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Abstract

Leptin, thyroglobulin and diacylglycerol O-acyltransferase play important roles in fat metabolism. Fat deposition has
an influence on meat quality and consumers’ choice. The aim of this study was to determine allele and genotype fre-
quencies of polymorphisms of the bovine genes, which encode leptin (LEP), thyroglobulin (TG) and diacylglycerol
O-acyltransferase (DGAT1). A further objective was to establish the effects of these polymorphisms on meat charac-
teristics. We genotyped 147 animals belonging to the Nelore (Bos indicus), Canchim (5/8 Bos taurus + 3/8 Bos
indicus), Rubia Gallega X Nelore (1/2 Bos taurus + 1/2 Bos indicus), Brangus Three-way cross (9/16 Bos taurus +
7/16 Bos indicus) and Braunvieh Three-way cross (3/4 Bos taurus + 1/4 Bos indicus) breeds. Backfat thickness, total
lipids, marbling score, ribeye area and shear force were fitted, using the General Linear Model (GLM) procedure of
the SAS software. The least square means of genotypes and genetic groups were compared using Tukey’s test. Al-
lele frequencies vary among the genetic groups, depending on Bos indicus versus Bos taurus influence. The LEP
polymorphism segregates in pure Bos indicus Nelore animals, which is a new finding. The T allele of TG is fixed in
Nelore, and DGAT1 segregates in all groups, but the frequency of allele A is lower in Nelore animals. The results
showed no association between the genotypes and traits studied, but a genetic group effect on these traits was
found. So, the genetic background remains relevant for fat deposition and meat tenderness, but the gene markers
developed for Bos taurus may be insufficient for Bos indicus.
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Introduction

Fat deposition demands beef industry attention for

many reasons. To name a few, lean to fat deposition ratio

improvement means better feed conversion efficiency, less

husbandry cost and lower pressure on world feed supplies

(Sillence, 2004). The marbling aspect associates with intra-

muscular fat deposition, interfering with consumer habits

and meat pricing (Killinger et al., 2004). Controlling

backfat deposition is important because carcass quality and

backfat thickness measurements are strongly associated

with percentage of retail product. The weight of retail cuts,

a trait of economic importance, is related to the ribeye area

(Tait et al., 2005). Last but not least, fat deposition, espe-

cially intramuscular fat, can interfere with meat tenderness

perception (Crouse et al., 1989).

The LEP gene encodes leptin, a 16-kDa protein pro-

duced by adipocytes and implicated in food intake regula-

tion, energy balance, reproduction efficiency and fat

deposition (Houseknecht et al., 1998). Additionally, serum

leptin has been correlated with fat deposition traits in cattle

(Geary et al., 2003), and LEP is likely associated to the

BM1500 microsatellite, which is implicated in fat content

of beef carcasses (Fitzsimmons et al., 1998). After Stone et

al. (1996) mapped LEP to chromosome 4, many poly-

morphisms were described and associated with countless

traits, from carcass fat content to fertility (Pomp et al.,

1997; Buchanan et al., 2002; Barendse et al., 2005;

Schenkel et al., 2005; Van Der Lende et al., 2005).

The TG gene encodes thyroglobulin, the precursor of

triiodothyronine and tetraiodothyronine, signals for fat

cells development (Ailhaud et al., 1992; Darimont et al.,

1993). Subcutaneous fat thickness and fat percentage of tis-
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sues in general, including milk, are expected to be influ-

enced by TG polymorphisms because the iodothyronines

affect adipocyte differentiation and the thyroid hormone

levels influence milk fat percentage (Folley and Malpress,

1948). Attempts to associate TG markers and marbling or

other fat deposition traits have been previously made, and

TG polymorphisms are included in commercial panels (Ba-

rendse, 1999; Barendse et al., 2004; Casas et al., 2005;

Rincker et al., 2006; Van Eenennaam et al., 2007).

Many association studies support the diacylglycerol

O-acyltransferase 1 gene (DGTA1) as a marker for fat de-

position traits (Thaller et al., 2003; Kühn et al., 2004;

Tantia et al., 2006). DGTA1 encodes the catalyst enzyme of

the reaction between diacylglycerol and acyl-CoA. This re-

action is a final step in the synthesis of triglyceride, a major

fat component. So, the enzyme encoded by DGTA1 regu-

lates the rate of triglycerides in adipocytes (Coleman and

Bell, 1976) and has been implicated in energy homeostasis

(Havel, 2001). In addition, DGTA1 maps to chromosome

14, where TG is located, which is bodily related to the DNA

marbling score marker CSSM66 (Barendse et al., 1997).

In spite of the support from the literature for selecting

the candidate genes mentioned above, some conflicting re-

ports show no association of these genes with fat deposition

traits (Rincker et al., 2006). Also, most studies were con-

ducted with Bos taurus cattle. Thus, the segregation and the

predictive value of the LEP, TG, and DGAT1 polymor-

phisms for fat deposition and meat quality traits were yet to

be analyzed in Bos indicus (Nelore breed and Nelore cross-

breed cattle).

The objectives of the present study were to estimate

the allele and genotype frequencies of single nucleotide

polymorphisms (SNP) of the LEP, TG and DGAT1 genes

and to associate genotypes with backfat thickness, total

lipids (objective intramuscular fat deposition), marbling

(subjective intramuscular fat deposition), ribeye area and

shear force. The polymorphisms selected for the study were

LEP/Kpn2I (Buchanan et al., 2002), TG/PsuI (Thaller et

al., 2003) and DGAT1/CfrI (Winter et al., 2002).

Material and Methods

Animals

The study included carcasses of Nelore breed and of

crosses that use Nelore as a formation breed, consisting on

five different genetic groups. The genetic groups were clas-

sified as follows: 46 animals were Nelore - N - (Bos

indicus), 41 Canchim - C - (5/8 Bos taurus + 3/8 Bos

indicus), 19 Brangus Three-way cross - B3x - (9/16 Bos

taurus + 7/16 Bos indicus), and 15 Braunvieh Three-way

cross - BV3x - (3/4 Bos taurus + 1/4 Bos indicus). These an-

imals were from the experimental feedlot facility of the De-

partment of Genetics and Animal Nutrition - FMVZ,

Botucatu, SP, Brazil. These cattle were sampled from four

different farms, and the production system used in the uni-

versity facility has been previously described in detail (Curi

et al., 2005). Additional 26 Rubia Gallega X Nellore cross-

bred - RGxN - (1/2 Bos taurus + 1/2 Bos indicus) were sam-

pled from a semi-intensive system. All animals were

slaughtered within the age gap of 15 to 19 months.

After humanitarian slaughter, performed in a support-

ive abattoir, carcasses were identified and cooled for 24 h,

following which 2.50 cm-thick samples/steaks were re-

moved from the longissimus dorsi muscle, between the 12th

and the 13th ribs. The ribeye area (REA), also referred to as

longissimus dorsi area, was measured at the abattoir by the

quadrant methodology described in the USDA Quality

Grade (USDA, 1989). The steaks were vacuum-packaged

and aged at 1 to 2 °C until 14 days postmortem and then

frozen until the further analyses were carried out.

Fat deposition and meat quality traits

Further phenotypic analyses such as backfat thick-

ness (BT), total lipids (TL), marbling score (MS), and shear

force (SF) measurements were performed at the Chemistry

and Biochemistry Department of the Institute of Biosci-

ences of the São Paulo State University (UNESP, Botucatu,

SP, Brazil), as described below.

Backfat thickness was measured with a caliper, fol-

lowing the methodology described in the USDA Quality

Grade (USDA,1989). Marbling score was visually assessed

(subjective scores from 1 to 5), according to the methodol-

ogy described by the Aus-Meat Ltd (2001). Total lipids

were evaluated using the method of Bligh and Dyer (1959).

In short, six to eight cores of one inch x inch of meat were

removed from the central area of each longissimus dorsi

steak, carefully avoiding visible fat tissue. As mentioned

above, the steaks used for this sampling were removed from

the area between the 12th and the 13th ribs and were 2.54 cm

thick. Then, the cores were minced and homogenized, be-

fore weighing the 5 g used for lipids assessment. Chloro-

form and methanol were added to the 5 g samples and

rocked for over 30 min, for lipid extraction. Then, the sam-

ples were centrifuged to separate three phases: hydrophilic

(disposed), solid (disposed), and hydrophobic solution

(used for volumetric measurements). Five milliliters of the

hydrophobic phase were transferred to a previously

weighed 50 mL beaker flask and let to dry overnight. The

lipid content was calculated by the weight difference of the

beaker. The lipid assessment of each animal was done in

duplicate, and the final value is the mean of both results.

Shear force was determined according to Wheeler et al.

(1997), as follows. The frozen meat samples were thawed

under refrigerated conditions (4 °C for as long as 24 h) until

reaching an internal temperature of 5 to 6 °C, cooked until

reaching an internal temperature of 71 °C, cooled during

24 h at 5 to 6 °C, and then cylindrical pieces of 1.27 cm in

diameter were removed from each sample, parallel to mus-

cle fiber orientation. The cores were cut in a Warner-
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Bratzler shear force measurement equipment (speed of

20 cm/min, with a 25 kg capacity).

DNA extraction and genotyping

After powdering meat samples with liquid nitrogen,

DNA extraction was performed by digestion with protease

K and precipitation with NaCl and alcohol, a non-phenolic

method (Sambrook et al., 1989). After extraction, each

DNA solution was checked for quantity and integrity by

agarose gel electrophoresis, then diluted to work concentra-

tion (10 ng/�) and stored at -20 °C until genotyping.

The animals were genotyped for the LEP, TG and

DGAT1 genes by using the polymerase chain reaction - re-

striction length polymorphism (PCR-RFLP) technique. Al-

leles C and T of the LEP gene were determined by the

amplification of a 94 bp fragment in exon 2, followed by di-

gestion with Kpn2I, as reported by Buchanan et al. (2002).

For the determination of alleles C and T of the TG gene, a

548 bp fragment located at the 5’ untranslated region was

amplified and digested with the PsuI restriction enzyme, as

described by Thaller et al. (2003). Alleles A and K of the

DGAT1 gene were identified by the amplification of a

411 bp sequence corresponding to a fragment of exon 8,

followed by digestion with CfrI, as reported by Lacorte et

al. (2006).

After digestion of the amplified LEP, TG and DGAT1

gene products, the DNA fragments were separated, respec-

tively, on 3.5, 2 and 2% agarose gels in a horizontal electro-

phoresis system. A standard molecular weight of 100 bp

was applied onto each gel, next to the amplified and di-

gested DNA fragments, so their size could be estimated.

Ethidium bromide staining and exposure to ultraviolet light

were used to visualize the DNA fragments in the gel. Using

a digital photo-documentation system, the gels were photo-

graphed for ulterior data analyses. Individual genotypes

were determined for each polymorphism by analyzing the

size (in bp) of the fragments.

Statistical analysis

Genotype and allele frequencies were calculated for

each polymorphism according to Weir (1990). Differences

in allele frequencies of the polymorphisms within and be-

tween genetic groups were determined by the method of

Goodman adapted by Curi and Moraes (1981).

The traits of interest were analyzed by least square

analysis of variance (p = 0.05), using the General Linear

Model (GLM) procedure of the SAS program (SAS Insti-

tute Inc, 2004). The linear model used to fit the quantitative

variables included, in addition to the genotype effect, the

interaction between genetic groups and contemporary

groups, as follows: Yijk = � + Gi + GGCj + eijk, where

Yijk = production trait, � = overall mean, Gi = fixed effect

of the ith genotype (i = 1,.., 3), GGCj = fixed effect of the jth

genetic group and contemporary group combined (j = 1,...,

9), and eijk = random error. The criteria for the contempo-

rary groups included variations of sex, age at slaughter,

feedlot and farm of origin. Animals with the same age,

feedlot and farm of origin were slaughtered on the same

day. In other words, the interaction between genetic and

contemporary groups resulted in 9 subgroups, as follow:

Canchim FE, Canchim MF, Nelore MA, Nelore MB, Ne-

lore MD, Rubia Galega x Nelore FC, Rubia Galega x

Nelore MC, Brangus Three-way cross, and Braunvieh

Three-way cross MF. In these subgroups, the first letter

represents the sex of the animals (F = female, M = male)

and the second letter designates the day of slaughter (A,...,

F). The least square means for genotypes and genetic sub-

groups were established and compared using the Tukey

test. Genotypes with very low frequency (less than 0.10) in

the total sample of individuals or genetic groups showing a

single genotype were not included in the analysis, in order

to prevent unreliable results. For the same reason, when

most of the animals (over 80%) of one genotype belonged

to the same genetic group, this genotype was entirely ex-

cluded from the analyses. The sire effect was not included

in the linear model because the number of genotyped ani-

mals which were progenies of the same sire was very small.

So, the possibility of confounding the influence of the ge-

notype effect and of the sire effect on production traits was

low because of the large number of small half-sib families.

Results

The allele and genotype frequencies of all three

polymorphisms in each genetic group and in the sample as a

whole are summarized in Tables 1 and 2, respectively.

The two allelic forms of LEP (C and T) were observed

in all five genetic groups. Two restriction fragments of 75

and 19 bp, respectively, were seen when the CC genotype

was present, and the TT genotype was reported from the ob-

servation of a 94 bp fragment. Heterozygotes presented all

three fragment sizes: 94, 75 and 19 bp. The genetic groups

with higher Bos indicus influence (Nelore and Rubia Gal-

lega X Nelore) presented a much lower frequency of allele

T (4.3 and 7.7%, respectively) and no animal with genotype

TT. The two Three-way crosses presented similar T fre-

quencies (20 to 26.3%) and were different from the Can-

chim breed (39%).

For TG, two allelic variants were reported: C (295 and

178 bp restriction fragments) and T (intact PCR product

473 bp fragment). TG alleles C and T were segregating in

most genetic groups, but allele C was fixed in the Nelore

animals, resulting in the occurrence of only the CC geno-

type. Rubia Gallega X Nelore presented a very low fre-

quency of T (1.9%), with no statistically significant

difference from the segregation of this polymorphism in the

pure Nelore group. In fact, the occurrence of allele T in-

creased numerically with the higher Bos taurus influence

on each genetic group: Brangus Three-way cross (15.8%),

Canchim (22%), and Braunvieh Three-way cross (33.3%).
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The DGAT1 alleles (K and A) segregated in all ge-

netic groups. When only allele K was present, the fragment

identified was like the intact PCR product, with 411 pb in

size. When only the alanine-bearing allele was present, two

fragments were observed (208 and 203 pb, respectively).

Heterozygous individuals were determined by the presence

of fragments of three sizes: 411, 208 and 203 bp, respec-

tively. In contrast, allele A was less frequent in the Nelore

breed, with a presence of only 5.4%, compared to a range of

53 to 67% in the other four genetic groups.

The least square means and standard errors of quanti-

tative meat traits for the different subgroups are shown in

Table 3. A subgroup effect was found for all meat traits:

backfat thickness (p = 0.0022), total lipids (p = 0.0002),

ribeye area (p < 0.0001), and shear force (p < 0.0001).

The least square means and standard errors of quanti-

tative meat traits for the different genotypes of polymor-

phisms DGAT1/Cfrl TG/PsuI and LEP/Kpn2I are shown in

Table 4. Genotypes CC and CT were analyzed for an asso-

ciation with LEP/Kpn2I, but no significance was found for

any of the traits: backfat thickness (p = 0.1038), total lipids

(p = 0.6298), ribeye area (p = 0.3355) and shear force

(p = 0.9189). To characterize the effects of TG/PsuI, geno-

types CC and CT were tested. No effect was found for

TG/PsuI on backfat thickness (p = 0.7101), total lipids

(p = 0.2813), ribeye area (p = 0.8044) or shear force

(p = 0.4361). For the analysis of polymorphism

DGAT1/Cfrl, only genotypes AA and AK were considered,

and no significant effect was found regarding an associa-

tion with backfat thickness (p = 0.5244), total lipids

(p = 0.6293), ribeye area (p = 0.8235) or shear force

(p = 0.2124).

The visual assessment of marbling revealed to be in-

effective for the Nelore or Bos indicus crosses subgroups

studied because of its very low variability, shown by the

fact that most animals scored 1 and only few individuals

scored 2. So, no association tests were made for this trait.

Discussion

In 1997, Pomp et al. (1997) found an RFLP marker in

the LEP gene using the enzyme Sau3AI that segregates in

numerous Bos taurus breeds but was fixed in Brahman cat-

tle (Bos indicus), which made segregation and association

studies in this case impossible. Buchanan et al. (2002) used
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Table 1 - Allele frequencies of LEP, TG and DGTA1 polymorphisms in five bovine genetic groups and in the sample as a whole.

Polymorphism Allele Genetic group Total

N (n = 46) RGxN (n = 26) C (N = 41) B3x (n = 19) BV3x (n = 15)

LEP/Kpn2I C 0.957A;a 0.923A;a 0.610B;ab 0.737AB;a 0.800AB;a 0.810

T 0.043B;b 0.077B;b 0.390A;ab 0.263AB;b 0.200AB;b 0.190

TG/PsuI C 1.000A;a 0.981A;a 0.780B;a 0.842AB;a 0.667B;ab 0.881

T 0.000B;b 0.019B;b 0.220A;b 0.158AB;b 0.333A;ab 0.119

DGAT1/Cfrl K 0.946A;a 0.462B;ab 0.329B;b 0.474B;ab 0.367B;ab 0.568

A 0.054B;b 0.538A;ab 0.671A;a 0.526A;ab 0.633A;ab 0.432

N = Nelore; RGxN = Rubia Gallega X Nelore; C = Canchim; B3x = Brangus Three-way cross; BV3x = Braunvieh Three-way cross.
A, B = Different allele frequencies between genetic groups (p < 0.05).
a, b = Different allele frequencies within genetic groups (p < 0.05).

Table 2 - Genotype frequencies of the LEP, TG and DGTA1 gene polymorphisms obtained for five genetic groups and in the sample as a whole.

Polymorphism Genotype Genetic group Total

N (n = 46) RGxN (n = 26) C (N = 41) B3x (n = 19) BV3x (N = 15)

LEP/Kpn2I CC 0.913 0.846 0.415 0.526 0.667 0.687

CT 0.087 0.154 0.390 0.421 0.267 0.245

TT 0.000 0.000 0.195 0.053 0.067 0.068

TG/PsuI CC 1.000 0.962 0.610 0.648 0.467 0.789

CT 0.000 0.038 0.341 0.316 0.400 0.184

TT 0.000 0.000 0.049 0.000 0.133 0.027

DGAT1/Cfrl KK 0.913 0.077 0.073 0.067 0.158 0.347

KA 0.065 0.769 0.512 0.632 0.600 0.442

AA 0.022 0.154 0.415 0.211 0.333 0.211

N = Nelore; RGxN = Rubia Gallega X Nelore; C = Canchim; B3x = Brangus Three-way cross; BV3x = Braunvieh Three-way cross.



the enzyme Kpn2I to assess a substitution of cytosine (C)

for thymine (T) at exon 2 of the LEP gene (AF120500), as-

sumed to cause an arginine to cysteine exchange, in Angus

Hereford and Charolais breeds (Bos taurus). The overall al-

lele frequency for the LEP gene polymorphism reported by

these authors was 54% (C) and 46% (T), figures that

seemed different from the 81% (C) and 19% (T) frequen-

cies found in the present study. A difference between Bos

taurus animals and Bos indicus or Bos indicus crosses was

actually expected. In fact, even within Bos taurus cattle the

allele frequencies may be distinct in British (higher T fre-

quency) and in continental breeds (higher C occurrence)

(Buchanan et al., 2002).

Leptin polymorphisms have been associated with

many characteristics of economic importance for livestock,

including feed intake, milk yield, and carcass traits (Van

der Lende et al., 2005). A study on Bos taurus (Angus,

Charolais, Limousin and Simmental) found an association

between two leptin exon 2 polymorphisms and lean yield

(Schenkel et al., 2005). In Bos taurus animals, average fat

and grade fat were shown to be affected by the genotype,

and animals homozygous for allele T produced more leptin

mRNA than those homozygous for allele C (Buchanan et

al., 2002), but no similar correlations with other fat deposi-

tion traits (backfat thickness and total lipids) were found in

Bos indicus and Bos indicus crosses (present data). The re-

sults presented here are consistent with the association

study that genotyped 3129 individuals, including many Bos

taurus breeds and 317 Bos indicus (Brahman) animals, con-

ducted by Barendse et al. (2005), who found no association

between LEP/Kpn2I and marbling, backfat thickness, intra-

muscular fat and adjusted total fat. In the present study, no

correlation was found for REA and LEP, although Geary et

al. (2003) found a negative correlation between the

longissimus dorsi area and serum leptin, and moreover the

serum concentrations of leptin were significantly associ-

ated with carcass composition (marbling, backfat thickness

and kidney, pelvic and heart fat) and quality grade, in cross-

bred Bos taurus (1/2 Angus + 1/4 Charolais + 1/4

Tarentaise).

Polymorphism at the 5’ untranslated region of the

thyroglobulin TG gene was patented by Barendse (1999)

and is evaluated using PsuI to distinguish alleles C and T

(Thaller et al., 2003). The results obtained in the present
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Table 3 - Least square means and standard errors of the meat traits for each genetic group and subgroup.

Meat traits

Genetic group Subgroup BT (mm) TL (%) REA (cm2) SF (kg)

C F E 3.75 � 1.96AB 0.02 � 0.009AB 62.51 � 6.58C 3.68 � 0.64BC

M F 3.69 � 1.55AB 0.02 � 0.014AB 79.98 � 9.46A 3.68 � 0.65BC

N M A 4.55 � 0.9B 0.01 � 0.003AB 64.90 � 4.99C 4.55 � 1.28B

M B 4.60 � 1.42B 0.01 � 0.003AB 70.64 � 8.29BC 5.59 � 1.03A

M D 3.66 � 1.50AB 0.02 � 0.011A 65.33 � 7.18C 3.77 � 0.62BC

RGxN F C 2.69 � 1.31AB 0.01 � 0.005B 61.69 � 9.59C 3.57 � 0.73BC

M C 2.25 � 0.63A 0.01 � 0.004AB 62.90 � 7.56C 3.83 � 1.27BC

B3x M F 4.13 � 1.44B 0.02 � 0.015AB 75.45 � 7.29AB 2.98 � 0.40C

BV3x M F 3.83 � 1.31AB 0.02 � 0.012AB 74.65 � 3.16AB 3.21 � 0.46C

BT = backfat thickness; TL = total lipids; REA = ribeye area, SF = shear force; N = Nelore; RGxN = Rubia Gallega X Nelore; C = Canchim; B3x = Bran-

gus Three-way cross; BV3x = Braunvieh Three-way cross. The subgroups relate to contemporary criteria. F = female, M = male. A,..., F: slaughter days.
A, B ,C = Differences among genetic subgroups within each meat trait (p < 0.05).

Table 4 - Least square means and standard errors of the meat traits for genotypes LEP/Kpn2I, TG/PsuI and DGAT1/Cfrl

Meat traits

Locus Genotype BT (cm) TL REA (cm2) SF (kg)

LEP/Kpn2I CC 3.42 � 1.50 0.016 � 0.012 67.61 � 9.72 3.68 � 0.87

CT 3.96 � 1.60 0.015 � 0.010 69.20 � 9.09 3.70 � 0.88

TG/PsuI CC 3.85 � 1.55 0.021 � 0.011 73.50 � 10.25 3.41 � 0.53

CT 4.00 � 1.63 0.017 � 0.013 73.05 � 8.25 3.30 � 0.79

DGAT1/Cfrl AA 3.19 � 1.76 0.017 � 0.012 69.76 � 10.39 3.64 � 0.75

AK 3.43 � 1.46 0.016 � 0.012 70.19 � 10.69 3.42 � 0.72

BT = backfat thickness; TL = total lipids; REA = ribeye area, SF = shear force.



study show allele T to be less frequent than C. Similar fig-

ures - 22 to 25% T frequency - have been reported before

for Bos taurus breeds (Thaller et al., 2003; Moore et al.,

2003), and it is likely that the ranging for Canchim and both

Three-way crosses is a little wider (15 to 33%), due to the

genetic influence of Nelore. A low T frequency was ex-

pected for Bos indicus cattle (Casas et al., 2005), but this is

the first record in Nelore, in which C is fixed. Many previ-

ous studies have acknowledged TG/PsuI effects on: mar-

bling (Barendse, 1999), backfat thickness and ribeye area

(Casas et al., 2005), intramuscular fat (Thaller et al., 2003),

and percent of retail cuts and carcass weight EPDs (Rincker

et al., 2006). Moreover, Barendse et al. (2004) suggested

that TG/PsuI is a causative mutation within the marbling

QTL and that T is a favorable allele to intramuscular fat de-

position. Yet, conflicting findings have been reported, and

our results corroborate those which did not find any associ-

ation between TG polymorphism and marbling or tender-

ness score in Bos indicus Brahman cattle (Casas et al.,

2005) or marbling, intramuscular fat, ribeye area and fat

thickness in Bos taurus Simmental steers (Rincker et al.,

2006), or even backfat EBV in Bos taurus (Moore et al.,

2003). Thyroglobulin C to T variation is analyzed in the

commercially available panel GeneSTAR Quality Grade

(Genetic Solutions/Bovigen Pty. Ltd.), and the latest vali-

dation study confirmed the presence of allele T in an in-

creasing number of carcasses graded Choice or Prime,

although marbling was not associated with the marker (Van

Eenennaam et al., 2007). In the present study, the low fre-

quency of the favorable allele made it difficult to establish

an association of the polymorphism with carcass traits be-

cause of the small number of phenotypic data recorded for

the TT genotype (only 4 animals).

Winter et al. (2002) discovered the DGAT1/CfrI

polymorphism, which is a nonconservative substitution of

two GC nucleotides by AA at positions 10433 and 10434

(AJ318490). This substitution imposes a protein substitu-

tion of lysine by alanine (K232A), and these authors associ-

ated the lysine allele with higher milk fat content,

suggesting the polymorphism as a causative mutation of the

QTL for milk fat content. This original study observed that

the K variant was more common in Jersey animals (about

80% frequency), Holstein-Friesian and Anatolian Black

animals (about 35% frequency) than in other Bos taurus

beef breeds (less than 20% of the lysine form). Previous

studies on Bos indicus beef breeds found them to have the K

allele fixed (Winter et al., 2002; Tantia et al., 2006) or at

very high frequency (Casas et al., 2005). Lacorte et al.

(2006) reported that allele K was fixed in Brazilian Bos

indicus breeds (Nelore and Guzerat). The novelty presented

by our findings was the low frequency (5.4%) revealed for

the occurrence of allele A in pure Nelore animals. In this

study, crossbreeds (Bos indicus X Bos taurus) presented a

33 to 48% frequency of allele K, a value that is intermediary

between the figures found in the literature (Winter et al.,

2002; Moore et al., 2003) for Bos taurus beef breeds and

the results found in this study for Bos indicus. The present

findings, namely the lack of association between K and

higher marbling or higher total lipids, are not consistent

with literature statements that consider DGAT1/CfrI to be

the causative polymorphism for fat deposition traits (Gri-

sart et al., 2004). However, a discrepancy about the effects

of DGAT1 in cattle with different genetic backgrounds is

already known, once it is significant for intramuscular fat

content in German Holstein but not in Charolais animals

(Thaller et al., 2003). Our results are in agreement with

those of Casas et al. (2005), who found no association be-

tween K232A alleles and backfat thickness, marbling, ten-

derness score or ribeye area in Brahman (Bos indicus)

cattle. Kühn et al. (2004) reported a variable number of tan-

dem repeats (VNTR) located upstream of DGAT1, which

has an effect on milk fat content even among AA individu-

als, further clarifying the BTA 14 QTL. It is possible that 5’

VNTR DGAT1 contributes to fat deposition variability in

Bos indicus animals.

According to Crouse et al. (1989), higher scores for

tenderness are achieved in a sensory panel when intramus-

cular fat content is over 5%. Previous reports showed asso-

ciation of LEP with tenderness (Schenkel et al., 2005).

Thus, the effect of LEP, TG and DGAT1 gene poly-

morphisms on shear force (mechanical evaluation of ten-

derness) was tested, but no association was found.

Discrepancies among association studies may be related to

different genetic backgrounds and variable epistatic effects

and/or to environmental and management pressure on

phenotypic data (Dekkers, 2004). The combined genetic-

environmental component, here represented by the sub-

groups, has an influence on all analyzed traits. Further-

more, comparing the results obtained for the subgroups for

each analyzed trait, it seems that subgroups within the same

breed type tend to share similar results. In contrast, sub-

groups from distinct breed types presented distinct results.

Hence, while the genetic (or breed type) effect on

meat traits continues to be of importance, the gene markers,

which underpin this effect, are yet to be discovered for Bos

indicus-influenced cattle. In other words, the fixation (or

very low frequency) of alleles in Bos indicus (Nelore) and

the lack of additive value shown by the present results for

these markers at LEP, TG and DGAT1 encourage a search

for new markers. Adequate new marker panels should be

developed specifically for Bos indicus cattle, to allow

marker-assisted selection to be successful in Brazil.
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