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From allowing basic communication to move through an environment, several attempts are being made in the field of brain-
computer interfaces (BCI) to assist people that somehow find it difficult or impossible to perform certain activities. Focusing on
these people as potential users of BCI, we obtained electroencephalogram (EEG) readings from nine healthy subjects who were
presented with auditory stimuli via earphones from six different virtual directions. We presented the stimuli following the oddball
paradigm to elicit P300 waves within the subject’s brain activity for later identification and classification using convolutional neural
networks (CNN).TheCNNmodels are given a novel single trial three-dimensional (3D) representation of the EEG data as an input,
maintaining temporal and spatial information as close to the experimental setup as possible, a relevant characteristic as eliciting
P300 has been shown to cause stronger activity in certain brain regions. Here, we present the results of CNN models using the
proposed 3D input for three different stimuli presentation time intervals (500, 400, and 300ms) and compare them to previous
studies and other common classifiers. Our results show >80% accuracy for all the CNN models using the proposed 3D input in
single trial P300 classification.

1. Introduction

Brain-computer interfaces (BCI) offer a way for people to
communicate with devices using their brain. Although the
applications and environments in which BCI have been
explored are numerous, here we focus on their potential
supporting role for people with muscle movement limita-
tions.

Some BCI use event-related potentials (ERP) to link a
person’s brain to the actuator or device the person intends
to interact with. ERP are brain activity patterns that can
be measured by electroencephalography (EEG). Among the
many ERP, we used P300 for this study. P300 is the positive
deflection expected between 250 and 700ms after the BCI
user identifies an irregular (expected) cue among regular ones
in an experimental setup. This way of presenting stimuli to
the BCI user is known as the oddball paradigm. P300 can be
elicited through the oddball paradigm using different stimuli
(e.g., sound or image). BCI applications and experiments

involving EEG, P300, and image stimuli that focus on people
with motor disadvantages have been widely explored and
successfully developed in the past [1–3].

For this study, we used sound stimuli to elicit P300
through the oddball paradigm. Although images have been
successfully used for such tasks, their use requires that the
subjects (who might have physical disabilities) retain control
of their eyes and some face and head muscles as well.
However, that is not the case for blind people who have lost
their ability to see or were never sighted, or for patients with
complete locked-in syndrome, who are not in control of their
eye movements. By using sound stimuli, we believe that a
more portable BCI can be developed, which is suitable for
those who cannot receive visual stimuli or simply prefer to
dedicate their vision to other tasks.

Once P300 is elicited, the BCI should be able to recognize
it and classify it as such. For this purpose, we used several
convolutional neural network (CNN) structures. CNN rep-
resent a specific topology of a multilayer perceptron (part
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of the artificial neural network (ANN) family). Like many
other machine learning models, CNN have been used for
classification purposes with satisfactory results in different
applications [4–7].

Unlike many types of ANN, CNN can handle two- or
three-dimensional (2D or 3D) inputs without mapping data
onto a one-dimensional (1D) vector, which can be a cause of
information loss depending on the nature of the data. Data
mapping is common in BCI applications, but as studies show
that eliciting P300 causes stronger brain activity in certain
brain regions, maintaining both spatial and temporal EEG
information when making the CNN input might be key to
achieving higher accuracy in P300 classification. With this
in mind, we propose a novel 3D input for the CNN. Our
approach avoids the information loss that comes with data
mapping and allows main CNN operations (convolution and
pooling) to take place without the limitations described in
other studies [8].

We use our proposed 3D input to test 30 different CNN
structures for P300 classification.The CNN structures varied
from each other by the kernels (patches) used during the
convolution or pooling processes.We also used different pool
strides to cause or avoid overlapping, depending on the case,
as this has been reported to improve the CNN performance
in some applications [9].

The following sections of this work are organized as
follows: in Section 2, we explain in detail the experimental
setup used to produce and process the dataset used. Further,
the general CNN structure and details regarding the shape of
the proposed 3D input are presented in Section 3. Finally, in
Sections 4 and 5, we discuss our results, comparing them to
those obtained in other similar studies and also presenting the
performance of other common classifiers used in this context.

2. Dataset

2.1. Experimental Setup. The dataset used for this study cor-
responds to evoked P300 waves from nine healthy subjects (8
men, 1 women) obtained using an auditory BCI paradigm. A
digital electroencephalogram system (Active Two, BioSemi,
Amsterdam, Netherlands) was used to record brain activity
at 256Hz. The device consists of 64 electrodes distributed
over the head of the subjects by a cap, using the configuration
shown in Figure 1(a). This study was approved by the ethics
boards of the Nagaoka University of Technology. All subjects
signed consent forms that contained detailed information
about the experiment and all methods complied with the
Declaration of Helsinki.

The subjects were presentedwith auditory stimuli (100ms
of white noise), similar to that performed in [10], using the
out-of-head sound localization method presented in [11], so
that subjects could hear the stimuli coming from one of six
virtual directions via earphones (see Figure 2(a)). Stimuli
were followed by a silent interval of time. One stimulus and
one corresponding silent interval were referred to as a trial.
Three different trial lengths (500, 400, and 300ms) were used
to analyze the impact of the speed of stimuli presentation on
the identification of the P300 wave. Each subject completed
12 experimental sessions, each consisting of around 180 trials

for a given trial length. On each session, the subjects were
asked to focus on only the sound perceived to be coming from
one of the six virtual directions, which was called the target
direction. The subjects counted in silence with their eyes
closed every time they perceived sound being produced from
the target direction and ignored the rest. Ideally, this should
elicit P300. The target direction rotated from directions 1 to
6, one by one, for sessions 1 to 6 and then repeated in the
same order for sessions 7 to 12.The direction in which stimuli
were presented was pseudorandomized; therefore for every
six trials, sound from each direction was produced at least
once and stimuli coming from the target direction were never
produced sequentially to avoid overlapping of P300.

2.2. Preprocessing and Data Accommodation. Before sorting
into training and test sets, EEG data were baseline corrected
using a Savitzky-Golay filter from −100ms before stimulus
onset until the end of the trial (i.e., end of the silent period
after stimulus offset).

A filtering process was also conducted along all EEG
channels using Butterworth coefficients for a bandpass filter
with cutoff frequencies of 0.1 and 8Hz. Next data were
downsampled to 25Hz (approximately a tenth of the original
size). Data were downsampled as the original size would
result in longer processing and training/testing times. Similar
downsampling can be found in [10]. Nonaveraged trials were
used for this study.

As each subject performed 12 experimental sessions (see
Figure 2(b)), with around 180 trials in each of them, data
collection for each subject consists of approximately 2160
trials for a given trial length for each subject. Given the
pseudorandomized nature of the stimuli production, for each
six produced stimuli, one was from the target direction. That
stimuli were labeled as the target trial and the rest as nontarget
trials. Consequently, of nearly 2160 trials, each subject was
expected to produce around 360 target trials as a result
of 12 sessions (i.e., a sixth of them), while the remaining
are nontarget trials. In this case, the target direction is
not particularly relevant, as independently of where the
target direction is located, perceiving stimuli correctly from
that direction should elicit P300. What is important is to
determine is whether the user can differentiate among the
six virtual directions and that focusing on one of them and
perceiving sound from it are possible with the proposed
experimental setup.

Training and test sets were generated for each subject on
a given trial length using only that subject’s data. To generate
the training and test sets for each subject, first we shuffled
the target trials with the same happening to the nontarget
trials. Next, we distributed half of the target trials in each
set with the same applying for nontarget trials. This resulted
in training and test sets for each subject containing around
1100 trials each, with approximately 180 target trials and 900
nontarget trials in each set.

As can be seen in Figure 3(c), regardless of the trial length,
the proposed input consisted of 1100ms of recorded brain
activity after stimulus onset. We consider the same amount
of information to fairly evaluate all trial lengths and compare
our results to previous work in Section 4.
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Figure 1: The different steps of input construction: (a) The experimental EEG channel layout. (b) EEG channel matrix disposition to form
2D and 3D inputs (upper and lower images, resp.). Gray cells contain no information. (c) Usual 2D input shape and proposed 3D input shape
following our considerations (upper and lower images, resp.).
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Figure 2: (a) Position representation for the six virtual directions with respect to the subject. (b) Conformation of the 12 sessions all 9 subjects
took part of.
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3. Input Shape and CNN Model

3.1. 3D Input. For the detection of P300 using EEG, the
electrode position is relevant as there are areas where the
potential is experienced more strongly [10]. This, however,
has not been addressed in previous research, insteadmapping
the 3D data (position of electrodes and time) into a 2D
vector that contains all EEG channel activity during the
experiment. This not only causes information loss, but also
prevents classifiers such as CNN to be used without special
consideration (as observed in [8]).

To avoid information loss and limitations of CNN oper-
ations, positions of the 64 electrodes were mapped onto a 10
× 11 matrix (see Figure 1(b)), maintaining their position as
close as possible to their real arrangement in the experimental
setup. Time information is presented through an extra axis, so
the 3D input has the shape shown in Figure 1(c). Cells that do
not correspond to an electrode (gray ones) are set to zero in
all instances.

In Section 4, we presented a 2D input for performance
comparison purposes. In that case, the input has the shape
depicted in Figure 1 (upper flow). The preprocessing, data
accommodation (train and test set size), and any other
considerationsmade for the 3D input in Section 2.2 also apply
for the 2D one.

3.2. CNNModel. This particular neural network architecture
is a type of multilayer perceptron with feature-generation
and a dimension-reduction oriented layer, which together
compose a convolutional layer. Unlike other layered-based
neural networks, CNN can receive a multidimensional input
in its original form, process it, and successfully classify
it without a previous feature extraction step. The general
structure of the CNN is presented in Figure 3. For our
study, we used a 3D input and produce 28 feature maps (one
for each time sample). While CNN with layers lacking the
pooling process are also possible, the pooling process offers
scale invariance for the resulting feature maps. It also helps
preventing overfitting and allows reduction of computational
complexity of the model by reducing the size of the resulting
feature maps, thereby shortening training/test times.

Here, we proposed 30 different CNN models to investi-
gate the impact that different convolution and pool patches
have on model performance. The proposed models varied
from each other in terms of convolution or pool patch size.
The CNN models were implemented using a GeForce GTX
TITAN X GPU by NVIDIA in Python 2.7 using the work
developed by [12].

Additionally, fixed pooling strides were used as an alter-
native to the default value, which had the same size as the pool
patch, with the purpose of forcing pool patches to overlap (or
not) during the pooling process, as this has been reported
to improve the CNN performance [9]. For this purpose,
we applied fixed pooling strides with the values [1 × 1], [1
× 2], [1 × 3], [2 × 2], and [2 × 3]. While normally the
pooling stride is given as an integer value, in the work of
[12], used in this study, the pooling stride must be defined
as an array of two values, with the first one corresponding
to the step(s) taken along the 𝑥-axis and the second one of

Table 1: Proposed convolution, pool patches, and pool stride for the
current study.

Patch number Convolution patch Pool patch Pool stride
(0) [3 × 3] [2 × 2] Default
(1) [2 × 2] [3 × 3] [1 × 1]
(2) [3 × 2] [1 × 2] [1 × 2]
(3) [2 × 3] [1 × 3] [1 × 3]
(4) [2 × 4] [2 × 3] [2 × 2]
(5) [1 × 4] [2 × 3]

those taken along the 𝑦-axis. The whole input is spanned
using this approach, with only the pooling process affected.
For the convolution process, the stride is 1. When a pooling
stride different than the default one is used, areas where the
pooling patch is applied to the feature map can overlap from
one application to another, or contrarily certain areas can
be skipped depending on the size of the stride and the pool
patch. With our proposed pooling strides, we intended to
cause overlapping in the application areas to show whether
this impacts the CNNperformance (as in [9]).We believe this
approach could benefit CNN models as spanning the same
area more than once with the max pooling approach could
pick up the features corresponding to the P300 production
as this wave causes stronger activity in specific brain areas.
This should create a resulting featuremap containingmultiple
times this part of the feature map, making classification
easier.

For a given trial length and pool stride value, 30 CNN
models were trained for each subject. As there are nine
subjects, three trial lengths, and six pool stride values, a total
of 4860 CNN were trained for this research. However, only
results showing the average performance of the nine subjects
will be presented. Tested convolution and pool patches are
summarized in Table 1, as well as their patch number, which
will be used to present results in the next section.

Each patch is referenced by a number, starting from 0. All
possible patch combinations were tested with the resulting
model using particular convolution and pool patches, with
a patch code consisting of two digits being presented. The
first digit corresponds to the convolution patch and the
second one to the pool patch. Therefore, for patch code 24,
we are referring to the CNN model that used the [3 × 2]
convolution patch and the [2 × 3] pool patch. Given that the
tested CNN are numerous, we present a statistical analysis in
Section 4.1 implementing ANOVA between the models and
the proposed pool strides.

As for the learning rate of CNN, it was set at 0.008 based
on preliminary tests.The optimizationmethod we used is the
stochastic gradient descent as it has been demonstrated [13]
to be beneficial for training neural networks on datasets with
large examples, using the mini batch approach (batch size
of 100). Classification at the output layer is performed using
the softmax function, which produces a label based on the
probability of a given example to belong to one dataset class.

To calculate classification accuracy we have to consider
that the proportion of target and nontarget trials in the
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00 01 02 03 04 10 11 12 13 14
0.863 0.858 0.862 0.860 0.859 0.859 0.858 0.862 0.862 0.861
0.865 0.861 0.862 0.862 0.862 0.862 0.861 0.862 0.861 0.862
0.863 0.861 0.841 0.860 0.859 0.858 0.858 0.861 0.862 0.860
0.861 0.860 0.862 0.860 0.862 0.862 0.862 0.863 0.862 0.860
0.860 0.859 0.856 0.858 0.859 0.862 0.859 0.864 0.860 0.861
0.865 0.858 0.862 0.864 0.862 0.860 0.859 0.863 0.861 0.861

20 21 22 23 24 30 31 32 33 34
0.863 0.859 0.862 0.863 0.861 0.862 0.857 0.862 0.861 0.857
0.862 0.862 0.862 0.860 0.862 0.862 0.861 0.862 0.862 0.865
0.863 0.859 0.859 0.836 0.860 0.862 0.860 0.864 0.862 0.862
0.861 0.859 0.861 0.863 0.861 0.861 0.862 0.859 0.861 0.863
0.862 0.857 0.840 0.845 0.856 0.838 0.862 0.861 0.860 0.859
0.863 0.854 0.863 0.861 0.862 0.863 0.858 0.863 0.862 0.864

40 41 42 43 44 50 51 52 53 54
0.862 0.860 0.863 0.861 0.862 0.864 0.861 0.865 0.862 0.861
0.863 0.861 0.863 0.861 0.862 0.863 0.859 0.865 0.865 0.862
0.862 0.863 0.862 0.863 0.862 0.864 0.861 0.861 0.837 0.862
0.863 0.862 0.860 0.845 0.864 0.862 0.862 0.863 0.862 0.863
0.863 0.862 0.861 0.861 0.862 0.862 0.860 0.859 0.837 0.860
0.863 0.859 0.862 0.862 0.861 0.862 0.854 0.863 0.863 0.862
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Figure 4: Summary of results from nine subjects in the 500ms trial
interval.

training and test sets was not even. Thus, we used the
expression

accuracy = √TP𝑃 ×
TN
𝑁 , (1)

where TP stands for true positives and reflects the number
of correctly classified target examples, and TN stands for
true negatives and reflects the number of correctly classified
nontarget examples. 𝑃 and 𝑁 represent the total number
of examples of target and nontarget classes, respectively, for
this case. This expression heavily penalizes poor individual
classification in binary classification tasks.

4. P300 Identification: Results and Discussion

Theresults presented next correspond to the average accuracy
obtained for the nine subjects in testing of CNN models.
The highest and lowest accuracy rates are highlighted in bold
and red fonts, respectively. By analyzing the performance
obtained using different pooling strategies in the form of
different fixed pooling strides (presented in the first column
from left to right), it is often observed that some pooling
strategies do not offer relevant differences at first glance.

By analyzing the summarized results for the three trial
intervals, we found no clear tendency for which model and
pool stride offer the highest or lowest accuracies. For instance,
in the 500ms trial interval models (Figure 4), the lowest
accuracy was obtained from the model with patch code 23
and [2 × 2] pool stride, while in both the 400 and 300ms
cases, these results were obtained using the model with patch
code 30 and [2 × 3] pool stride, which is similar to the 500ms
case.

As for the highest accuracy results, there are some
similarities in the 400 and 300ms trial intervals (Figures 5
and 6, resp.). In these cases, the implemented models used

00 01 02 03 04 10 11 12 13 14
0.861 0.856 0.861 0.858 0.856 0.859 0.856 0.861 0.860 0.857
0.861 0.859 0.861 0.860 0.859 0.861 0.858 0.861 0.860 0.859
0.861 0.856 0.837 0.857 0.858 0.859 0.857 0.859 0.860 0.857
0.861 0.858 0.861 0.857 0.858 0.858 0.855 0.861 0.860 0.857
0.858 0.857 0.861 0.856 0.856 0.858 0.858 0.858 0.858 0.857
0.859 0.855 0.862 0.861 0.858 0.859 0.853 0.860 0.861 0.856

20 21 22 23 24 30 31 32 33 34
0.861 0.857 0.862 0.859 0.856 0.860 0.856 0.860 0.860 0.858
0.860 0.858 0.862 0.861 0.859 0.861 0.855 0.861 0.861 0.859
0.861 0.855 0.861 0.837 0.856 0.860 0.859 0.860 0.860 0.857
0.859 0.859 0.863 0.859 0.860 0.859 0.858 0.858 0.860 0.860
0.858 0.857 0.838 0.839 0.856 0.833 0.857 0.859 0.858 0.857
0.859 0.854 0.862 0.858 0.857 0.858 0.853 0.862 0.858 0.855

40 41 42 43 44 50 51 52 53 54
0.862 0.856 0.863 0.859 0.859 0.856 0.853 0.861 0.860 0.858
0.862 0.855 0.863 0.863 0.861 0.859 0.856 0.863 0.860 0.858
0.862 0.858 0.861 0.860 0.859 0.856 0.858 0.859 0.834 0.857
0.859 0.857 0.860 0.859 0.859 0.857 0.859 0.860 0.860 0.857
0.859 0.857 0.860 0.859 0.859 0.856 0.855 0.858 0.835 0.858
0.857 0.856 0.860 0.862 0.857 0.857 0.854 0.860 0.859 0.857
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Figure 5: Summary of results from nine subjects in the 400ms trial
interval.

00 01 02 03 04 10 11 12 13 14
0.848 0.847 0.851 0.850 0.849 0.847 0.845 0.850 0.850 0.848
0.848 0.849 0.851 0.851 0.849 0.849 0.849 0.850 0.850 0.849
0.848 0.848 0.835 0.848 0.849 0.847 0.847 0.851 0.850 0.846
0.849 0.848 0.852 0.850 0.849 0.848 0.846 0.851 0.850 0.848
0.850 0.847 0.850 0.850 0.849 0.849 0.848 0.848 0.848 0.848
0.848 0.848 0.851 0.850 0.849 0.847 0.847 0.849 0.850 0.849

20 21 22 23 24 30 31 32 33 34
0.848 0.846 0.851 0.849 0.847 0.850 0.844 0.850 0.850 0.845
0.849 0.849 0.851 0.848 0.849 0.850 0.847 0.850 0.850 0.848
0.848 0.847 0.851 0.833 0.849 0.850 0.848 0.850 0.848 0.847
0.849 0.847 0.851 0.849 0.849 0.848 0.848 0.849 0.850 0.847
0.849 0.846 0.835 0.836 0.847 0.832 0.846 0.848 0.847 0.845
0.848 0.847 0.849 0.848 0.849 0.850 0.848 0.850 0.850 0.848

40 41 42 43 44 50 51 52 53 54
0.849 0.846 0.848 0.850 0.848 0.847 0.844 0.848 0.850 0.845
0.849 0.848 0.848 0.848 0.848 0.851 0.845 0.848 0.848 0.845
0.848 0.847 0.847 0.850 0.848 0.847 0.845 0.846 0.833 0.846
0.849 0.848 0.851 0.850 0.850 0.846 0.846 0.849 0.850 0.848
0.847 0.848 0.850 0.848 0.848 0.847 0.845 0.847 0.834 0.845
0.849 0.846 0.850 0.849 0.848 0.846 0.843 0.851 0.846 0.847
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Figure 6: Summary of results from nine subjects in the 300ms trial
interval.

pool patch (2) under the [1 × 3] or [1 × 2] pooling strides,
which prevent the models from overlapping and are very
similar one to each other. For the 500ms case, pooling stride
was also [1 × 2], the same as in the 400ms trial interval, while
the pool patch was different. If we look back at Table 1, we
can see that these convolution patches are quite different from
each other.

By analyzing Figure 8, it can be noted that even if the
results do not vary strongly one from another, there is a
clear pattern of improved performance using data from the
500ms trial length, followed by the 400 and 300ms ones.This
behavior is expected, as faster production of stimuli can cause
subjects to fail to identify stimuli coming from the target
direction and therefore incorrectly produce the P300 wave.
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Table 2: Summary of the highest, lowest, and average accuracies
obtained for the CNNmodels using the 3D input.

Highest Lowest Average
500ms 0.865 0.836 0.86
400ms 0.863 0.833 0.858
300ms 0.852 0.832 0.848

By summarizing the results in this way, we also observed that
the [1 × 2] pooling stride offers the best results, at least in the
500 and 400ms trial length, while the [1 × 3] pool stride is
optimal on the 300ms trial length.

On the other hand, the [2 × 3] pool stride produces
the lowest results, without being detrimental. Differences
between the highest and lowest pool strides rely on howmuch
overlapping the strides provide. While the [2 × 3] pooling
stride prevents some pool patches from overlapping at all or
even skipping some areas of the input, the [1 × 3] pooling
stride forces most pool patches to overlap. In the study by
[13], no differences were reported between performance for
approaches with or without overlapping, contrary to the
report by [9], where better CNN model performance was
achieved using overlapping pool strategies. In our case, we
found little to no change between different pooling strategies
tested. In the above cited research, it ismentioned that success
in applying pooling strategies might depend completely on
the nature, shape, and conditions of the used data.

In Table 2, the average values considering all models for
each of the three trial lengths are presented next to their
corresponding lowest and highest values.

By comparing these numbers, apparently there are no
big differences between trial lengths and their highest/lowest
values. We believe this lack of variation between the many
tested models is the result of the implementation of the
3D input, which, regardless of the speed of the stimuli
presentation used in this study, can present the necessary
information for correct classification. To support this idea,
we tested 4 additional CNN models using the commonly 2D
input approach with convolution patches [1 × 4] and [3 × 3].
As for the pool patches, we also tested two, with sizes [1 × 2]
and [2 × 2], both with a default pooling stride as our results
so far indicate the pooling strategies do not offer significant
CNN performance differences. The patches were chosen as
they are the same as those used by the CNN models with
the best results using the 3D input. Besides the input shape
and the convolution and pool patches, the parameters of the
CNN models using the 2D input do not differ from the ones
presented so far in Section 3.2. The results from the models
using the 2D input can be seen in Table 3.

In the case of the results for the models using the 2D
input, the difference betweenmodels and trial lengths ismore
easily noticed. While in the results involving the 3D input
the difference of the overall highest and lowest accuracy is of
about 3%; in the case of the 2D input results, the difference is
around 10%. Also, we can see that the convolution and pool
patches that consider information from only one channel at a
time offer better results than those inwhich information from
multiple channels is considered.

Table 3: Proposed convolution and pool patches for the CNN
models in which a 2D input was implemented. CP and PP stand for
convolution patch and pool patch, respectively.

CP PP Accuracy
500ms 400ms 300ms

[1 × 4] [1 × 2] 0.781 0.768 0.734
[2 × 2] 0.753 0.716 0.727

[3 × 3] [1 × 2] 0.766 0.725 0.732
[2 × 2] 0.724 0.707 0.698

Average 0.756 0.729 0.722

Table 4: Results for each subject in those models with the highest
accuracy for each trial length considering the CNN models with
both the 3D and 2D input approach. The subject’s number appears
on the first column to the left.

500ms 400ms 300ms
3D 2D 3D 2D 3D 2D

(1) 0.880 0.72 0.877 0.736 0.859 0.685
(2) 0.873 0.823 0.866 0.78 0.878 0.744
(3) 0.896 0.774 0.908 0.794 0.859 0.774
(4) 0.828 0.812 0.83 0.766 0.831 0.785
(5) 0.864 0.78 0.851 0.792 0.826 0.697
(6) 0.828 0.808 0.828 0.763 0.825 0.685
(7) 0.881 0.788 0.858 0.752 0.886 0.796
(8) 0.879 0.792 0.904 0.77 0.847 0.721
(9) 0.863 0.736 0.847 0.76 0.853 0.722

In Table 4 the individual results for each subject consider-
ing the models with the highest accuracy for each trial length
using both 3D and 2D approaches are shown. The models
with highest accuracy are those presented with bold font in
Figures 4–6 and Table 3.

The results obtained show individual performance pat-
terns appearing in both approaches in a similar way. For
a given trial length, the subject with the highest individual
accuracy is the same regardless of the approach (3D or 2D).
Although in some cases the accuracy difference between both
approaches for a single subject is minimal, all the results from
the CNNmodels using 3D input offered better accuracies.

Besides the difference in the obtained accuracies, the
train/test of the 3D input models was also faster than that of
the models using the 2D input. The average time of the 3D
input models for training/testing a single subject was around
8minutes, while for the case of themodels using the 2D input,
around 18 minutes were necessary.

4.1. Statistical Analysis. Given that the results obtained so
far do not show big differences of the performance of the
CNN models whether we consider the models themselves or
the trial length in which they were tested, we conducted an
analysis of variance (ANOVA) to further examine the results.

First, we checked if applying the different tested models
(variation of convolution and pool patch sizes) had a signif-
icant impact on the performance of the CNN models. The
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Table 5: Results for the ANOVA between the 30 tested models. The
critical 𝐹 value is 1.54.

𝐹 𝑝 Significant differences
500ms 1.29 0.159 No
400ms 1.44 0.08 No
300ms 1.55 0.047 Yes

Table 6: Results for the ANOVA between the 6 implemented pool
strides. The critical 𝐹 value is 2.26.

𝐹 𝑝 Significant differences
500ms 4.21 0.001 Yes
400ms 4.72 0.0004 Yes
300ms 5.015 0.0002 Yes

results are shown in Table 5 for the three trial lengths that
were considered for this study.

We found that, for the models using examples from
the 500 and 400ms trial lengths, there were no significant
differences, but there were ones for the case of the 300ms
trial length. As the trial length becomes shorter, it becomes
harder for users to correctly identify the sound coming from
the target direction and in this case the differences between
models become clearer.

Next, we present the results for the ANOVA between the
tested pool strides in Table 6. In this case, there are significant
differences among the implemented pool strides regardless
of the trial length. We proposed applying several pooling
strides to explore whether by causing or avoiding overlapping
during the pooling process the performance of the models
improved. In Figure 5 we have the average accuracy for all
the models under each pool stride displayed, but the small
differences between the results made it difficult to state if
they were different enough to make an assessment. Now, the
results in Table 6 show that varying the pooling stride to cause
overlapping or avoid it significantly impacts the performance
of the tested CNNmodels.

4.2. Comparison with Previous Work and Other Classifiers.
The current results show an improvement of around 15%
over the work of [10], from where the experimental setup
for this research was borrowed (see Figure 7). The EEG
data was obtained also in a similar fashion, enabling the
current comparison. Also, this study shares some similarities
with that done by [14] which is why we also include it in
the comparison. In most cases, it is difficult to make an
appropriate comparison due to the differences in the nature of
the experiments, subjects, and technologies used and for such
reasons, the comparison is only demonstrative. All the results
used for comparison in Figure 7 are the ones corresponding to
the single trial (also noted as nonaveraged) case. The highest
results obtained for the implementation of the 2D input are
also included.

We now compare the results from the models using the
proposed 3D input with those obtained by using support
vector machines (SVM) and Fisher’s discriminant analysis
(FDA). We chose to use these two classifiers as they are
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Figure 7: Averaged accuracy rate by pooling stride for three
proposed trial intervals.

0.865
0.781 0.745 0.71

0

0.2

0.4

0.6

0.8

1

Current study 3D
Current study 2D

[14]
[10]

Figure 8: Average accuracy rate for the single trial case. Conditions
of experiment and subjects might differ between the studies.

Table 7: Comparison between the highest accuracies obtained using
the proposed 3D input for CNN models, a SVM, and a FDA.

CNN 3D SVM FDA
500ms 0.865 0.709 0.745
400ms 0.863 0.711 0.731
300ms 0.852 0.691 0.707

common in this context and the SVMwas used in [10]. Table 7
shows the results for comparison of the highest accuracies
obtained in the different trial lengths. Details about the SVM
and FDA can be found in the appendix.

Both the FDA and the SVM offer accuracies below those
from the model using the proposed input.

5. Final Comments and Future Work

Through this research we found that it is possible to imple-
ment a 3D input shape using EEG data with success for
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different CNNmodels that exhibit different pooling strategies
based on proposed fixed pooling strides that might cause
the models to overlap during the pooling process or avoid
it. We hypothesize that using this approach might yield
better results compared to the most common approaches
which use 2D mapped version of the data. The basis of such
thinking lies in the nature of the convolution and pooling
processes, which highly depend on the relation between a
data point and its surroundings. This lack of variation might
point to a better representation of the information given
by the proposed 3D input. Also, we found that, for the
current study, causing overlapping with fixed pooling stride
significantly impacts the performance of the tested CNN
models.

The obtained results showed improvement over others
seen in similar studies using nonaveraged data. Also, when
compared to other classifiers commonly used in this context,
the CNNmodels using the proposed input performed better.

While we believe this was a successful application of a
novel input structure, we consider that such construction
will perform particularly well when the nature of the data is
such that mapping it to simpler representations comes with
information loss. For other BCI approaches as well as for
other kinds of brain activity readings, this approachmight not
be the best fit and its application might require a case by case
analysis.

With the proposed 3D input we were able to find also
a faster way to train/test, as this approach showed taking
less time for such tasks than the models using a 2D input.
We expect to keep using this input representation to test its
limitations and possible new applications in future studies.

Appendix

SVM. Analysis was performed using LIBSVM software [15]
and implemented in MATLAB (Mathworks, Natick, USA).
We used a weighted linear SVM [16] to compensate for
imbalance in the target and nontarget examples. Thus, we
used a penalty parameter of C+ for the target and C− for
the nontarget examples. The penalty parameter for each class
was searched in the range of 10−6 to 10−1 (10−6 ≤ 10𝑚 ≤
10−1; m: −6 : 0.5 :−1) within the training. We determined
the best parameters as those obtaining the highest accuracy
using 10-fold cross-validation for the training. Using the best
penalty parameters, we constructed the SVM classifier using
all training data and applied it to the test data.

FDA.Weused a variant of the regularized Fisher discriminant
analysis (FDA) as the classification algorithm [14]. In this
algorithm, a regularized parameter for FDA is searched for
by particle swarm optimization (for details, see [14]) within
the training. In this study, we used all EEG channels without
selection.
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