental conditions because, sometimes, the endogenous level of melatonin is insuffi-

cient for this aim. Several studies have shown that the application of exogenous melatonin

could significantly improve stress tolerance in different plants such as tobacco [12], Camellia
sinensis [13], cucumber [14], soybean [15], alfalfa [16], rice [17], maize [18], cotton [19], grape

[20], and kiwi [21]. Therefore, applying melatonin can be considered as a short-term and

promising approach for alleviating drought stress in various economically important plants

such as citrus. Citrus plants are widely cultivated in different tropical and subtropical parts of

the world, where water scarcity is a main environmental limiting factor in agricultural produc-

tivity [22]. Decreasing in leaf area and photosynthetic potential as well as increasing in root

length are the most common morphological responses of citrus to drought stress [10, 11].

However, the effect of melatonin on the plant morphological and physiological responses to

drought stress can be considered as a multivariable process and viewed by different factors

such as genotype, environmental conditions, and the concentration of melatonin, and the level

of water scarcity. These factors lead to categorize this process as a complex and non-linear bio-

logical process. Thus, traditional statistical and computational methods such as simple regres-

sion cannot be considered as an appropriate approach for studying the effect of melatonin on

plant biological responses to drought stress [23]. Hence, there is a serious need to use nonlin-

ear statistical methodology such as artificial neural networks (ANNs). The reliability and accu-

racy of different ANNs such as Radial basis function (RBF), Multilayer Perceptron (MLP), and

Generalized Regression Neural Network (GRNN) have been previously proven in different

fields of science and technology such as in vitro culture, prediction of microRNAs and tran-

scription factors (TFs), analysis of plant promoters, remote sensing studies, genome predic-

tion, and phenomics studies [24–27]. ANNs are a type of nonlinear computational methods,

which is applied for different aims such as clustering, predicting, and classifying the complex

systems [28]. ANNs are able to identify the relationship between output and input variables

and recognize the inherent knowledge existent in the datasets without previous physical con-

siderations [29]. However, ANNs do not present a neat mathematical formula that illustrates

the relative relationship of each independent variable in the model. Hence, ANNs are consid-

ered as a “black box”. ANNs consist of numerous highly interconnected processing neurons

that work in parallel to find a solution for a particular problem. ANNs are learned by example.

The examples should be carefully chosen otherwise time is wasted or even worse the model

might be working inaccurately [23]. However, difficulty in achieving an optimized solution

can be considered as one of the demerit points of most machine learning algorithms [23, 30,

31]. To overcome this bottleneck, Zhang et al. [32] employed the genetic algorithm (GA) as

one of the common optimization algorithms for optimizing relative humidity, light duration,
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agar concentration, and culture temperature in order to maximize indirect shoot organogene-

sis in Cucumis melo. In another study, Non-dominated Sorting Genetic Algorithm-II

(NSGA-II) was employed to optimize different types and concentrations of disinfectants as

well as immersion time for maximizing explant viability and minimizing in vitro contamina-

tion in chrysanthemum [33]. However, most studies have found the optimized solution by tri-

als and error [23, 34, 35]. NSGA-II is the search algorithms inspired by natural selection and

genetics concepts. The fundamental principles of NSGA-II are the creation of an initial popu-

lation of search solutions and then elite search solutions were selected for crossover using a

roulette wheel selection method, which will ultimately be the best solution among them [36].

Therefore, this study has attempted to apply the NSGA-II to find the optimal levels of different

factors involved in morphological responses to drought stress.

Considering the dominance of water scarcity in the south of Iran, which can affect the

yield, growth, development, and quality of citrus fruits in these regions, the current study was

aimed to investigate the effect of foliar melatonin on morphological parameters under differ-

ent levels of water scarcity in Mexican lime (Citrus aurantifolia Swingle) and Persian lime (Cit-
rus latifolia Tanaka) as the most commercially important Citrus plants by using ANNs. Three

ANNs including, MLP, RBF, and GRNN were employed to compare their prediction accuracy

and introduce the appropriate ANN for modeling and predicting morphological parameters

under drought stress. Also, GA was linked to the best model to find the optimal condition for

achieving the best morphological parameters. According to the best of our knowledge, this

investigation is the first comparing ANNs study in the field of stress physiology.

Material and method

Plant material

This study was carried out at the greenhouse of College of Agriculture, Shiraz University, Iran,

in September 2019 based on a completely randomized design in a factorial arrangement with 3

factors, including citrus species (Mexican lime and Persian lime), melatonin concentrations

(0, 50, 100 and 150 μM), and level of water content (100, 75 and 40% of field capacity (FC)),

and four replications. One-year-old seedlings of two citrus species, Mexican lime (Citrus aur-
antifolia Swingle) and Persian lime (Citrus latifolia Tanaka), were prepared from a commercial

nursery (Jahrom, Iran). Both species were planted in plastic pots containing soil + leaf litter

(3:2 w/w) and kept in the greenhouse under natural photoperiod at 25±2˚C and 80% relative

humidity and irrigated three times a week with 1/2 strength Hoagland solution. Melatonin

treatments were implemented three times per week for 2 months by using a manual pump (30

ml per plant). The pots were also weighed every two days for applying drought stress (40, 75,

and 100% FC). The morphological parameters including leaf length (cm), number of leaves/

plants, crown diameter, plant height (cm), and internode length (cm) were measured after 15,

30, 45, and 60 days of the planting.

Modeling procedures

The obtained data were used for further analysis by using three types of ANNs including MLP,

RBF, and GRNN in order to predict and model the morphological responses to melatonin

under drought stress. Before modeling, to achieve the minimum mean squared error (MSE),

the datasets were normalized between -1 and 1.

The input variables were melatonin concentrations, days after applying treatments, citrus

species, and level of drought stress. Also, morphological responses including leaf length, num-

ber of leaves/plants, crown diameter, plant height, and internode length were chosen as target
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variables. To train and test each model, 70 and 30% of the data lines were randomly selected,

respectively.

MLP model

The MLP as one of the most well-known ANNs includes one or more hidden layers, an input

layer, and an output layer. A supervised training procedure is implemented by MLP that pro-

vides input and output variables to the network; the training set continues until the following

equation would be minimized:

E ¼
1

K

XK

k¼1

ðyk � ŷkÞ
2

ð1Þ

where K, yk, and ŷk are the number of datapoints, the kth observed data, and the kth forecasted

data, respectively. In a three-layer MLP with n inputs and m neurons in the hidden layer ŷ
determined as:

ŷ ¼ f
Xm

j¼1

wj:gð
Xn

i¼1

wjixi þ wj0Þ þ wo

" #

ð2Þ

where xi is the ith input variable, w0 represents bias related to the neuron of output, wj0 is bias

of the jth neuron of hidden layer, f represents transfer functions for the output layer, g is the

transfer functions for hidden layer, wji is the weight connecting the jth neuron of hidden layer

and the ith input variable, and wj represents weight linking the neuron of output layer and the

jth neuron of hidden layer.

Determining the construction of the MLP has the main function in its performance [37,

38]. In the construction of this model, it is necessary to determine the number of neurons in

each layer and the number of hidden layers [38]. Hornik et al. [39] revealed that the MLP with

a sigmoid transfer function is general approximators; which shows that it could be trained to

build any construction between the input and output variables. Therefore, the number of neu-

rons in the hidden layer plays an important role in determining the construction of the MLP.

Some studies [25] have recommended the proper number of neurons (m) based on the num-

ber of data (K) or the number of input (n). For example, Tang and Fishwick [40], Wong [41],

and Wanas et al., [42] suggested "n", "2n", and "log (K)" as the suitable neuron number. Even-

tually, the optimal number of neurons in the hidden layer should be calculated by using trial

and error, however, the reported offers could be employed as an initiating point. A large num-

ber of neurons contributes to the complexity of the network while a low number of them

makes for simplicity of the network, therefore should be noted that a too simple network

results in under-fitting, and conversely, becoming too complex causes over-fitting [37, 43].

RBF model

RBF is a three-layer ANN consisting of an input layer, a hidden layer, and an output layer.

This is the basis and principal for radial basis networks, which organizes statistical ANNs. Sta-

tistical ANNs refer to networks which in contrast to the traditional ANNs implement regres-

sion-based approaches and have not been emulated by the biological neural networks [44]. In

an RBF model, Euclidean distance between the center of each neuron and the input is consid-

ered as an input of transfer function for that neuron. The most well-known transfer function

in RBF is the Gaussian function, which is determined based on the following equation:

f ðXr;XbÞ ¼ e� ½kXr � Xbk�0:8326=h�2 ð3Þ
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where Xr, Xb, and h are input with unknown output, observed inputs in time b, and spread,

respectively. The output of the function close to 1 when kXr − Xbk approaches 0 and close to 0

when kXr − Xbk approaches a large value. Finally, dependent variable (Yr) by predictor Xr is

determined as follows:

Yr ¼
Xm

b¼1

wb � f ðXr;XbÞ þ w0 ð4Þ

where w0 and wj are the bias and weight of linkage between the bth hidden layer and the output

layer, respectively.

GRNN model

GRNN introduced by Specht [45] is another kind of statistical ANNs with a very fast training

process. In GRNN model, the number of observed data and the number of neurons in the hid-

den layer are equal. This model consists of an input layer, pattern layer, summation layer, and

output layer. The pattern layer is completely connected to the input layer. D-summation and

S-summation neurons of the summation layer are connected to the output derived from each

neuron of the pattern layer. D-summation and S-summation neurons calculate the sum of the

unweighted and weighted of the pattern layer, respectively. The connection weight between S-

summation neuron and a neuron of the pattern layer is equal to the target output, while the

connection weight for D-summation is unity. The output layer obtains the unknown value of

output corresponding to the input vector, only via dividing the output of each S-summation

neuron through the output of each D-summation neuron [46]. Consequently, the following

equation is used to determine the output value:

Yr ¼

Xm

b¼1

Tb:f ðXr;XbÞ

Xm

b¼1

f ðXr;XbÞ

ð5Þ

where Yr represents the output value, and Tb is target associated with the bth observed data.

Performance measures

To assess and compare the accuracy of mentioned models, three following performance mea-

sures including R2 (coefficient of determination), Root Mean Square Error (RMSE), and Mean

Bias Error (MBE) were used:

R2 ¼

XT

t¼1
ðyt � �yÞðbyt � �̂yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

t¼1
ðyt � �yÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

t¼1
ðbyt � �̂y

q

Þ

2

6
4

3

7
5

2

ð6Þ

MBE ¼ 1=n
Xn

i¼1

ðyi � ŷiÞ ð7Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

i¼1

ðyi � ŷiÞ
2

 !

=n

v
u
u
t ð8Þ

Where yt �y, byt , and T are the tth observed data, the mean of observed values, the mean of
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predicted values, and total number of predicted values, respectively. Greater R2 and smaller

RMSE and MBE indicated better performance of the constructed models [47–49].

Optimization process by Non-dominated Sorting Genetic Algorithm-II

(NSGA-II)

NSGA-II was implemented to optimize the value of input variables in order to find the best

morphological responses. Also, a roulette wheel selection method was applied to choose the

elite population for crossover. To obtain the best fitness, the initial population, generation

number, mutation rate, and crossover rate were respectively adjusted to 200, 1000, 0.5, and

0.7. In the current study, the ideal point of Pareto was selected such that studied parameters

became the maximum.

Sensitivity analysis

Sensitivity analysis was conducted to identify the importance degree of input variables (mela-

tonin concentrations, citrus species, days after applying treatments, and level of drought stress)

on the target variables (leaf length, number of leaves/plants, crown diameter, plant height, and

internode length). The sensitivity of these parameters was measured by the criteria including

variable sensitivity error (VSE) value displaying the performance (root mean square error

(RMSE)) of GRNN-GA model when that input variable is removed from the model. Variable

sensitivity ratio (VSR) value was determined as ratio of VSE and GRNN-NSGA-II model error

(RMSE value) when all input variables are available. A higher important variable in the model

was detected by higher VSR.

MATLAB (Matlab, 2010) software was employed to write codes and run the model.

Validation experiments

The melatonin concentrations, days after applying treatments, citrus species, and level of

drought stress optimized by NSGA-II were experimentally tested to evaluate the efficiency of

the GRNN-NSGA-II model.

Result

The effects of exogenous melatonin on plant growth and evaluation of

drought tolerance

Based on our results, in some parameter there were no remarkable differences among melato-

nin-treated and non-treated plantlets under the well-irrigated (control) condition. On the

other hand, drought stress had adverse impacts on morphological traits. When irrigation was

stopped and progressive drought stress treatments were implemented, the morphological

parameters significantly changed; however, melatonin-treated plantlets exhibited greener leaf

tissues than the non-treated seedlings. Also, the highest length of seedlings was observed in

plantlets treated by 100 μM melatonin which was significantly longer than control plantlets

(non-treated seedlings). Moreover, the plantlets under drought stress displayed a significant

decrease in crown diameter and leaf length (Table 1). The leaf elongation of both genotypes

was significantly promoted by application melatonin. Moreover, the maximum crown diame-

ter as well as leaf and internode length were obtained through the application of 50 and

100 μM melatonin (Table 1). Also, a relative decrease in plant height and crown diameter was

observed in 150 μM melatonin treatment, indicating the inhibitory impact of higher doses of

melatonin (Table 1). Generally, most morphological traits (leaf number and length, internode

length, shoot height, and crown diameter) were significantly declined under drought stress.
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Table 1. Effect of melatonin concentrations, days after applying treatments, citrus species, and level of drought stress on morphological responses including leaf

length, number of leaves/plants, crown diameter, plant height, and internode length.

Melatonin

concentration (μM)

Level of drought stress

(% of field capacity)

Days after applying

treatments

Citrus species

(lime)

Number of

leaves/plants

Leaf length

(cm)

Internode

length (cm)

Crown

diameter (cm)

Plant

height (cm)

0 100 15 Persian 678.00 12.675 5.390 3.450 178

0 100 30 Persian 664.25 12.925 5.765 3.447 178.7

0 100 45 Persian 651.50 13.075 6.022 3.435 180.1

0 100 60 Persian 644.75 13.075 6.197 2.130 180.5

0 75 15 Persian 168.25 3.650 1.375 1.180 110.3

0 75 30 Persian 162.75 3.375 1.390 1.145 110.6

0 75 45 Persian 161.25 3.325 1.390 1.127 111

0 75 60 Persian 163.75 2.925 1.397 1.105 94.9

0 40 15 Persian 136.25 3.400 1.197 1.172 97

0 40 30 Persian 134.50 3.475 1.202 1.172 98

0 40 45 Persian 133.25 3.125 1.202 1.130 98.1

0 40 60 Persian 124.50 2.900 1.202 1.067 149.7

50 100 15 Persian 513.50 6.125 2.892 3.095 149.7

50 100 30 Persian 511.00 5.975 2.892 3.115 149.9

50 100 45 Persian 503.75 5.550 2.955 3.120 150.1

50 100 60 Persian 499.50 5.375 2.897 3.437 120.2

50 75 15 Persian 297.25 5.325 1.825 2.137 120.6

50 75 30 Persian 291.25 5.225 1.845 2.125 120.8

50 75 45 Persian 287.00 4.550 1.852 2.117 120.8

50 75 60 Persian 282.75 4.500 1.852 3.100 120.8

50 40 15 Persian 254.50 4.325 1.592 2.110 124.9

50 40 30 Persian 248.75 3.900 1.595 2.090 125.7

50 40 45 Persian 245.00 3.800 1.595 2.057 126

50 40 60 Persian 239.00 3.525 1.595 2.147 126.1

100 100 15 Persian 774.00 12.625 8.375 3.642 174.9

100 100 30 Persian 772.00 12.975 8.620 3.597 178.5

100 100 45 Persian 768.75 12.875 8.720 3.607 179.3

100 100 60 Persian 766.50 13.00 8.880 3.600 179.6

100 75 15 Persian 622.25 9.700 7.362 3.487 175.5

100 75 30 Persian 619.25 10.075 7.807 3.452 178.5

100 75 45 Persian 626.25 10.175 7.895 3.432 180.1

100 75 60 Persian 625.04 10.325 8.115 3.425 189.5

100 40 15 Persian 540.25 8.675 5.325 3.437 165.5

100 40 30 Persian 539.75 8.525 5.962 3.307 166.3

100 40 45 Persian 535.75 8.475 5.980 3.310 166.6

100 40 60 Persian 538.50 8.325 6.212 3.305 166.8

150 100 15 Persian 511.00 7.625 3.192 3.262 156.2

150 100 30 Persian 508.25 7.400 3.295 3.340 156.5

150 100 45 Persian 503.75 7.200 3.360 3.232 156.8

150 100 60 Persian 499.50 7.075 3.370 3.265 157

150 75 15 Persian 459.00 5.225 2.650 2.447 140.2

150 75 30 Persian 453.50 5.150 2.710 2.427 140.2

150 75 45 Persian 449.75 4.525 2.732 2.425 140.6

150 75 60 Persian 446.50 4.425 2.750 2.402 140.6

150 40 15 Persian 404.25 4.400 2.120 2.280 135.2

150 40 30 Persian 397.50 3.975 2.340 2.285 135.8

(Continued)
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Table 1. (Continued)

Melatonin

concentration (μM)

Level of drought stress

(% of field capacity)

Days after applying

treatments

Citrus species

(lime)

Number of

leaves/plants

Leaf length

(cm)

Internode

length (cm)

Crown

diameter (cm)

Plant

height (cm)

150 40 45 Persian 388.00 3.675 2.420 2.240 136

150 40 60 Persian 382.00 3.350 2.475 2.185 136.2

0 100 15 Mexican 1024.50 8.150 3.240 2.577 345.5

0 100 30 Mexican 1017.50 8.275 3.660 2.590 347.6

0 100 45 Mexican 1014.75 8.425 3.830 2.590 348.2

0 100 60 Mexican 1009.25 8.575 4.297 1.265 348.6

0 75 15 Mexican 458.25 2.375 1.062 1.057 191.8

0 75 30 Mexican 455.50 2.125 1.072 1.032 192.1

0 75 45 Mexican 443.75 2.050 1.072 1.017 192.4

0 75 60 Mexican 438.50 1.825 1.072 1.035 192.5

0 40 15 Mexican 370.00 1.650 0.850 1.080 179.1

0 40 30 Mexican 362.50 1.300 0.852 1.037 178.7

0 40 45 Mexican 351.50 1.150 0.855 1.030 177

0 40 60 Mexican 349.25 1.125 0.855 1.025 177

50 100 15 Mexican 826.00 3.750 1.992 1.822 330.1

50 100 30 Mexican 820.50 3.500 2.025 1.880 330.4

50 100 45 Mexican 814.50 3.425 2.042 1.880 330.5

50 100 60 Mexican 811.75 3.150 2.052 1.880 330.5

50 75 15 Mexican 485.00 2.775 1.347 1.233 220.6

50 75 30 Mexican 476.25 2.600 1.375 1.217 220.8

50 75 45 Mexican 470.00 2.550 1.387 1.212 221.3

50 75 60 Mexican 465.25 2.375 1.450 1.135 221.4

50 40 15 Mexican 482.50 2.700 1.192 1.235 215.6

50 40 30 Mexican 461.50 2.225 1.197 1.217 216.2

50 40 45 Mexican 453.00 2.075 1.200 1.225 216.5

50 40 60 Mexican 445.50 1.550 1.202 1.250 216.7

100 100 15 Mexican 1063.25 8.375 6.135 2.855 344.5

100 100 30 Mexican 105.50 8.750 6.410 2.845 347.2

100 100 45 Mexican 1059.25 8.900 6.680 2.810 347.7

100 100 60 Mexican 1061.00 9.025 6.785 2.795 348.4

100 75 15 Mexican 1022.00 5.700 5.172 2.640 345.6

100 75 30 Mexican 1023.50 5.825 5.580 2.650 347.4

100 75 45 Mexican 1019.25 5.975 5.755 2.630 348.1

100 75 60 Mexican 1013.75 6.100 5.955 2.602 348.7

100 40 15 Mexican 877.50 4.500 3.137 2.385 339

100 40 30 Mexican 875.25 4.425 3.650 2.360 340.6

100 40 45 Mexican 874.25 4.325 3.815 2.275 341.1

100 40 60 Mexican 827.50 4.175 4.377 2.260 341.8

150 100 15 Mexican 827.50 4.300 2.390 2.120 332.9

150 100 30 Mexican 823.00 4.100 2.375 2.110 333.3

150 100 45 Mexican 820.00 3.975 2.420 2.072 333.4

150 100 60 Mexican 815.00 3.825 2.422 2.070 333.4

150 75 15 Mexican 770.50 3.025 1.692 1.655 320.6

150 75 30 Mexican 763.50 2.625 1.715 1.635 321.2

150 75 45 Mexican 745.00 2.550 1.732 1.617 321.2

150 75 60 Mexican 757.50 2.100 1.755 1.612 321.2

(Continued)
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On the other hand, our results showed that the exogenous application of appropriate concen-

tration of melatonin can help the genotypes resist the negative impacts of drought stress.

Comparison of MLP, RBF, and GRNN models

Three ANNs including MLP, RBF, and GRNN were used for modeling and predicting the

effect of melatonin on morphological responses of citrus to drought stress. R2, RMSE, and

MBE of each developed model were presented in Table 2. High significant R2 value and low

RMSE and MBE values displayed the model capability. The results showed that GRNN and

RBF had better prediction accuracy than MLP for all studied parameters. Also, comparing

the results of GRNN and RBF (Table 2) revealed that GRNN is more accurate than RBF in all

studied parameters. The regression lines (Figs 1–5) demonstrated that a good fit correlation

between the forecasted and observed data of all studied parameters for both the training and

testing sets in GRNN models.

Optimizing morphological parameters through NSGA-II

NSGA-II was linked to the GRNN in order to determine the optimal level of melatonin con-

centrations, days after applying treatments, citrus species, and level of drought stress for

obtaining the best morphological responses to drought stress. The results of the optimization

process were presented in Table 3. Based on optimization results, applying 89.63 melatonin on

Mexican lime under 94.65 FC after 53.69 days resulted in 12.35 cm leaf length, 1063.21 leaves/

plant, 3.41 cm crown diameter, 324.63 cm plant height, and 8.77 cm internode length.

Sensitivity analysis of the models

The results of sensitivity analysis were summarized in Table 4. Based on sensitivity analysis,

leaf length and number of leaves/plants were more sensitive to melatonin concentration, fol-

lowed by level of drought stress, days after applying treatments, and species. Also, as can be

seen in Table 4, melatonin concentration was the most important factor for crown diameter,

followed by species, days after applying treatments, and level of drought stress, respectively.

Also, plant height was more sensitive to species, followed by melatonin concentration, days

after applying treatments, and level of drought stress. Moreover, melatonin concentration was

the most important factor for internode length, followed by days after applying treatments,

species, and level of drought stress (Table 4).

Validation experiment

According to the validation experiment, the differences between experimental validation data

and predicted data via GRNN-NSGA-II were not significant. Therefore, it can be concluded

that GRNN-NSGA-II with better performance than RBF or MLP can be employed for

Table 1. (Continued)

Melatonin

concentration (μM)

Level of drought stress

(% of field capacity)

Days after applying

treatments

Citrus species

(lime)

Number of

leaves/plants

Leaf length

(cm)

Internode

length (cm)

Crown

diameter (cm)

Plant

height (cm)

150 40 15 Mexican 626.75 2.400 1.132 1.440 316

150 40 30 Mexican 617.25 1.925 1.285 1.405 316.9

150 40 45 Mexican 602.50 1.725 1.390 1.395 317.2

150 40 60 Mexican 593.00 1.625 1.447 1.395 317.5

https://doi.org/10.1371/journal.pone.0240427.t001
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accurately predicting and optimizing the effects of melatonin on morphological responses

under drought stress.

Discussion

Drought can be considered as one of the most common abiotic stresses that restricts plant

growth and development as well as productivity through changing different morphological,

biochemical, physiological, and molecular pathways [50]. Continuous drought stress leads to a

water shortage inside the different plant cells, tissues, and organs. Moreover, the effects of

drought stress are usually first observed in the leaf tissues which gradually fold and curl, and

then, are seen in whole plant growth and development [51]. By losing water content, the leaves

Table 2. Comparison statistics of different ANNs including MLP, GRNN, and RBFNN for modeling and predicting the effect of melatonin on morphological

responses of citrus to drought stress.

Model Measured parameter Training Testing

R2 RMSE MBE R2 RMSE MBE

MLP leaf length 0.89 1.02 -0.93 0.87 1.34 0.86

number of leaves/plants 0.91 29.61 6.53 0.89 36.57 9.11

crown diameter 0.94 0.68 -0.08 0.88 0.66 1.05

plant height 0.89 9.09 1.08 0.88 11.49 -1.87

internode length 0.91 1.23 -0.08 0.91 1.23 -1.09

GRNN leaf length 0.98 0.41 0.003 0.95 0.60 0.13

number of leaves/plants 0.99 16.07 0.82 0.99 17.86 2.07

crown diameter 0.99 0.06 -0.0001 0.99 0.07 -0.01

plant height 0.99 4.11 -0.23 0.99 7.27 1.35

internode length 0.99 0.19 -0.004 0.98 0.25 0.02

RBF leaf length 0.94 0.68 0.06 0.91 1.02 -0.53

number of leaves/plants 0.98 18.23 1.36 0.96 26.32 6.12

crown diameter 0.99 0.12 0.02 0.98 0.19 -0.57

plant height 0.96 6.03 -0.76 0.94 9.43 -1.48

internode length 0.98 0.95 -0.07 0.95 0.68 0.94

https://doi.org/10.1371/journal.pone.0240427.t002

Fig 1. Scatter plot of observed vs. predicted results of leaf length obtained by GRNN model including (A) training set and (B) testing set.

https://doi.org/10.1371/journal.pone.0240427.g001
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under drought stress have initiated to roll up and turn yellow and necrosis. Also, drought stress

resulted in the decline in plant height which might be due to the decreases in cell turgor, cell

growth, cell elongation, and cell volume [52]. Previous studies showed that drought stress

plays a pivotal role in decreasing water contents, inhibiting cell expansion and division,

increasing osmotic stress, and, generally declining plant growth [53]. In the current study,

drought stress led to inhibition of citrus seedlings growth. However, the results of the current

study indicated that the negative impacts of drought stress in both citrus genotypes could be

mitigated by the application of melatonin through improving morphological responses. Also,

our results elucidated that the melatonin-treated plants in comparison with untreated plants

exhibited larger plant height, leaf number and length, crown diameter and internode length

with better tolerance potential under the water scarcity due to the assimilates of water and

osmolytes to growing cells and tissues. A high growth of leaf (length / number) during drought

Fig 2. Scatter plot of observed vs. predicted results of number of leaves/plants obtained by GRNN model including (A) training set and (B)

testing set.

https://doi.org/10.1371/journal.pone.0240427.g002

Fig 3. Scatter plot of observed vs. predicted results of crown diameter obtained by GRNN model including (A) training set and (B) testing set.

https://doi.org/10.1371/journal.pone.0240427.g003
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stress might be due to the improved stomatal conductance related to the foliar-sprayed melato-

nin. Therefore, leaf growth via cell proliferation and expansion may be influenced by exoge-

nous application of melatonin. Indeed, the duration and rate of cell division, as essential

parameters of cell proliferation, play an important role in the leaf size [54]. In line with our

Fig 4. Scatter plot of observed vs. predicted results of plant height obtained by GRNN model including (A) training set and (B) testing set.

https://doi.org/10.1371/journal.pone.0240427.g004

Fig 5. Scatter plot of observed vs. predicted results of internode length obtained by GRNN model including (A) training set and (B) testing set.

https://doi.org/10.1371/journal.pone.0240427.g005

Table 3. The results of GRNN-NSGA-II to find the optimal level of melatonin concentrations, days after applying treatments, citrus species, and level of drought

stress for obtaining the best morphological responses to drought stress.

input variable leaf

length

number of leaves/

plants

crown

diameter

plant

height

internode

lengthmelatonin

concentrations

days after applying

treatments

citrus

species

level of drought

stress

89.63 53.69 Mexican

Lime

94.65 12.35 1063.21 3.41 324.63 8.77

https://doi.org/10.1371/journal.pone.0240427.t003
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results, previous studies revealed that the exogenous application of melatonin can improve

morphological responses under drought stress in different plants such as tobacco [12], Camel-
lia sinensis [13], cucumber [14], soybean [15], alfalfa [16], rice [17], maize [18], cotton [19],

grape [20], and kiwi [21]. It seems that melatonin as a novel plant growth regulator, indepen-

dently of auxin signaling, plays a pivotal role in shoot and root growth and development [10,

11]. Although melatonin at a lower level improves growth and development, a higher level of

this plant growth regulator has an inhibitory function; therefore, melatonin can be considered

as a dose-dependent growth regulator [55].

Morphological changes to drought stress are a multivariable process that is influenced by

several factors. Also, morphological responses to drought stress are a highly complex and non-

linear process. Therefore, there is a serious need to employ robust nonlinear computational

methods for analyzing plant biological processes. The efficiency of a good statistical approach

depends on the neat understanding of the variable structure, experimental design, and using

the appropriate model [56]. One of the most important primary requirements to identify suit-

able statistical approaches is comprehending the type of data [57, 58]. Variables can be clus-

tered into two groups including quantitative (continuous and discrete) and qualitative

(ordinal and nominal). Names with two or more classes without a hierarchical order are cate-

gorized as nominal variables, while ordinal data have distinct order (level X is more intense

than level Y) [57, 59]. Counts that include integers are classified as discrete data, while mea-

surements along a continuum, which could be included smaller fractions are categorized as

continuous variables [60]. Plant biological data can be categorized as ordinal (plant quality

rated as weak, moderate, and good), nominal (type of morphological responses such as normal

and necrosis), continuous (height of shoots or roots), and discrete (number of leaf). Tradi-

tional linear methods such as regression and ANOVA must be just applied with continuous

variables that demonstrate a linear relationship between the explanatory and dependent vari-

ables [23, 61, 62]. Hence, the conventional computational approaches are not appropriate for

analyzing plant biological processes [57]. Recently, different machine learning algorithms have

been successfully utilized to predict and optimize various plant physiological processes. Several

studies [24, 58, 63] used MLP to predict various plant biological processes. However, they only

applied the MLP model and did not compare this well-known algorithm with other models. In

the current study, different ANNs including GRNN, RBF, and MLP, for the first time, were

used to develop a suitable model for prediction morphological responses to various concentra-

tions of melatonin under different levels of drought stress and compare their prediction accu-

racy. According to our results, RBF and GRNN had more accuracy than MLP for modeling

and predicting the system. Also, NSGA-II was linked to GRNN as the most suitable model for

Table 4. The results of sensitivity analysis to find the importance of each input in morphological responses to drought stress.

Output Item Melatonin concentrations Days after applying treatments Citrus species Level of drought stress

leaf length VSR 3.36 2.76 1.97 2.94

Rank 1 3 4 2

number of leaves/plants VSR 1.94 1.28 1.09 1.75

Rank 1 3 4 2

crown diameter VSR 2.09 1.82 1.95 1.65

Rank 1 3 2 4

plant height VSR 2.31 1.73 2.65 1.66

Rank 2 3 1 4

internode length VSR 2.03 1.74 1.36 1.15

Rank 1 2 3 4

https://doi.org/10.1371/journal.pone.0240427.t004
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the optimization process. Based on our results, GRNN-NSGA-II can be considered as an effi-

cient computational methodology for modeling and predicting morphological responses in

the field of stress physiology. Also, according to the current results, the developed model pre-

sented here would allow more accurate estimations without the requirements for the availabil-

ity of all data.

Conclusion

In the current study, different ANNs including GRNN, MLP, and RBF along with NSGA-II

were used for studying and predicting the morphological responses of citrus under drought

stress for the first time. The great accordance between the predicted and observed data support

the high efficiency of ANNs. Overall, ANNs effectively model complex input-output patterns

and show a supreme ability for studying and predicting different plant morphological, physio-

logical, and biochemical responses to abiotic stresses. Therefore, ANN-NSGA-II can be

employed as a new computational strategy in the field of stress physiology. While ANNs usu-

ally have good performance in prediction, they are limited to explicitly illustrate the effects of

explanatory variables on the response variable, due to their “black box” feature. Therefore, it

would be suggested to compare ANNs with other machine-learning methods (e.g., Random

Forest, Gradient Boosting, support vector machine), to allow a more thorough appreciation of

the relative potential of ANNs applied to the presented problem.
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