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Abstract: Strong epidemiologic evidence links Epstein–Barr virus (EBV) infection and its altered
immune control to multiple sclerosis (MS) development. Clinical MS onset occurs years after primary
EBV infection and the mechanisms linking them remain largely unclear. This review summarizes the
epidemiological evidence for this association and how the EBV specific immune control is altered
in MS patients. The two main possibilities of mechanisms for this association are further discussed.
Firstly, immune responses that are induced during a symptomatic primary EBV infection, namely
infectious mononucleosis, might be amplified during the following years to finally cause central
nervous system (CNS) inflammation and demyelination. Secondly, genetic predisposition and
environmental factors might not allow for an efficient immune control of the EBV-infected B cells that
might drive autoimmune T cell stimulation or CNS inflammation. These two main hypotheses for
explaining the association of the EBV with MS would implicate opposite therapeutic interventions,
namely either dampening CNS inflammatory EBV-reactive immune responses or strengthening them
to eliminate the autoimmunity stimulating EBV-infected B cell compartment. Nevertheless, recent
findings suggest that EBV is an important puzzle piece in the pathogenesis of MS, and understanding
its contribution could open new treatment possibilities for this autoimmune disease.

Keywords: Epstein–Barr virus; multiple sclerosis; infectious mononucleosis; HLA-DR2; molecular
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1. Introduction on EBV in Autoimmune Diseases

The Epstein–Barr virus (EBV) is a common human γ-herpesvirus, which persistently
infects more than 95% of the adult human population, making it one of the most successful
pathogens [1]. The EBV persists in memory B cells during latent infection and produces
infectious virus particles upon the plasma cell differentiation of B cells and presumably
after epithelial cell infection [2]. Once the virus has gained access to the memory B cell pool,
it can persist without the expression of any viral proteins, the so-called latency 0. However,
EBV encoded small noncoding RNAs (EBERs) are still expressed and can be detected by in
situ hybridization [3]. Identified as the first human tumor virus, EBV is primarily associated
with several lymphomas, carcinomas, as well as smooth muscle tumors [4]. However, its
associated tumorigenesis that accounts for around 1–2% of all tumors worldwide is still rare
considering EBV’s abundant distribution in the population [5]. One reason for this is the
immune system’s ability to keep the premalignant infectious state under control [6]. This
immune control of EBV infection needs to be in a perfect balance, as the hyperactivation of
T cell compartments, often observed during inadequately controlled primary EBV infection,
can lead to immune pathologies, such as infectious mononucleosis (IM) or hemophagocytic
lymphohistiocytosis (HLH) [7,8]. In rare cases, such immune dysregulation can manifest
itself in autoimmune diseases. Indeed, a dysregulation of viral persistence in the EBV
infected memory B cell pool, as well as defective humoral and cellular immune responses
against EBV have been reported in multiple autoimmune diseases [9–12].
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As a matter of fact, this is the case in one of the most common autoimmune diseases,
rheumatoid arthritis (RA). Peripheral blood of RA patients displays an abnormally high
frequency of circulating EBV-infected B cells [12]. Additionally, the EBV infection of
cultivated lymphocytes from RA patients yielded a higher amount of B-cell-transformed
lymphoblastoid cell lines than those from healthy donor lymphocytes. Since an analysis
of the general T cell function revealed no difference between the two groups, a more
specific defect in the EBV specific suppressor T cell function has been proposed [13].
Similar observations have been described in the autoimmune disease systemic lupus
erythematosus (SLE). Characterized by flares of disease activity and phases of remission,
the disease course fits well with EBV’s ability to occasionally switch from a latent infection
to its lytic cycle [14]. Patients suffering from SLE have an abnormally high EBV viral burden
in their peripheral blood compared to healthy controls [15]. Furthermore, SLE patients
have a tenfold increased frequency of EBV infected B cells [16]. One study showed that
whole blood stimulated with EBV yielded a decreased amount of EBV specific cytotoxic
CD8+ T cells producing IFN-γ in SLE patients, showing that this inability of SLE patients to
control the EBV lytic cycle can be attributed to a reduced EBV specific T cell reactivity [15].

In autoantibody-driven diseases such as RA and SLE, elevated EBV viral loads might
originate from lytic viral replication that arises secondary to autoimmune B cell differen-
tiation into plasma cells [17,18], but might nevertheless contribute to the inflammatory
environment of these autoimmune diseases. In contrast, EBV’s mechanistic contribution
to multiple sclerosis (MS) remains largely unknown and contrary to RA and SLE, EBV
dysregulation seems to be a prerequisite rather than a consequence of the autoimmune
disease. Strong epidemiologic evidence has linked EBV infection to the development of MS.
Essentially, nearly complete seropositivity (99.5–100%) has been reported in MS patients,
compared to the healthy adult population with around 95% seroconversion [19–21]. While
there are reports of EBV seronegative MS patients, those cases are extremely rare. It is
even considered that the majority of EBV seronegative adults may be misdiagnosed as
uninfected, since serological tests against multiple antigens are recommended to accurately
define EBV status, and in the majority of EBV seronegative adults but not seronegative
children, viral loads and EBV specific T cell responses could previously be detected [22,23].
Furthermore, individuals with a history of IM have a 3.2 higher risk of developing MS
in comparison with individuals who acquired the virus asymptomatically [24]. A recent
landmark study showed that primary EBV infection precedes clinical MS by several years
and only after seroconversion were biomarkers for neuroaxonal degeneration increased [21].
However, the majority of people infected with EBV will never develop MS. This indicates,
that EBV infection is a prerequisite which allows the development of the autoimmune
disease in genetically susceptible individuals that are exposed to additional environmental
factors. In the following, the main hypotheses how EBV, in certain predisposed individuals,
might mechanistically contribute to MS pathology is discussed in more detail.

2. EBV Infection Precedes MS by Several Years

The low concordance rate for MS development in monozygotic twins of 20–30% argues
for environmental influences on the development of this autoimmune disease [25]. The
respective environmental risk factors seem to be geographically distributed with elevated
risk for MS development in high northern or southern latitudes [26]. One reason for this
could be the limited sunlight exposure and hence lower vitamin D levels in countries
with a high latitude [27]. Indeed, vitamin D intake was shown to decrease the risk for MS
development [28]. This geographically associated risk seems to be established early in
life [26,29,30]. Those who migrate before the age of 12–15 years acquire to some extent the
MS risk of the new geographical environment, while those who migrate later in life often
retain the MS prevalence of their geographical origin, even so MS manifests clinically most
often in early adulthood. Interestingly, the acquisition of a primary EBV infection differs in
a similar geographic fashion. While primary EBV infection is nearly uniformly experienced
prior to the age of 2 at low latitudes, such as equatorial Africa, and the immune pathology
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of IM is virtually unknown, in high latitudes EBV is acquired by around one third of the
population later and often in the second decade of life with up to half of them experiencing
IM [8,31]. There are indications that the low vitamin D level could be partially responsible
for this geographical distribution of IM occurrence. Serum levels of 25-hydroxyvitamin
D were shown to positively correlate with the ability of regulatory T cells to suppress T
cell proliferation. This ability plays an important part during primary EBV infection, in
controlling the EBV specific T cell response, thereby preventing immunopathologies as seen
in IM [32,33]. Therefore, the elevated MS risk after IM of 3.2 and of 7 in individuals carrying
the main genetic risk factor for MS, the HLA-DRB1*1501 MHC class II allele [24,34], might
in part explain the geographical distribution of MS.

The time interval between primary EBV infection and clinical manifestation of MS was
investigated in longitudinal patient cohorts [19,21]. In these cohorts, EBV seroconversion
occurred an estimated 7.5 years prior to the clinical onset of MS [21]. This sign of primary
EBV infection increased the risk for MS development 32-fold compared to seronegative
controls. All but one of the 955 retrospectively analyzed MS patients seroconverted prior to
MS onset. This delay between primary EBV infection and clinical MS onset might be due to
a preclinical phase of central nervous system (CNS) damage. Indeed, in this longitudinal
study, serum levels of neurofilament light chain (NfL), a biomarker that has been associated
with neuroaxonal damage [35], increased shortly after EBV infection. Therefore, it is an
attractive hypothesis that in genetically predisposed individuals, delayed primary EBV
infection with IM sets a pathogenic process in motion that after more than five years can
lead to clinical symptoms of MS (Figure 1).Cells 2022, 11, x FOR PEER REVIEW 6 of 12 
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mechanism EBV transformed and EBV reactive B cells could home to the CNS, triggering the 
migration of other autoproliferative lymphocytes. In the CNS, plasma B cells producing cross-
reactive antibodies against myelin antigens and memory B cells that act as APCs for the cross-
reactive T cells trigger the production of proinflammatory cytokines. Together, this could start the 
immunopathology seen in MS as myelin damage. Treatments that either dampen the cross-reactive 
immune response (anti-CD20 treatment) or strengthen EBV specific immune control (EBV specific 
T cell therapy) might lead to the elimination EBV transformed B cells and ameliorate MS disease. 

Such poorly controlled EBV infected B cells could migrate to the brain, where their 
presence has been detected by some but not other groups [61–65]. Along these lines, EBV 
infected B cells could be adapted for increased brain homing in mice [66]. This adaptation 
led to upregulation of EBNA1, secreted phosphoprotein 1/osteopontin (SPP1/OPN), 
neuron navigator 3 (NAV3), CXCR4 and germinal-center-associated signaling and 
motility protein (GCSAM). Blocking osteopontin could significantly compromise brain 
homing of EBV infected B cells in this experimental model. Despite the controversy on 
EBV infected B cell homing to the CNS of MS patients, B cell infiltration has been detected 
in MS brains and especially in progressive MS disease, and B cell infiltration and follicle 
formation in the CNS correlate with the severity of disease progression [67,68]. A distinct 
activated Tbet+ CXCR3+ memory B cell population has been reported to be preferentially 
enriched in the CNS compartments of MS patients, a phenotype found to be sustained by 
chronic EBV infection in mice [69,70]. To what frequency and extent EBV infected B cells 
are involved in the formation of these structures remains unclear but they could be 
involved in stimulating autoimmunity (Figure 1). Indeed, increased brain homing 

Figure 1. Potential mechanisms behind EBV’s association as a prerequisite of MS development. Strong
immune activation during primary EBV infection, especially in genetically predisposed individuals
could lead to insufficiently controlled EBV transformed B cells (represented as red nuclei). Those
cells could allow the activation and expansion of autoreactive T cells (cross-reactivity depicted as
red nuclei). Additionally, EBV infection could allow the proliferation and priming of noninfected,
EBV and autoantigen specific B cells (depicted as blue nuclei). Through an unknown mechanism
EBV transformed and EBV reactive B cells could home to the CNS, triggering the migration of
other autoproliferative lymphocytes. In the CNS, plasma B cells producing cross-reactive antibodies
against myelin antigens and memory B cells that act as APCs for the cross-reactive T cells trigger the
production of proinflammatory cytokines. Together, this could start the immunopathology seen in MS
as myelin damage. Treatments that either dampen the cross-reactive immune response (anti-CD20
treatment) or strengthen EBV specific immune control (EBV specific T cell therapy) might lead to the
elimination EBV transformed B cells and ameliorate MS disease.
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Such an EBV driven mechanism is also suggested by the second parameter of EBV
infection that is associated with MS risk, namely elevated antibody responses against EBV
nuclear antigen 1 (EBNA1) [36–39]. In particular, elevated antibodies to the amino acid
sequence 385–420 in HLA-DRB1*1501 positive individuals increase the MS risk 24-fold [40].
EBNA1 specific antibodies increase at least five years prior to clinical MS onset [37–39].
Similar to NfL levels, they also correlate with MS disease activity and likelihood to progress
from clinically isolated syndrome (CIS) to MS [41–44]. Interestingly in the recent longi-
tudinal study that identified EBV infection as a prerequisite for MS development [21],
antibody responses to 200 virus species prior and post MS onset were assessed and only
EBV and specifically EBNA1 specific antibody responses were significantly elevated in
MS patients. Thus, altered EBV specific immune responses, often emerging upon delayed
primary infection in genetically MS-susceptible individuals, might predispose for MS and
develop several years before clinical MS onset.

3. Molecular Mimicry Development during Infectious Mononucleosis

One possibility by which elevated EBNA1 specific antibody titers could directly influ-
ence MS development would be if they cross-reacted with myelin antigens, i.e., molecular
mimicry would occur between EBNA1 and MS autoantigens. Indeed, EBNA1 and, in
particular, its domain (aa385–420) that elicits antibodies associated with the biggest increase
in MS risk [40] or the neighboring aa431–440 sequence provides homologies to several
CNS autoantigens, including GlialCAM and anoctamin [45,46]. The presence of GlialCAM
and EBNA1 cross-reactive antibodies in the cerebrospinal fluid of MS patients as part of
disease-associated oligoclonal bands (OCB) could also be demonstrated [46] (Figure 1).
EBNA1 specific antibodies as part of the OCBs had also been previously described [47–49].
The preconditioning of mice by vaccination with the EBNA1 peptide that is recognized by
GlialCAM cross-reactive antibodies facilitated experimental autoimmune encephalomyeli-
tis (EAE) induction in one animal model of MS [46]. This raises the question by which
mechanism antibodies are primed when they cross-react between EBNA1 and autoantigens.
One attractive scenario is that these autoreactivities could be initiated during IM, as myelin
oligodendrocyte glycoprotein (MOG)-specific antibodies have been detected in a minority
of IM patients [50]. It seems unlikely that EBV infection directly rescues autoreactive B cells
that can produce such autoantibodies during IM, since EBV was not found to preferentially
infect autoreactive B cells nor to enrich these in the memory B cell compartment [51]. How-
ever, the possibility still remains that high viral loads during IM broaden EBNA1 specific B
cell responses to epitopes with molecular mimicry to CNS autoantigens.

These cross-reactive antibody responses, especially those targeting anoctamin, which
are associated with HLA-DRB1*1501 expression [45], possibly indicate an underlying viral
and/or autoantigen-specific HLA-DRB1*1501-restricted CD4+ T cell response. Indeed,
EBNA1 specific CD4+ T cell responses are also elevated in MS patients [11,52]. A subset of
the EBNA1 specific CD4+ T cell clones cross-reacted with a peptide mixture derived from
CNS autoantigens [52]. They also were capable of producing IL-2, IFN-γ and TNF-α, while
only EBNA1 reactive T cell clones preferentially produced IFN-γ, TNF-α, MIP-1α and MIP-
1ß. The cross-reactivity of CD4+ T cells of MS patients between the autoantigen RASGRP2
and the lytic EBV antigens BHRF1 and BPLF1 was also described [53]. Furthermore, MOG-
specific CD4+ T cells were also stimulated with a peptide from the EBV DNA polymerase
BALF5, another lytic EBV antigen [54]. Finally, CD4+ T cells that had been primed in mice
with reconstituted human immune system components (humanized mice) and isolated on
the basis of their HLA-DRB1*1501-restricted recognition of EBV transformed B cells were
able to recognize myelin basic protein (MBP) [55]. Interestingly, the respective T cell clones
could also recognize allogeneic EBV transformed B cell lines, at least by cytokine production,
suggesting a broadly cross-reactive potential of these T cells. Under which circumstances
these cross-reactive CD4+ T cells are primed remains unclear but their frequent HLA-
DRB1*1501 restriction would explain additive MS risk due to HLA-DRB1*1501 expression
and EBV infection.
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4. Defective Immune Control of EBV in MS Patients

The elevated EBNA1 antibody levels and EBNA1 specific CD4+ T cell frequencies in
MS patients [11,36,52,56] might also reflect poorly controlled EBV infection in these indi-
viduals, even if most studies have not found significantly elevated blood viral loads [52,57].
MS patients have also a significantly higher frequency of IFN-γ-secreting EBV specific CD8+

T cells than healthy controls or patients with other neurological diseases [58]. In addition,
CD8+ T cells specific for lytic EBV antigens were found to increase during active disease and
decrease during phases of remission in MS [59]. Interestingly, in EBV infected humanized
mice, EBNA1 specific IgM responses and activated CD8+ T cell frequencies correlated with
EBV viral loads [55]. Similarly, total CD8+ T cell numbers in blood correlated with whole
blood EBV viral loads in IM patients [60]. Therefore, elevated EBNA1 specific antibodies
and T cell responses could reflect a poorly controlled compartment of EBV infected B cells
in MS patients that is, however, compartmentalized and does not extensively communicate
with the blood where EBV viral loads are not increased in MS patients.

Such poorly controlled EBV infected B cells could migrate to the brain, where their
presence has been detected by some but not other groups [61–65]. Along these lines, EBV
infected B cells could be adapted for increased brain homing in mice [66]. This adapta-
tion led to upregulation of EBNA1, secreted phosphoprotein 1/osteopontin (SPP1/OPN),
neuron navigator 3 (NAV3), CXCR4 and germinal-center-associated signaling and motility
protein (GCSAM). Blocking osteopontin could significantly compromise brain homing of
EBV infected B cells in this experimental model. Despite the controversy on EBV infected B
cell homing to the CNS of MS patients, B cell infiltration has been detected in MS brains
and especially in progressive MS disease, and B cell infiltration and follicle formation in
the CNS correlate with the severity of disease progression [67,68]. A distinct activated
Tbet+ CXCR3+ memory B cell population has been reported to be preferentially enriched
in the CNS compartments of MS patients, a phenotype found to be sustained by chronic
EBV infection in mice [69,70]. To what frequency and extent EBV infected B cells are
involved in the formation of these structures remains unclear but they could be involved in
stimulating autoimmunity (Figure 1). Indeed, increased brain homing autoreactive CD4+

T cell activation upon autologous memory B cell stimulation has been observed in MS
patients [71].

A decreased immune control of EBV could be particularly pronounced in the context
of the main genetic risk factor for MS, HLA-DRB1*1501, and both IM as well as elevated
EBNA1 specific antibody titers have been shown to interact with HLA-DRB1*1501 for
additive MS risk [34,36,72,73]. Accordingly, humanized mice reconstituted with HLA-
DRB1*1501 positive donor stem cells showed increased CD8+ T cell expansion and ac-
tivation alongside elevated viral loads compared to HLA-DRB1*1501 negative or HLA-
DRB1*0401 positive engrafted animals [55]. Thus, EBV specific immune control based on
HLA-DRB1*1501 restricted CD4+ T cells could be less efficient in controlling EBV infection
and stimulate autoimmunity in part via the resulting elevated levels of EBV transformed
B cells.

While there is evidence that EBV infection plays an important role in MS disease, a
better understanding of the mechanisms by which EBV predisposes individuals to MS is
needed. Therapeutic interventions that specifically target EBV infection could be a potential
avenue for the future treatment of MS and help us understand whether and how EBV
infection might contribute to the clinical course of MS.

5. Therapeutic Approaches Addressing EBV’s Contributions to MS

The effectiveness of interferon-beta (IFN-β), the first disease-modifying therapy that
was able to reduce relapse rates in MS, was already associated with a reduction in EBV
specific immune responses [74]. Furthermore, it has been shown that the treatment of
MS with natalizumab, another disease-modifying therapy for active relapsing MS, led to
the decline of anti-EBV gp350 levels in MS patients [75]. However, only the recent use of
anti-CD20 therapies such as rituximab, ocrelizumab and ofatumumab in MS have provided
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remarkable effects and became the first therapies to slow down primary progressive dis-
ease [76–78]. How exactly B cell depletion mediates a beneficial effect in MS still remains
unclear. One hypothesis is that the beneficial results stem from depletion of EBV infected
B cell pools (Figure 1). While anti-CD20 therapies leave plasma cells and their produced
antibodies such as OCBs untouched, they effectively deplete naïve and memory B cells,
the primary site of persistent latent EBV infection, thereby eliminating the circulating EBV
infected B cells and reducing the homing of autoreactive B and T cells to the CNS [79].
Indeed, it has been shown that after ocrelizumab treatment, EBV reactive T cell frequencies
were decreased [80]. Additionally, some of those EBV transformed B cell reservoirs might
exist in the CNS where B cells could act as antigen-presenting cells (APCs) for autoimmune
T cells. To what extent anti-CD20 antibodies reach CNS resident EBV infected B cells is still
unclear. However, the stimulation of autoreactive T cells may not exclusively happen in
the CNS but rather in peripheral sites, such as the gut mucosa. Recent data suggest that
an activation in the periphery of autoreactive T cells could trigger them to migrate and
invade the CNS [81–83]. CD20-specific therapies could deplete such antigen-presenting,
EBV transformed, memory B cells that promote MS. While anti-CD20 treatment rather
argues for a decreasing EBV specific immune stimulation in MS by clearing EBV infected B
cells, another therapeutic approach calls for an opposite intervention.

A study using autologous T cells targeting the EBV infected B cell pool showed promis-
ing results that would argue for the strengthening of EBV specific T cell stimulation to
combat MS (Figure 1). Ten secondary progressive MS patients received an autologous EBV
specific T cell therapy, where patient-derived T cells were expanded in vitro with irradiated
autologous peripheral blood mononuclear cells (PBMCs) that had been transduced with an
adenoviral vector encoding EBNA1, LMP1 and LMP2A. This autologous EBV specific T cell
product was then adoptively transferred back into the MS patients. This therapy resulted in
clinical improvement with reduced disease activity that correlated with the EBV reactivity
of the transferred T cells, and no serious adverse effects were reported [84,85]. While
this EBV specific cell-based approach offers great possibilities with less off-target effects,
strengthening EBV specific immune control to eliminate the infected B cell compartment
is not without risk. Cross-reactivity and bystander damage from the boosted immune
response could worsen MS through increased CNS inflammation [86]. Future research
is needed with more clinical trials to assess the safety profile and duration of the effect.
Therefore, it might be more beneficial to already strengthen the immune response towards
EBV before primary infection occurs.

EBV negative individuals have an extremely low risk to develop MS as EBV infec-
tion seems necessary for the disease development [21]. Thus, MS could potentially be
prevented by a suitable vaccine against EBV. Especially EBV seronegative adolescents
that are at higher risk of developing IM during primary infection and have a subsequent
higher MS risk would benefit from such a vaccine [8]. Up to now there is no available
vaccine that protects against EBV infection, but several different vaccinations are explored,
including EBV derived virus-like particles, recombinant viral vectors and recombinant viral
proteins [87–92]. It will be interesting to see if such a vaccine can prevent the development
of IM or even MS in susceptible individuals. However, more research is still needed to
better understand how EBV allows MS to develop and what is its role in the clinical course
of MS. These findings could help to develop new treatments specifically targeting EBV,
such as antiviral compounds, which could have major advantages in terms of specificity
and off-target effects.

6. Conclusions and Outlook

Strong epidemiological evidence has identified EBV infection as a prerequisite of MS
development but the mechanisms behind this association remain unknown. Molecular
mimicry and a deficient immune control of EBV in genetically MS susceptible individuals
are two attractive and not mutually exclusive hypotheses for EBV’s role as one of the
main environmental risk factors for MS development. Unfortunately, these two mecha-
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nisms would either require weakening cross-reactive immune responses or strengthening
EBV specific immune control, respectively, requiring contrary therapeutic interventions.
Therefore, more mechanistic insights into the association of the EBV with MS need to
be gained.

Along these lines the contribution of EBV infection to the tertiary lymphoid structures
in MS brains or autoimmune lymphocyte stimulation at other sites such as the gut [81–83]
should be revisited and investigated. Accordingly, more investigations into B cell dif-
ferentiation that allows CNS homing after EBV infection would be helpful, and primary
CNS B cell lymphomas that are nearly uniformly EBV positive could provide interesting
insights [93]. These and possibly CXCR3+ T-bet+ B cells should also be further explored
for their T-cell-stimulating capacity, especially with respect to CNS autoreactivities [71].
In this respect LMP1 transgenic mouse B cells and EBV infected human B cells have been
described to provide efficient antigen presenting functions for the stimulation of cytotoxic
CD4+ T cells [94,95]. These investigations would address if a poorly controlled EBV infec-
tion in MS patients generates an antigen presenting cell compartment of B cells that drives
autoimmunity in MS. If such an EBV infected B cell compartment could be identified, it
might be targeted by antibody depletion using a more tailored approach than overall B cell
depletion by anti-CD20 antibodies. Alternatively, EBV specific immune control could be
strengthened either by EBV specific T cell transfer, as already therapeutically explored, or
by vaccination.

For the molecular mimicry hypothesis, experimental systems that would allow to
interrogate cross-reactive antibodies or T cells for their pathogenic functions would be
required. Along these lines, EBV peptides have been recently used to modify EAE [46]
but many EAE models are B-cell-independent. Therefore, ideally in vivo models of CNS
disease dependent on B cells and susceptible to EBV infection should be developed to
interrogate cross-reactivities between mostly EBNA1 or a few other EBV antigens and CNS
autoantigens. The identification of CNS pathogenic immune specificities would then allow
the development of tolerizing strategies for these EBV associated autoimmune responses,
that could pave the way for future treatment options for MS. Along these lines, tolerization
approaches with apoptotic cells or erythrocytes that are loaded with autoantigen-derived
peptide epitopes continue to be therapeutically explored [96,97].
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