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Abstract 

Background:  Converting carbon dioxide (CO2) into value-added chemicals using engineered cyanobacteria is 
a promising strategy to tackle the global warming and energy shortage issues. However, most cyanobacteria are 
autotrophic and use CO2 as a sole carbon source, which makes it hard to compete with heterotrophic hosts in either 
growth or productivity. One strategy to overcome this bottleneck is to introduce sugar utilization pathways to enable 
photomixotrophic growth with CO2 and sugar (e.g., glucose and xylose). Advances in engineering mixotrophic cyano‑
bacteria have been obtained, while a systematic interrogation of these engineered strains is missing. This work aimed 
to fill the gap at omics level.

Results:  We first constructed two engineered Synechococcus elongatus YQ2-gal and YQ3-xyl capable of utilizing glu‑
cose and xylose, respectively. To investigate the metabolic mechanism, transcriptomic and metabolomic analysis were 
then performed in the engineered photomixotrophic strains YQ2-gal and YQ3-xyl. Transcriptome and metabolome 
of wild-type S. elongatus were set as baselines. Increased abundance of metabolites in glycolysis or pentose phos‑
phate pathway indicated that efficient sugar utilization significantly enhanced carbon flux in S. elongatus as expected. 
However, carbon flux was redirected in strain YQ2-gal as more flowed into fatty acids biosynthesis but less into amino 
acids. In strain YQ3-xyl, more carbon flux was directed into synthesis of sucrose, glucosamine and acetaldehyde, 
while less into fatty acids and amino acids. Moreover, photosynthesis and bicarbonate transport could be affected by 
upregulated genes, while nitrogen transport and assimilation were regulated by less transcript abundance of related 
genes in strain YQ3-xyl with utilization of xylose.

Conclusions:  Our work identified metabolic mechanism in engineered S. elongatus during photomixotrophic 
growth, where regulations of fatty acids metabolism, photosynthesis, bicarbonate transport, nitrogen assimilation 
and transport are dependent on different sugar utilization. Since photomixotrophic cyanobacteria is regarded as a 
promising cell factory for bioproduction, this comprehensive understanding of metabolic mechanism of engineered 
S. elongatus during photomixotrophic growth would shed light on the engineering of more efficient and controllable 
bioproduction systems based on this potential chassis.
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Background
Cyanobacteria are gaining popularity as microbial cell 
factories due to the capability of directly converting car-
bon dioxide (CO2) into value-added products, providing 
a potential solution for reducing the emission of green-
house gases and the reliance on fossil fuels [1, 2]. Current 
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studies showed that a wide spectrum of chemicals, such 
as alcohols, acids and alkanes, have been successfully 
produced by engineered cyanobacteria [3]. However, 
most cyanobacteria (e.g., Synechococcus elongatus) can 
only use inorganic CO2 as carbon source [4, 5], which 
inevitably limits the growth and productivity of cyano-
bacteria and makes it challenging for industrialization.

Two attempts have been made to overcome this chal-
lenge in cyanobacteria. One is to improve CO2 fixation 
by engineering RuBisCO (ribulose-1,5-bisphosphate car-
boxylase/oxygenase), the key enzyme in Calvin cycle, for 
higher carboxylation activity [6–8]. The other is to enable 
the utilization of organic carbon source (e.g., glucose and 
xylose) via introducing sugar utilization pathways and 
allow photomixotrophic growth of cyanobacteria [9]. 
During growth with light, CO2 and sugar, the produc-
tivity of chemicals and growth of cyanobacteria can be 
considerably increased. For instance, xylose utilization 
significantly enhanced growth of cyanobacteria and ena-
bled a 64% increase of ethylene productivity to 9.86 mL/L 
over photoautotrophic production [10]. Efficient utili-
zation of glucose and CO2 could increase production of 
2,3-butanediol (23BD) to as much as 12.6 g/L in cyano-
bacteria [11].

As a representative, the model cyanobacterium Syn-
echococcus elongatus PCC7942 (hereafter abbreviated as 
S. elongatus unless otherwise specified) has been engi-
neered to utilize organic carbon with CO2 and sunlight, 
and has confirmed better performance in growth and 
productivity [12, 13]. The introduction of sugar utiliza-
tion pathway allows S. elongatus to use glucose or xylose 
as a supplementary carbon source, therefore increas-
ing the carbon flux and leading to higher production 
of designed products (e.g., 23BD) or accumulation of 
biomass [14]. Moreover, increased sugar utilization 
was investigated to further enhance productivity [11]. 
Although progresses have been made in this endeavor, 
the impact of extra carbon on the metabolisms of S. elon-
gatus at omics level is still unclear. A systematic analy-
sis of the engineered photomixotrophic cyanobacteria 
at molecular levels is imperative to further explore the 
potentials of this synthetic strategy.

Here, we engineered two S. elongatus strains YQ2-
gal and YQ3-xyl capable of utilizing glucose and xylose, 
respectively. Transcriptomic and metabolomic analysis 
were performed in these strains under photomixotrophic 
condition with corresponded sugar using wild-type S. 
elongatus (WT) under photoautotrophic condition as 
baselines. Differentially expressed genes (DEGs) and 
differential metabolites were analyzed to capture the 
transcriptional perturbations and metabolic changes. 
Specifically, regulations in carbon metabolic pathways, 
nitrogen assimilation, membrane transport, fatty acids 

and amino acids biosynthesis were elucidated. Since 
these metabolic pathways provides precursors or energy 
for chemical production in cyanobacteria, potential 
effect of sugar utilization on photomixotrophic biopro-
duction in engineered S. elongatus was further discussed. 
Our study will fill the gap between metabolic engineering 
and the biology of synthetic photomixotrophic S. elon-
gatus, which will not only provide new insights into the 
physiology and genetics of cyanobacteria, but also offer 
guidance to the metabolic engineering of this promising 
microbial chassis.

Results and discussion
Growth profile of engineered S. elongatus with glucose 
and xylose
It was reported that efficient uptake of glucose is the 
missing factor that hinders the utilization of glucose in S. 
elongatus (Fig. 1A) [14]. Therefore, an engineered strain 
harboring a glucose transporter was constructed and 
denoted as YQ2-gal. Specifically, galP gene from Escheri-
chia coli was integrated into S. elongatus chromosome 
at neutral site I (NSI) under the control of Ptrc promoter 
(Fig. 1B). A strain constructed via same construction pro-
cess as YQ2-gal but without galP expression was denoted 
as YQ1-ctrl. Growth assays were conducted under con-
tinuous illumination of 2000–3000  lx at 30  °C and cell 
growth was recorded at OD730 every 48  h [15]. Strains 
WT, YQ1-ctrl and YQ2-gal showed similar growth pro-
files with a growth rate of 0.28/day based on OD730 in 
BG-11 medium without glucose (Fig.  1C). In the pres-
ence of 5  g/L glucose, the growth of WT and YQ1-ctrl 
were not affected, while growth rate showed a significant 
increase in YQ2-gal with efficient utilization of glucose 
(Fig. 1C and Additional file 1: Fig. S1A), reaching to about 
5.97 times as much as WT and YQ1-ctrl.

To efficiently utilize xylose in S. elongatus, xylEAB 
operon from E. coli encoding xylose transporter, xylose 
isomerase and xylulokinase was integrated into S. elonga-
tus chromosome at neutral site I (NSI), resulting in strain 
YQ3-xyl (Fig. 1D and E) [9]. Growth profiles of WT, YQ1-
ctrl and YQ3-xyl were obtained under cultivation with 
continuous illumination of 2000–3000  lx and recorded 
every 48 h. Similar growth rate of 0.32/day was detected 
in WT, YQ1-ctrl and YQ3-xyl in BG-11 medium without 
xylose, while with supplementation of 5 g/L xylose, WT 
and YQ1-ctrl grew at a rate of 0.12/day, which is lower 
than that in photoautotrophic condition (Fig.  1F). Pre-
vious research has suggested that an endogenous xylose 
uptake system existed in wild-type cyanobacteria, while 
missed xylose isomerase and xylulokinase for convert-
ing xylose to central metabolites may cause metabolic 
imbalance [9, 10, 16], which results in a growth defect in 
S. elongatus. However, growth defect was not detected 
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in YQ3-xyl with a complete xylose degradation pathway. 
This was consistent with xylose uptake profiles in Addi-
tional file 1: Fig. S1B that xylose slightly changed in WT 
and YQ1-ctrl, while showed significant decrease in YQ3-
xyl. In the presence of xylose, YQ3-xyl even grew faster 
and the growth rate was 1.22 times over WT and YQ1-
ctrl without xylose and 3.27 times over WT and YQ1-ctrl 
with the addition of xylose throughout the entire testing 
period of 14  days (Fig.  1F). YQ2-gal and YQ3-xyl grew 
well with corresponded sugar, suggesting sugar degrada-
tion pathway was successfully installed.

Overview of transcriptomics and metabolomics 
during photomixotrophic growth
Synthetic S. elongatus with efficient sugar utilization is 
a promising candidate for photomixotrophic study and 
always compared with photoautotrophic wild type for 
biomass and chemical production [9, 13, 14, 17]. A bet-
ter understanding of metabolic alteration of engineered 
photomixotrophic S. elongatus from WT would provide 
insights for a more efficient and controllable photomixo-
trophic system. Therefore, transcriptomic and metabo-
lomic analysis were performed in YQ2-gal and YQ3-xyl. 

Transcriptome and metabolome of WT during photoau-
totrophic growth were set as baselines. Strains for analy-
sis were collected at exponential phase when significant 
difference of growth and sugar uptake could be detected 
(Fig. 1 and Additional file 1: Fig. S1). Specifically, YQ2-gal 
was cultivated with glucose for 8  days before collection 
and YQ3-xyl was cultivated with xylose for 10 days before 
collection when YQ3-xyl significantly consumed xylose. 
WT was collected under the same cultivation condition 
but without sugar. Through the principal component 
analysis (PCA) of transcriptomes and metabolomes, dis-
tinct clusters of genes and metabolites were detected in 
YQ2-gal or YQ3-xyl and WT (Additional file 1: Figs. S2 
and S3).

We found 96 DEGs with Log2 of fold change (FC) ≥ 1 
or ≤ − 1 and p value < 0.001 in YQ2-gal (Fig. 2A), where 
the regulated genes were mostly annotated as hypo-
thetical and other functional proteins with no assign-
ment to KEGG orthology database (Additional file  2). 
Other DEGs were mainly related with signal transduc-
tion (8.3%) and membrane transport (7.3%) (Fig. 2B) [18]. 
Among 273 DEGs with Log2 (FC) ≥ 1 or ≤ −  1 and p 
value < 0.001 in YQ3-xyl (Fig. 2C), the largest categories 

Fig. 1  Introduction of glucose transporter or xylose degradation pathway to S. elongatus. Synthetic glucose transport in S. elongatus (A). Schematic 
representation of glucose transporter gene galP into S. elongatus genome (B) and growth profile of WT (empty circle), YQ1-ctrl (gray circle) and 
YQ2-gal (blue circle) with and without 5 g/L glucose in BG-11 medium (C). Synthetic xylose degradation pathway in S. elongatus (D). Schematic 
representation of xylose degradation pathway into S. elongatus genome (E) and growth profile of WT (empty circle), YQ1-ctrl (gray circle) and 
YQ3-xyl (orange circle) with and without 5 g/L xylose in BG-11 medium (F). Growth assays were conducted in duplicate and error bars denoted 
the standard deviation from the means of independent experiments. Glu, glucose; Xyl, xylose; Xylu, xylulose; Xylu-5-P, xylulose-5-phosphate; PPP, 
pentose phosphate pathway; NSI, neutral site I
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referred to KEGG orthology database are hypothetical 
and other functions, energy metabolism and membrane 
transport, comprising 41.4%, 26.7%, 15.4% and 6.6% 
of the total quantity of DEGs, respectively (Fig.  2D and 
Additional file 3) [18].

To investigate the changes of metabolites driving by 
sugar utilization, differential metabolites identified with 
FC ≥ 1.2 or ≤ 0.833 and p value < 0.05 were analyzed. Since 
sugar was mainly metabolized via glycolysis, pentose 
phosphate pathway and tricarboxylic acid (TCA) cycle, 
we first focused on metabolites in those pathways (Fig. 3). 
Metabolites in Calvin cycle were then investigated as they 
are the major participants for CO2 fixation in cyanobacte-
ria (Fig. 3). Other compounds, such as fatty acids, amino 
acids, sucrose and amino sugar, were also analyzed. They 
are produced from metabolites in carbon metabolic path-
ways and are important precursors for chemical produc-
tion in S. elongatus. Variations of their abundance will 
help understand distribution of carbon flux and provide 
insights into chemical production in engineered S. elonga-
tus under photomixotrophic condition (Fig. 3).

Regulations of central metabolism in engineered S. 
elongatus during photomixotrophic growth with glucose
Glycolysis is a primary pathway for glucose metabo-
lism in microorganisms and could be affected in YQ2-
gal while utilizing glucose [19, 20]. Genes in glycolysis 
were not differentially expressed in YQ2-gal compared 
with WT, while increased abundances of phosphoryl-
ated metabolites in glycolysis, such as glucose 6-phos-
phate (G-6-P), fructose 6-phosphate (F-6-P) and fructose 
1,6-bisphosphate (F-1, 6-BP), were detected (Fig.  4). 
Phosphate could affect phosphorylation in glycolysis 
by generating ATP, thus providing energy [21, 22]. In 
YQ2-gal, increased phosphate with FC of 15.61 with p 
value < 0.05 was detected, which could provide suffi-
cient substrate for ATP formation to meet requirement 
for increased phosphorylation in glycolysis. Moreover, 
genes in phosphate transport system were upregulated 
(Fig.  4). Specifically, pstS (Synpcc7942_2444) and sphX 
(Synpcc7942_2445) encoding phosphate-binding pro-
tein and pstA (Synpcc7942_2442) encoding permease 
protein in phosphate transport system were upregulated 

Fig. 2  Volcano graph of DEGs and the quantitative distribution of DEGs based on annotation to KEGG database in YQ2-gal (A, B) and YQ3-xyl (C, 
D) compared with WT. In volcano graph (A, C), red represents upregulated genes; gray represents no significant changes; blue represents down 
regulated genes. FC, fold change
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with Log2 (FC) of 1.83, 3.60 and 1.03, respectively, and 
p value < 0.001. sphR (Synpcc7942_1012) with Log2 (FC) 
of 1.25 and p value < 0.001 may indicate higher expression 
of phosphate regulon response regulator, which regu-
lates phosphate-binding protein [23, 24]. Upregulated 
phosphate transport system and phosphate-responsive 
response regulator suggested that more phosphate would 
be transported and provided to meet increased ATP 
demand in phosphorylation, which was consistent with 
increased phosphate in YQ2-gal [25]. No changes were 
detected in the downstream of glycolysis, where extra 
ATP is generated, suggesting similar amount of ATP was 
obtained in YQ2-gal and WT [26]. Even though glucose 

was utilized in YQ2-gal, redundant ATP was not gener-
ated due to increased phosphorylation in glycolysis.

Pentose phosphate pathway is another major path-
way for carbon metabolism [27], while most genes and 
metabolites involved in pentose phosphate pathway 
were not regulated in YQ2-gal compared with WT 
(Fig. 4). More upregulated metabolites in glycolysis and 
less changes in pentose phosphate pathway suggested 
that glucose was mainly degraded via glycolysis instead 
of pentose phosphate pathway in YQ2-gal.

TCA cycle as an important aerobic pathway for oxi-
dation of carbohydrates starts with metabolite derived 
from glycolysis and pyruvate oxidation [28]. In YQ2-gal, 

Fig. 3  Volcano plot depicts the variations of metabolite abundance in YQ2-gal versus WT (A, B) and YQ3-xyl versus WT (C, D) according to the 
− log10 (p value). Specifically, A and C showed the results measured in positive ion mode, B and D showed the results measured in negative ion 
mode. Horizontal dash line represented p = 0.05 and vertical dash lines represented FC of 0.8333 and 1.2, respectively. Variations of metabolites with 
FC ≤ 0.8333 or ≥ 1.2 and p < 0.05 indicated as highly regulated. Green color represents highly regulated metabolites in central carbon metabolism; 
pink color represents highly regulated fatty acids; orange color represents highly regulated amino acids
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decreased citrate (CTA) and isocitrate (ICT) and 
increased 2-ketoglutarate (KET) were detected (Fig. 4). 
Glucose utilization might promote reaction from CTA 
and ICT to KET, thus accumulating KET in YQ2-gal.

Xylose‑responsive pentose phosphate pathway 
and photosynthesis in engineered S. elongatus 
during photomixotrophic growth
Metabolites obtained from xylose degradation are impor-
tant precursors in pentose phosphate pathway. When 
xylose was efficiently utilized in YQ3-xyl, metabolites in 
pentose phosphate pathway, such as xylulose-5-phos-
phate (Xylu-5-P), were increased with FC of 3.64 and 

p value < 0.05 (Fig.  5). Other carbon metabolism, such 
as TCA cycle, showed similar results as that in YQ2-
gal when compared with WT. Efficient utilization of 
xylose decreased CTA and ICT abundance and accu-
mulated more KET in YQ3-xyl (Fig.  5). Genes, espe-
cially those correlated with regulated metabolites, were 
not differentially expressed, while genes in phosphate 
transport system were significantly upregulated with p 
value < 0.001. Specifically, genes pstS, sphX, pstA and pstB 
(Synpcc7942_2441) encoding ATP-binding protein were 
upregulated in YQ3-xyl with Log2 (FC) of 1.49, 2.60, 
1.07 and 1.21, respectively (Fig. 5 and Additional file 3). 
More phosphate could be transported via the improved 

Fig. 4  Overview of DEGs and metabolite abundance in central metabolism in YQ2-gal compared with WT. DEGs were identified with Log2 
of fold change (FC) ≥ 1 or ≤ − 1 and p < 0.001 and metabolites driving difference were identified by reaching variable importance for the 
projection (VIP) ≥ 1, FC ≥ 1.2 or ≤ 0.833 and p < 0.05. Red color represents highly upregulated metabolites or genes and blue color represents 
highly downregulated metabolites or genes. G-6-P, Glucose 6-phosphate; F-6-P, Fructose 6-phosphate; F-1,6-BP, Fructose 1,6-bisphosphate; G-3-P, 
Glyceraldehyde 3-phosphate; DHAP, Dihydroxyacetone phosphate; G-1,3-BP, Glycerate 1,3-diphosphate; 3-PGA, 3-Phosphoglycerate; 2-PGA, 
2-Phospho-(R)-glycerate; PEP, Phosphoenolpyruvate; 6-PGL, Glucono-1,5-lactone 6-phosphate; 6-PG, 6-Phospho-d-gluconate; Ru-5-P, Ribulose 
5-phosphate; Rib-5-P, Ribose 5-phosphate; S-7-P, Sedoheptulose 7-phosphate; E-4-P, erythrose 4-phosphate; CTA, citrate; ICT, isocitrate; KET, 
2-ketoglutarate; PPP, pentose phosphate pathway; tricarboxylic acid cycle, TCA cycle
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Fig. 5  Overview of DEGs and metabolite abundance in PPP, TCA cycle and photosynthesis in YQ3-xyl compared with WT. DEGs were identified 
with Log2 of fold change (FC) ≥ 1 or ≤ − 1 and p < 0.001 and metabolites driving difference were identified by reaching variable importance for 
the projection (VIP) ≥ 1, FC ≥ 1.2 or ≤ 0.833 and p < 0.05. Red color represents highly upregulated metabolites or genes and blue color represents 
highly downregulated metabolites or genes. In photosynthesis light reaction pattern, DEGs columns with different colors indicated genes involved 
in different reaction zones, phycobilisome (orange), PSII and PSI (green), cytochrome b6/f (light green), plastocyanin (light blue), ATPase (blue). RUBP, 
ribulose 1,5-bisphosphate; S-1,7-BP, sedoheptulose 1,7-bisphosphate; gap3, glyceraldehyde 3-phosphate dehydrogenase; PSI, photosystem I; PSII, 
photosystem II
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phosphate transport system, thus providing substrates 
for ATP formation to generate more phosphorylated 
metabolites. This is in consistence with increased phos-
phate (with a FC of 23.80 and p value < 0.05) and phos-
phorylated metabolites (e.g., ribulose-5-phosphate and 
ribose-5-phosphate) in pentose phosphate pathway 
detected in YQ3-xyl via metabolome data (Fig. 5). More-
over, these upregulated metabolites in pentose phosphate 
pathway are also substrates for Calvin cycle in photo-
synthesis, where energy is needed to drive the reaction 
[27, 29]. Photosynthesis light reaction is a major pro-
cess for energy generation in the wild-type S. elongatus 
[11], while pentose phosphate pathway is also an energy 
source [27]. Regulated pentose phosphate pathway may 
affect the photosynthesis in YQ3-xyl.

When exploring the expression level of genes in pho-
tosynthesis light reaction, most genes were significantly 
upregulated in YQ3-xyl (Fig. 5). Specifically, 11 out of 16 
genes encoding antenna proteins for efficient harvesting 
of light showed upregulation (Fig. 5). Most genes in pho-
tosystem II (PSII), plastocyanin, photosystem I (PSI) and 
ATPase, where light is converted into NADPH and ATP, 
were significantly upregulated with Log2 (FC) ≥ 1 and p 
value < 0.001 as well (Fig.  5). Chlorophyll a, carotenoid 
and their ratio (carotenoid/chlorophyll a) are sensitive 
indicators of photosynthetic activity [30]. Specifically, 
chlorophyll a serving as major roles in both light har-
vesting and energy conversion showed decreased yield 
in YQ3-xyl compared with WT (Additional file  1: Fig. 
S4A) [31], indicating the reduced dependency on light 
for energy metabolism while extra energy source, such as 
pentose phosphate pathway, was provided due to xylose 
utilization in YQ3-xyl [32]. The yield of carotenoid had 
no significant change, however, carotenoid/chlorophyll 
a, which relates to the deployment of photoprotective 
mechanism [30, 33], were increased in YQ3-xyl (Addi-
tional file  1: Fig. S4B). Previous research has reported 
that energy imbalance in photosynthetic apparatus in 
cyanobacteria could be alleviated by photoprotective 
mechanisms, such as heterologous ATP-consuming 
pathway, to assist photosynthetic performance [34, 35]. 
In YQ3-xyl, even though genes in photosynthesis light 
reaction were significantly upregulated, energy balance 
could be maintained by photoprotective mechanism 
from ATP-consuming xylose degradation, which could 
be confirmed by the increase of carotenoid/chlorophyll 
a, and improved photosynthesis could be demonstrated 
by increased abundances of most metabolites in Calvin 
cycle (Fig. 5).

CO2 is a critical participant in Calvin cycle in pho-
tosynthesis and could be obtained from bicarbonate 
(HCO3

−) catalyzed by carbonic anhydrase. In YQ3-xyl, 
ccaA, ecaA and ccmM encoding carbonic anhydrase did 

not show particular changes. Genes cmpABCD (Syn-
pcc7942_1488-1491) encoding proteins in bicarbo-
nate transport were significantly upregulated with Log2 
(FC) of 1.69, 1.20, 1.40 and 1.67, respectively, and p 
value < 0.001 (Fig.  5) [36, 37]. More bicarbonate may be 
transported into the cell by improved bicarbonate trans-
port system with upregulated genes, thus providing more 
substrates for Calvin cycle in photosynthesis.

Regulated metabolisms of sucrose, glucosamine, 
fatty acids and amino acids in engineered S. elongatus 
in response to diverse sugar utilization
Metabolites from glycolysis, pentose phosphate pathway, 
TCA cycle and Calvin cycle are important precursors for 
sucrose, glucosamine, fatty acids and amino acids. With 
utilization of glucose or xylose, regulated precursors may 
affect biosynthesis of these metabolites. For instance, 
increased G-1-P and F-6-P by efficient utilization of glu-
cose may be a main reason for a 1.89-fold and 17.88-fold 
increase of sucrose and glucosamine (GlcN) in YQ2-gal 
when compared with that in WT (Fig. 6). Moreover, sig-
nificant increase of GlcN with p value < 0.05 indicated 
that more carbon flowed into GlcN biosynthesis in YQ2-
gal during photomixotrophic growth with glucose. Fatty 
acids are produced from acetyl-CoA [3]. Most fatty acids, 
especially long-chain fatty acids with more than 20 car-
bons, were increased in YQ2-gal (Fig. 6). Another metab-
olite of acetyl-CoA, acetaldehyde, was also increased 
with a fold change of 52.45 (p value < 0.05) when com-
pared with WT (Fig. 6). Even though significant change 
was not detected in acetyl-CoA, increased fatty acids and 
acetaldehyde indicated the increased carbon flux through 
acetyl-CoA. With more carbon flowed into sugar and 
fatty acids biosynthesis, amino acids biosynthesis may 
be affected. In YQ2-gal, seven out of 15 amino acids had 
decreased abundance when compared with that in WT 
(Fig.  6). Moreover, genes in branched-chain amino acid 
transport were downregulated in YQ2-gal (Fig. 6). Genes 
natD (Synpcc7942_2495) and livM (Synpcc7942_2494) 
encoding permease and natA (Synpcc7942_2493) encod-
ing ATP-binding protein in amino acid transport showed 
downregulation with Log2 (FC) of −  1.31, −  1.39 and 
− 1.31, respectively, and p value < 0.001 in YQ2-gal com-
pared with WT. Amino acid transport is bidirectional and 
could be regulated by corresponding genes [38]. Down-
regulated genes would mitigate branched-chain amino 
acid transport, thus maintaining intracellular amino acid 
level (leucine, isoleucine and threonine) in YQ2-gal.

Similar results of increased sucrose with a FC of 3.05 (p 
value < 0.05) and GlcN with a FC of 60.27 (p value < 0.05) 
were also detected in YQ3-xyl (Fig.  7). However, most 
fatty acids were decreased in YQ3-xyl (Fig.  7). More 
sugars and acetaldehyde (92.48-fold with p value < 0.05) 
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production indicated that carbon was redistributed with 
less into fatty acids biosynthesis in YQ3-xyl. In amino 
acids metabolism, decreased amino acid and down-
regulated gene expression in amino acid transport were 
also detected in YQ3-xyl when compared with WT 
(Fig.  7). In addition, genes in nitrate (NO3

−) transport 
and assimilation were downregulated. In Synechococcus, 
extracellular nitrate is first transferred into cells by pas-
sive diffusion or by active transport mediated via ABC-
type transporters encoded by nrtA(Synpcc7942_1239), 
nrtB (Synpcc7942_1238), nrtC (Synpcc7942_1237) and 
nrtD (Synpcc7942_1236), then nitrate could be reduced 
to nitrite (NO2

−) catalyzed by nitrate reductase encoded 
by narB (Synpcc7942_1235) and further reduced to 
ammonia (NH4

+), which is a major substrate for amino 
acid biosynthesis, especially for glutamate biosynthe-
sis. In YQ3-xyl, nrtABCD were downregulated with 
Log2 (FC) ≤ − 1 and p value < 0.001 (Fig. 7). Gene cynB 

(Synpcc7942_2106) encoding ABC-type cyanate trans-
porter which could transport nitrate, showed down-
regulation as well [39]. narB in YQ3-xyl was negatively 
expressed with Log2 (FC) of − 1.21 and p < 0.001. Down-
regulation of genes in nitrate transport and assimilation 
to nitrite may affect ammonia production, thus impact-
ing on glutamate biosynthesis (Fig. 7). This is consistent 
with decreased abundance of glutamate in YQ3-xyl.

Perspectives for photomixotrophic bioproduction 
in cyanobacteria
Cyanobacteria have been engineered to produce a wide 
range of chemicals, and synthetic photomixotrophic 
strains have been applied as chassis to further increase 
the productivity using additional carbon sources (Fig. 8) 
[13, 40]. For instance, the productivity of 23BD and 
isobutanol could be significantly increased in cyanobac-
teria with utilization of glucose or xylose [14, 17]. In the 

Fig. 6  Overview of metabolite abundance and DEGs in sucrose, glucosamine, fatty acids, amino acid biosynthesis and transport in YQ2-gal 
compared with WT. Metabolites driving difference were identified by reaching variable importance for the projection (VIP) ≥ 1, FC ≥ 1.2 or ≤ 0.833 
and p < 0.05. Red color represents highly upregulated metabolites or genes and blue color represents highly downregulated metabolites or genes. 
GlcN, glucosamine; His, Histidine; Ser, Serine; Gly, Glycine; Cys, Cysteine; Met, Methionine; Trp, Tryptophan; Tyr, Tyrosine; Phe, Phenylalanine; Ala, 
Alanine; Val, Valine; Leu, Leucine; Iso, Isoleucine; Asp, Aspartate; Thr, Threonine; Lys, Lysine; Glu, Glutamate; Arg, Arginine; Pro, Proline
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Fig. 7  Overview of metabolite abundance and DEGs in sucrose, glucosamine, fatty acids, amino acid biosynthesis and transport in YQ3-xyl 
compared with WT. Metabolites driving difference were identified by reaching variable importance for the projection (VIP) ≥ 1, FC ≥ 1.2 or ≤ 0.833 
and p < 0.05. Red color represents highly upregulated metabolites or genes and blue color represents highly downregulated metabolites or genes

Fig. 8  Chemical production from cyanobacteria. Chemicals in green are produced from cyanobacteria. Dashed arrow indicated that introductions 
of heterologous pathways are necessary. 23BD, 2,3-butanediol; PHB, poly-β-hydroxybutyrate; 12-PDO, 1, 2-propanediol
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presence of xylose, an ethylene-producing strain with 
introduction of xylose degradation pathway enhanced the 
ethylene production [10], partially due to the increased 
substrate of KET.

Even though glucose or xylose has not been applied 
in other chemical production, increased F-6-P, DHAP 
and acetaldehyde indicated that production of manni-
tol, 1, 2-propanediol (12-PDO) and ethanol has great 
potentials to be increased in cyanobacteria with effi-
cient utilization of sugars, since sufficient precursors are 
provided (Fig.  8) [41–44]. Other substrates (e.g., acetyl-
CoA) for chemical production (e.g., isopropanol and 
poly-β-hydroxybutyrate, PHB) were not detected with 
regulations by sugar utilization (Fig. 8) [45, 46]. However, 
regulated metabolites (e.g., acetaldehyde) indicated the 
changed carbon flux through the precursors. To increase 
the productivity of desired chemicals, modifications of 
synthetic pathway, such as overexpressing related genes, 
and repressing genes in bypass, may be an efficient way 
to utilize sugars during bioproduction. Moreover, sucrose 
functions both as osmoprotectant and as an energy 
reserve in cyanobacteria [47, 48]. Increased sucrose accu-
mulation in cyanobacteria with efficient utilization of 
both sugars suggested the enhanced tolerance to stress 
conditions and the promoted metabolism under dark 
condition. GlcN as a dietary supplement for joint health 
also showed significant increase with both sugar utiliza-
tion [49], suggesting a potential drug production in syn-
thetic photomixotrophic cyanobacteria.

However, metabolites, such as fatty acids, showed 
dramatically different changes in synthetic photomixo-
trophic cyanobacteria when compared with WT. Most 
fatty acids were increased in glucose-consuming strain, 
while decreased in xylose-consuming strain. Therefore, 
effect of different sugars should be considered and opti-
mization of synthetic pathways should be conducted 
during photomixotrophic production of fatty alcohols 
and alkanes (Fig.  8) [50, 51]. Detailed information from 
transcriptomic and metabolic analysis of cyanobacteria 
during photomixotrophic growth could bring up new 
insights and offer valuable guidance to photomixotrophic 
bioproduction using this potential chassis.

Conclusions
Due to the redirected carbon flux and transcriptional 
perturbations, carbon metabolism, fatty acids and 
amino acid synthesis, and membrane transport were 
regulated in engineered S. elongatus during photomixo-
trophic growth with sugars, where fatty acids metabo-
lism was differently regulated in response to glucose and 
xylose utilization. Moreover, regulated photosynthesis 
in engineered S. elongatus with xylose utilization indi-
cated that light dependency could be modulated under 

photomixotrophic condition. Since these metabolic regu-
lations are closely correlated with chemical productions, 
we envision this study would bring some guidance for 
photomixotrophic bioproduction using this rising micro-
bial chassis.

Methods
Chemicals and reagents
All the chemicals used in this study were at analyti-
cal grade and purchased from the Sinopharm Chemical 
Reagent company (China) unless otherwise specified. 
Enzymes and kits used for molecular cloning were pur-
chased from New England Biolabs (NEB, USA). Oligonu-
cleotides were synthesized by Beijing Genomics Institute 
(BGI, China). Spectinomycin and IPTG (Isopropyl-β-d-
thiogalactopyranoside) used in this study were obtained 
from MDBio (MDBio, Inc., China) and Biotopped (Bio-
topped Life Science, China), respectively.

Strain, medium and growth conditions
All cyanobacterial strains used in this study were sum-
marized in Table 1 and cultured in BG-11 media at 30 °C 
with continuous illumination of 2000–3000 lx [15]. Spec-
tinomycin (20 μg/mL) and IPTG (0.1 mM) were added to 
select recombinant strains and induce the Ptrc promoter. 
Glucose 5 g/L (27.78 mM) or xylose of 5 g/L (33.33 mM) 
was supplemented as organic carbon source.

All Escherichia coli strains were cultivated in LB 
medium (5 g/L of yeast extract, 10 g/L of tryptone, 10 g/L 
of NaCl, pH 7.0) at 37 °C. E. coli MG1655 genomic DNA 
was used as a PCR template for target gene amplifica-
tion. E. coli DH5α was used for plasmid construction and 
propagation. Spectinomycin (20  μg/mL) was added for 
selecting transformants harboring a plasmid.

DNA manipulation, plasmid and strain construction
All primers and plasmids used in this study were listed 
in Additional file  1: Table  S1 and S2. Genes galP, xylE, 
xylA and xylB were amplified from E. coli MG1655 
genomic DNA. galP gene was amplified using primers G1 
and G2, digested with MfeI and BgIII, and then ligated 
with pAM2991 digested with EcoRI and BamHI to cre-
ate pAM2991-galP. xylE gene was amplified by prim-
ers X1 and X2. xylAB genes was amplified by primers 

Table 1  Cyanobacterial strains used in this study

Names Description Sources

WT S. elongatus PCC7942 (wild type) ATCC 33912

YQ1-ctrl WT, PTrc-MCS integrated in NSI This study

YQ2-gal WT, PTrc-galP integrated in NSI This study

YQ3-xyl WT, PTrc-xylEAB integrated in NSI This study
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X3 and X4. Two fragments of pAM2991 template were 
amplified by primers V1 and V2, V3 and V4, respectively. 
Gibson Assembly was applied to fuse these four gene 
fragments to create pAM2991-xylEAB. Plasmids car-
rying target genes or empty backbone were then trans-
formed into S. elongatus following the method described 
previously [52]. Briefly, S. elongatus at exponential phase 
was collected and transformation was conducted at 
30 °C with gentle agitation overnight in the dark. Trans-
formants were selected by spectinomycin and correct 
recombinants were confirmed by colony PCR to verify 
integration into cyanobacterial chromosome at NSI. 
Cyanobacterial strains used and constructed were listed 
in Table 1.

Growth assays
Cyanobacterial strains collected from exponential phase 
were diluted to an OD730 of 0.2 in 50 mL BG-11 medium 
including spectinomycin and IPTG. Wild-type assays 
omitted addition of spectinomycin and IPTG. Glucose 
or xylose was added to provide exogenous carbon source. 
Cell growth was recorded at OD730 every 24  h using a 
spectrophotometer (JINGHUA Instruments, China). 
Sugar concentrations were measured by high-perfor-
mance liquid chromatography (HPLC, Shimadzu LC-
20AT) equipped with a refractive index detector and a 
Rezex ROA-Organic Acid H+ (8%) column (Phenomenex 
Inc., Torrance, CA). The column was eluted with 0.005 N 
of H2SO4 at a flow rate of 0.6 mL/min at 50 °C.

Pigment quantification
Chlorophyll a and carotenoids were measured based on 
a method reported previously [53]. Briefly, chlorophyll a 
and carotenoids were extracted by re-suspending the cell 
pellet (1 mL cell culture, centrifuged at 15,000g for 7 min) 
in 100% methanol at 4 °C for 20 min. The extract absorb-
ance was measured at 470 nm, 665 nm and 720 nm, and 
concentrations of pigments were calculated according to 
the equations [54, 55]:

RNA sequencing
Cells at exponential phase with three biological replicates 
were collected and submitted to BGI for RNA sequenc-
ing. Total RNA was isolated and purified at BGI with 
quality and concentration determined by Bioanalyzer 
2100 (Agilent). Library construction and RNA sequenc-
ing were performed on BGISEQ-500 platform (BGI, 

Chlorophyll a
(

µg/mL
)

= 12.9447(A665− A720)

Carotenoid
(

µg/mL
)

=

(

1000 (A470− A720)− 2.86
(

Chlorophyll a
(

µg/mL
)))/

221

China) using Combinational Probe-Anchor Synthe-
sis Sequencing Method. All raw sequencing reads were 
trimmed based on adaptors, reads where unknown bases 
reached more than 10%, and low quality. Clean reads 
were then obtained and mapped to genome of S. elonga-
tus by HISAT [56]. Gene expression level was quantified 
by RSEM and normalization procedures was processed 
with FPKM [57, 58]. DEGseq method was used to screen 
differentially expressed genes with Log2 (FC) ≥ 1 or 
≤ − 1 and p value < 0.001 [59].

Metabolomics profiling
Strains with six biological replicates were collected at 
exponential phase for metabolomics profiling. Metab-
olites were extracted as previously described [60]. 
Briefly, 300  μL cold methanol was added into 100  μL 
sample and cells were broken using TissueLyser at 
50 Hz for 4 min. After standing for 2 h in − 20  °C, all 
samples were centrifuged at 30,000g, 4  °C for 20  min. 
Supernatants were collected for each sample. A qual-
ity control (QC) sample was made by mixing 35  μL 
from each sample supernatant to estimate a mean pro-
file representing all the analytes encountered during 
analysis. All supernatants as well as QC sample were 
subjected to metabolomics profiling by 2777C UPLC 
system (Water, UK) coupled with mass spectrometer 
Xevo G2-XS QTOF (Waters, UK) in BGI. Both posi-
tive and negative mode were operated. To evaluate the 
stability of LC–MS during the whole acquisition, a QC 
sample was acquired after every 10 samples. Raw data 
were imported into Progenesis QI software and then 
preprocessed using metaX software. Features detected 
in less than 50% of the QC samples or less than 20% 
of the experimental samples were removed, and miss-
ing values were imputed using the k-nearest neighbor 
(KNN) method. The QC-robust spline batch correction 
(QC-RSC) was used to correct signal drift and batch 
variation. The relative s.d. (RSD) value of metabolites 
in the QC samples was set at a threshold of 30%, and 
features with a RSD less than 30% in the QC samples 
were retained [60]. After normalization and filtering, 

univariate and multivariate were conducted by metaX. 
To identify metabolites, standards were used and 
molecular mass data were matched to KEGG and BGI 
own database Met-Lib for a further check. Metabolites 
driving differences were identified by reaching variable 
importance for the projection (VIP) ≥ 1, FC ≥ 1.2 or 
≤ 0.833 and p value < 0.05.
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