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A B S T R A C T   

Molecular docking results of two training sets containing 866 and 8,696 compounds were used to train three 
different machine learning (ML) approaches. Neural network approaches according to Keras and TensorFlow 
libraries and the gradient boosted decision trees approach of XGBoost were used with DScribe’s Smooth Overlap 
of Atomic Positions molecular descriptors. In addition, neural networks using the SchNetPack library and de-
scriptors were used. The ML performance was tested on three different sets, including compounds for future 
organic synthesis. The final evaluation of the ML predicted docking scores was based on the ZINC in vivo set, from 
which 1,200 compounds were randomly selected with respect to their size. The results obtained showed a 
consistent ML prediction capability of docking scores, and even though compounds with more than 60 atoms 
were found slightly overestimated they remain valid for a subsequent evaluation of their drug repurposing 
suitability.   

1. Introduction 

The novel zoonotic coronavirus, classified by the International 
Committee on Taxonomy of Viruses (ICTV) on February 11, 2020 as 
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has 
first surfaced in late December 2019 in Wuhan province China Wu et al. 
(2020); Li et al. (2020a,b); Zhou et al. (2020); Wang et al. (2020); 
Shereen et al. (2020); Bogoch et al. (2020). SARS-CoV-2 is the causative 
agent of the disease COVID19, which manifests with various respiratory 
symptoms and can lead to death in immunocompromised patients Wu 
et al. (2020); Islam et al. (2020); Mallah (2021). Furthermore, 
post-COVID symptoms, which include respiratory, gastrointestinal, 
heart, and neural difficulties, are reported Nalbandian et al. (2021); 
Pesce et al. (2021); Yan et al. (2021). Although the means of first 
transmission to humans are open for discussion, the virus’s impact is 
beyond argument. The World Health Organization was forced to declare 
an outbreak of COVID19 worldwide pandemic in March 2020, with 

about 120,000 cases detected in more than 110 countries around the 
world, warning of the sustained risk of further global spread Zhang et al. 
(2020). Eighteen months later [October 07, 2021], there have been 
more than 236,580,675 confirmed cases with 4,829,816 deceased 
worldwide Dong et al. (2020); JHU (2020). 

In an immediate action, scientists around the world boosted contra 
action in the effort to develop possible drugs and/or identify potential 
targets for drug refurbishment and repurposing Tejera et al. (2020); 
Fischer et al. (2020); Hall and Ji (2020); Wu et al. (2020); Hosseini and 
Amanlou (2020); Jin (2020); Smith and Smith (2020); Batra et al. 
(2020); Nagar et al. (2021); Acharya et al. (2020). Currently, vaccine 
development by pharmaceutical companies offers great action against 
virus spread and harm Liu et al. (2020); Bernal et al. (2021); Nanduri 
et al. (2021). To this day [October 07, 2021], more than 6.4 billion 
vaccines Dong et al. (2020); JHU (2020) have been administered 
worldwide with more than 22.6 % of the world population receiving at 
least one dose Mathieu et al. (2021); Our World in Data, (2020). 
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However, new mutations have become identified Mahase (2021) and 
can reverse the success of the vaccination campaigns around the world. 
Hence, targeted drug development/refurbishment to treat, slow down, 
and/or deactivate the virus replication and cell entry protocol are still 
valid approaches. In this respect, in silico-based tactics appear as a very 
reasonable choice to shrink a large database of chosen compounds to 
tens or hundreds of compounds that can be potentially active and cleave 
a certain protein active site. In addition, we have to take into account the 
possibility that this is not the last pandemic. Therefore, the tools of trade 
still need to be developed and established Casbarra and Procacci (2021) 
to provide a much faster response to treat new potential pandemic risks 
Cho et al. (2021); Llanos et al. (2021); Muratov et al. (2021); Zev et al. 
(2021). The popularity of molecular docking and connected software 
were slowly diminishing in the 2010s due to the simplicity of its 
approach, while methods based on a more robust interpretation of 
drug-target interactions gained more popularity. However, this changed 
drastically with the ongoing COVID19 pandemic and with the need to 
screen tens of thousands of compounds. In this respect, many more 
research teams turned to molecular docking. Nowadays, molecular 
docking is mainly used for in silico drug design against various 
SARS-CoV-2 inhibition targets Elfiky (2020); Joshi et al. (2020a); Hall 
and Ji (2020); Kong et al. (2020); Meyer-Almes (2020); Jimenez-Alberto 
et al. (2021); Das et al. (2021); Guedes et al. (2021); Elmezayen et al. 
(2021). Still, information exchange is not always taken care of, meaning 
that the complete data is often not accounted for in high-throughput 
works published with only a few exceptions Smith and Smith (2020); 
Tejera et al. (2020); Steklac et al. (2021); Guedes et al. (2021). In 
addition, a docking protocol or a molecular dynamics verification takes 
considerable time and computational demands. Therefore, methods for 
an in-few-seconds assessment of possible evaluation (feasibility with 
respect to, e.g., the docking score evaluation) of large compound sets 
need to be developed. This is indeed a well-suited task for machine 
learning (ML) protocols Batra et al. (2020); Gentile et al. (2020); 
El-Behery et al. (2021). One of the promising machine learning tech-
niques is Deep Tensor Neural Networks (DTNNs) implemented in the 
SchNetPack package Schutt et al. (2018), It has been used successfully to 
predict not only the energies of molecules Schutt et al. (2019a) but even 
the shape of the Schrödinger wavefunction Schutt et al. (2019b). In 
addition, other existing ML approaches and libraries, such as Tensor-
Flow Abadi et al. (2015) and XGBoost Chen and Guestrin (2016), are to 
be mentioned. The latter approach has already been used for docking 
score prediction and/or in protein-ligand affinity studies Li et al. (2019); 
Lu et al. (2019); Zhang et al. (2019); Yang et al. (2019). Deep learning 
protocols have emerged useful in screening large sets of compounds (1.3 
billion) for evaluation of targeted drug likeness Gentile et al. (2020), 
including COVID19 research Ton (2020); Joshi et al. (2020b); Santana 
and Silva-Jr (2021a,b); Acharya et al. (2020). It is worth mentioning that 
the employed ML protocols involve SMILES (Simplified Molecular-Input 
Line-Entry System) strings of molecules and a subsequent fingerprint 
generation upon these. Furthermore, ML protocols not only aim at 
predicting the docking scores (pharmacological efficacy), but can also be 
applied in the inverse molecular design Sanchez-Lengeling and 
Aspuru-Guzik (2018). 

SARS-CoV-2, like most other coronaviruses, has a genomic code for 
16 non-structural proteins (nsps) that are responsible for the transcrip-
tion and subsequent replication of the virus, and four essential structural 
proteins: spike glycoprotein, envelope protein, nucleocapsid protein, 
and membrane protein. These proteins are responsible for the viru entry 
to human cells, the virion shape, the pathogenesis, and the release of 
viral particles, respectively Li and Kang (2020). Of these four essential 
proteins, the spike protein is of great interest to target to slow down the 
virus cell entry mechanism Wu et al. (2020); Islam et al. (2020). In 
addition, the spike protein is a targeted site for antibodies, which offers a 
possible means of COVID19 vaccination Islam et al. (2020). After the 
entry of the virus into the cell, deposition of the nucleocapsid into the 
cytoplasm occurs, initiating the translation of the viral genome into the 

replicase polyprotein by means of messenger RNA (mRNA) Petushkova 
and Zamyatnin (2020). Non-structural proteins encoded in the 
SARS-CoV-2 genome include various enzymes, such as 3-chymotrypsin--
like protease (3CLpro), which is sometimes denoted as Mpro (main pro-
tease), papain-like protease (PLpro), helicase, RNA-dependent 
polymerase (RdRp) and primase Zumla et al. (2016). PLpro and 3CLpro 

are responsible for the cleavage of polyproteins translated from viral 
RNA into enzymes that are vital for the RNA replication: RdRp, helicase 
(nsp13), and nucleoside triphosphatase Petushkova and Zamyatnin 
(2020). Furthermore, PLpro is a multifunctional protease with deubi-
quitinating and deISGylating activities Li and Kang (2020). Therefore, 
these essential proteins are considered viable targets for the treatment of 
COVID19. 

This work focuses on 3CLpro as a potential target for the development 
of antivirals, as inhibition of its activity can/will cease the pace of viral 
replication Li and Kang (2020). 3CLpro is a three-domain protease, 
consisting of ca. 306 amino acid residues, and is highly conserved 
among coronaviruses. Domains I (residues 8-101) and II (residues 
102-184), which form a beta-barrel secondary structure, are connected 
by a long loop (residues 185-200) with domain III (residues 201-303) 
formed by alpha-helices. The 3CLpro substrate binding region is 
located around its catalytic dyad, which is capable of hydrolyzing pep-
tide bonds in enzymes and consists of nucleophilic Cys145 located in 
domain II and its proton acceptor counterpart His41 located in domain I 
Tejera et al. (2020). This catalytic dyad along with the Thr25 amino acid 
residue forms a subside denoted S2. Additional S1 subside, formed by 
His41, Phe140, Glu 143, His163, Glu166, and His172 amino acid resi-
dues, can be found in its proximity. The S1 and S2 amino acids are 
mainly involved in hydrophobic and electrostatic interactions. 
Furthermore, there are three additional shallow subsides S3-S5 located 
nearby. These subsides, formed by His41, Met49, Met165, Glu166, and 
Gln189 amino acid residues, can tolerate different functionalities of-
fering various options for the inhibitor-protease complex stabilization 
Khan et al. (2021); Jin (2020); Lu et al. (2006). 

Herein, two sets of compounds were chosen as the basis of semi- 
flexible docking into the 3CLpro structure with the PDB code 6WQF. 
The smaller set S contained 866 compounds Steklac et al. (2021) 
(COVID19 related compounds from the external PubChem database Kim 
et al. (2018)). The larger set L contained 8,696 compounds from the 
QSAR, docking and molecular dynamics study targeting the inhibition of 
3CLpro of Tejera et al. Tejera et al. (2020). The ML validation set (V) was 
based on 100 additional compounds from Tejera et al. Tejera et al. 
(2020). Several previous ML studies had employed the SMILES strings 
(Simplified Molecular-Input Line-Entry System) Batra et al. (2020); 
Gentile et al. (2020); Tejera et al. (2020); Ton (2020); Joshi et al. 
(2020b); Santana and Silva-Jr (2021a,b) and utilized, e.g., Morgan fin-
gerprints Riniker and Landrum (2013) of the ligands (compounds) as a 
basis for the molecular descriptors employed. Herein, the direct Carte-
sian coordinates space approach according to the xyz (mol2/sdf/pdb) 
file format was chosen. Subsequently, three different machine learning 
(ML) approaches were applied and their potential for docking score 
prediction was presented. The trained ML protocols, using S and L 
training sets, were further validated against compounds with the best 
docking scores of other studies (set B) Wu et al. (2020); Hosseini and 
Amanlou (2020); Adem et al. (2020); Shah et al. (2020); Fischer et al. 
(2020), a set of new compounds proposed for organic synthesis (set O), 
and against a set of in vivo compounds from the ZINC15 database Irwin 
et al. (2012) (denoted the production set, P). To assess the quality of the 
ML prediction capacity of P data set docking scores. This set was split 
into 12 subsets of compounds with a defined number of atoms (1-10, 
11-20, etc.) and the docking scores were calculated for a random se-
lection of 100 compounds from each subset, designated as P’. The 
flowchart of the work presented in this paper is shown in Fig. 1. 
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2. Methods 

2.1. Data sets of compounds 

The 3-dimensional structures of COVID19 related compounds (as 
previously used in the study of Štekláč et al. Steklac et al. (2021)) were 
downloaded from the external PubChem database Kim et al. (2018) 
[October 23, 2020]. After metal complexes (salts) and silicon containing 
compounds were removed, the first training set contains 866 compounds 
and is denoted as S (small). 

For the second training set of compounds, a total of 10,246 structures 
of Tejera et al. Tejera et al. (2020) were downloaded from the PubChem 
database [January 11, 2021]. Compounds containing atoms/ions and 
uncrecognized molecular patterns by the AutoDock 4.2.6 force field, 
Morris et al. (2009); Wojciechowski (2017) as well as those that were 
already contained within the first 866 compounds of set S or were not 
present as 3D structures in PubChem (due to their size) were removed, 
leading to a total number of 8,796 compounds in the second set. Sub-
sequently, this set was split into 8,696 compounds, denoted L (large set) 
and 100 randomly selected compounds, denoted V (validation set). The 
validation set was used to control the convergence of ML training 
processes. 

Furthermore, 45 best scoring compounds from five different publi-
cations Wu et al. (2020); Hosseini and Amanlou (2020); Adem et al. 
(2020); Shah et al. (2020); Fischer et al. (2020) were compiled in the test 
set denoted as B (best). Their 3D structures were downloaded from the 
PubChem database (31), the ZINC database (10) Sterling and Irwin 
(2015); Irwin et al. (2012), and the 3D geometries of four compounds 
without a 3D structure in either database were optimized in the 
MMFF94 force field Halgren (1996a,b,c); Halgren and Nachbar (1996); 
Halgren (1996d) using the OpenBabel chemical toolbox 2.3.2. O’Boyle 
et al. (2011). In addition, the 3D geometries of 172 compounds proposed 
by the coauthors from the Department of Organic Chemistry of the 
Slovak University of Technology (SUT) were optimized at the MMFF94 
level of theory, using OpenBabel, forming the test set, denoted as O 
(organic synthesis). The selection of structures for the application of 
computational methods to model their potential affinity to 3CLpro was 
made upon the molecular skeleton/backbone patterns, which had been 
previously found to exhibit antiviral and/or biological activity. Ada-
mantylamine derivatives belong to the group of the most well-known 
antivirals De Clercq (2011); Yet (2018); Colalto (2020). Therefore, 
new adamantylamine derivatives were suggested for further synthesis 

with either activated enol ethers or via coupling of this fragment with 
quinoline or 1,3,5-triazines. In addition, the possible biological activity 
of amine derivatives containing the same secondary diamines as chlo-
roquine and hydroxychloroquine was taken into account Radl (2020). 
Pyrazole derivatives are known for their biological and antiviral effects 
Khan et al. (2016). Furthermore, the coauthors from the Department of 
Organic Chemistry at SUT are experienced with their synthesis Tarabova 
et al. (2014); Bortnak et al. (2018). Hence, pyrazole derivatives were 
also included in this docking study. One of the desired properties behind 
choosing the compounds in the O set was their volatility. In this sense, 
the potential antiviral activity Buhner (2013); da Silva et al. (2020) is 
also likely to be enhanced by selecting compounds with higher volatility 
from this set for subsequent synthesis (breathable medicine offers better 
means of drug delivery, release profile, absorption, distribution, and 
efficacy to treat pulmonary diseases Buhner (2013); da Silva et al. 
(2020)). The O set compounds are compiled in the Supplementary Ma-
terial as two separate files. The first (csv) file includes SMILES codes, as 
well as overlap with the ZINC and PubChem compounds (showing the 
particular IDs). Docking scores and structural formulas are provided in 
the second (pdf) file. 

Finally, the in vivo set of compounds from the ZINC database Irwin 
et al. (2012) has been chosen as the production set for the trained ML 
approaches, denoted P (production). This ZINC set (downloaded on 23th 
March 2021), containing 60,407 compounds, joins sets of FDA approved 
drugs, drugs approved only outside the US, compounds currently in any 
phase of clinical trials, substances with human exposure that are not 
approved or in clinical trials, and compounds tested in vivo Sterling and 
Irwin (2015). Compounds with the same ZINC codes and those which 
overlap with the other data sets were removed, leading to 38,392 unique 
compounds in the production P set. 

To critically assess the performance of the employed machine 
learning protocols, the P data set was split into 12 subsets of compounds 
with a defined number of atoms (1-10, 11-20, etc.) and the docking 
scores of 100 randomly selected compounds from each subset were 
evaluated. This set, denoted P’, contains 1,181 compounds as there were 
fewer than 100 compounds in the subsets with the number of atoms 1-10 
(89 compounds) and 111-120 (92 compounds). These 12 subsets were 
subsequently merged to six subsets (1-20, 21-40, 41-60, etc.) to seek 
brevity of the results presentation. 

We present two series of ML results for the two distinguished training 
sets S and L. The first series serves as a demonstration of predictive 
capacity of the ML models used. Here, the S data set is used as the 

Fig. 1. Flowchart of the presented work, including the employed data sets, docking protocol details, machine learning (ML) methods, and the evaluation of ML 
docking scores prediction. 
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training set and the remaining data sets, L, B, and O, as the test sets. In 
the second series, we present our “best results" using the large data set L 
as the training set, and the other data sets as the test/production sets. For 
both series, the same V data set was used for validation in the ML 
training process. 

In general, the data sets employed consist of compounds that contain 
the following organogenic elements and halogens: N, O, F, P, S, Cl, Br, 
and I. The number of atoms in the studied compounds varies from 4 to 
145 and the molecular weight ranges from 30 to 1283 Da. The number of 
compounds and the range of their atom counts for each data set are 
given in Table 1. The normalized distributions of all data sets with 
respect to the number of atoms in the compounds, split into subsets per 
10 atoms, are shown in Fig. 2. 

2.2. 3CLpro structure 

The 3D structure of the SARS-CoV-2 3CLpro protease determined at 
room temperature was downloaded from the RCSB Protein Data Bank 
Berman et al. (2000) (PDB ID: 6WQF) Kneller et al. (2020). This struc-
ture was further edited in the AutoDockTools software Morris et al. 
(2009); Sanner (1999), to remove water molecules. One single water 
molecule situated between His41 and Asp187 within the pocket of the 
3CLpro active site was retained. It had previously been reported that this 
water molecule participates in charge stabilization interactions of the 
neighbouring residues Kneller et al. (2020). 

2.3. Molecular Docking 

Semi-flexible dockings were performed with Autodock 4.2.6 soft-
ware Morris et al. (2009); Wojciechowski (2017). Gasteiger charges 
were added to all compounds studied using the AutoDock utility scripts 
Morris et al. (2009). Potential maps were calculated within a grid box of 
90 x 90 x 90, with a resolution of 0.275 Å, centered at x, y, z = (-20 Å, -5 
Å, 15 Å). The Lamarckian genetic algorithm as implemented in Auto-
dock 4.2.6 software was employed, with the total number of docking 
runs set to 50. Each generation contained 300 individuals, the maximum 
number of energy evaluations was set to 30,000,000, and the number of 
maximum populations was set to 27,000. Other parameters such as 
crossover and mutation rates, as well as parameters describing the Solis 
& Wets local search algorithm, were kept at their default values. All 
resulting docked poses were clustered with 2.0 Å tolerance and analyzed 
with the AutoDockTools utility Morris et al. (2009); Sanner (1999). The 
hydrogen bond pattern was analyzed with the LigPlot+ software Wal-
lace et al. (1995) with the maximum acceptor-donor distance set to 3.35 
Å. LigPlot+ was also used to create 2D schematic diagrams of putative 
docking modes. 

2.4. Neural networks with TensorFlow and Keras 

In the present study, we chose the Smooth Overlap of Atomic 

Positions (SOAP) molecular descriptor Bartok et al. (2013a,b,c). This 
descriptor uses a local expansion of a smeared Gaussian atomic density 
for the description of atomic regions in molecules and employs ortho-
normal density functions based on spherical harmonics and radial basis 
functions. The SOAP descriptor was used as implemented in the DScribe 
package Himanen et al. (2020), which is an easy-to-use Python code 
library Van Rossum and Drake (1995). The following SOAP parameters 
were chosen: rcut=9 (cutoff for the local region), nmax=8 (radial basis 
functions per atom), lmax=8 (degree of spherical harmonics), 
sigma=1.0 (standard deviation of the Gaussians used) and aver-
age=’outer’ (averaging over the power spectrum of different sites); 
leading to a feature vector with a dimension of 29,160 for all structures 
studied. 

Keras Chollet (2015) and TensorFlow Abadi et al. (2015) neural 
networks (NN) were chosen as the first machine learning model within 
this study, abbreviated as TF (see Table 2). Keras is a deep learning 
Application Programming Interface (API) written in Python running on 
top of the machine learning platform TensorFlow. Several network to-
pology models and activation functions were tested. Finally, standard 
softplus activation functions were used for all neurons as suggested in 
the paper of Profitt and Pearson Profitt and Pearson (2019). The 
exception to this was the last layer in which the linear activation func-
tions were employed. The network topology was set to three dense 
layers, the first containing 100 neurons, the second 50 neurons, and the 
last with five neurons Profitt and Pearson (2019). Other neural network 
topologies were tested as well, taking into account up to four hidden 
dense layers and 200 neurons in each of the hidden layers. It was found 
that the huge number of input parameters per compound (29,160) 
entering the neural networks leads to an unpredictable dependence of 
the obtained results on the neural network topology (not shown). All 
weights in the neural networks employed were initialized randomly 
using the standard RandomUniform Keras function. Other parameters 
were kept at their default values. The NN model was trained for a fixed 
number of 100 total epochs using the optimizer of Kingma and Ba 
(2015), and an initial learning rate of 10− 3 (other parameters were kept 
at their default values). The validation set V was used during the TF 
training process to choose the best NN parameters within the training 
process. 

2.5. Gradient boosted decision trees with XGBoost 

As a complementary machine learning approach to neural networks, 
gradient boosted decision trees (GBDT) were selected. The results pre-
sented in this work were obtained using the optimized distributed 
gradient boosting library XGBoost Chen and Guestrin (2016), abbrevi-
ated XG (see Table 2). The SOAP descriptor was also used with the XG 
approach, with only slightly modified parameters compared to TF: 7Å 
for the local region cutoff (rcut) and 3.0 standard deviations of the 
Gaussians (sigma) used to expand the atomic density. Based on the re-
sults of a coarse grain manual hyper-parameter optimization (not 
shown), the maximum tree depth of six and 100 boosting rounds were 
used in GBDT training and inference. For a comprehensive list of all XG 
GBDT parameters, see Table S1. A finer hyper-parameter tuning was not 
beneficial due to inherent biases (and possible overfitting issues) of the 
training sets. 

2.6. Neural networks with SchNetPack 

In addition, the deep learning architecture SchNet was used, as 
implemented in the computational package SchNetPack Schutt et al. 
(2018) (abbreviated SP; see Table 2) to predict the docking scores of the 
compounds studied. SchNet is a variant of Deep Tensor Neural Networks 
(DTNNs), where interactions are modeled by continuous-filter convo-
lutions with filter-generating networks. The SchNet representation was 
used as a descriptor of the atomistic system of compounds in each data 
set. Atomic representations in SchNet had a 128-feature dimension, with 

Table 1 
Summary of the employed sets of compounds (number of compounds and the 
span of the number of atoms).  

Set name Set 
abbreviation 

Number of 
compounds 

Range of 
atom 
counts 

Small Steklac et al. (2021) S 866 6-120 
Large Tejera et al. (2020) L 8,696 4-117 
Validation Tejera et al. (2020) V 100 14-105 
Best Wu et al. (2020); Hosseini 

and Amanlou (2020); Adem 
et al. (2020); Shah et al. 
(2020); Fischer et al. (2020) 

B 45 26-145 

Organic synthesis O 172 15-120 
Production Sterling and Irwin 

(2015) 
P 38,392 4-119  
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six interaction blocks to incorporate the local environment of atoms 
within the atomic representation of molecules. The SchNet prediction 
block evaluates the atom-wise contributions to the property studied with 
two available options. In the first one, the contributions are summed up, 
and the result represents the desired property. This is an ideal approach 
for the description of extensive physical properties (e.g., atomization 
energy Jung et al. (2020)) and is later referred to as the ’summed’ 
approach. In the second option, the contributions are averaged and the 
result is suitable to predict intensive physical properties (e.g., atomi-
zation energy per atom Stocker et al. (2020)), this approach is referred 
to as ’averaged’. The parameters of the DTNN prediction block were 
unchanged with respect to the defaults provided by SchNetPack, i.e., the 
underlying neural network consists of two hidden layers with sizes of 
128 and 64 neurons, respectively. The output layer was set as a single 
neuron with the value of the predicted property. 

3. Results 

3.1. Molecular Docking 

The studied compounds and their docking poses were analyzed using 
two criteria. First and foremost, the free energy of binding (referred to as 
the docking score) as defined by the AutoDock scoring function was 
chosen for this purpose. Second, the number of putative hydrogen bonds 
formed between the compound and 3CLpro was considered. 

The compounds in our initial S data set have calculated free energies 
of binding (docking score) ranging from -3.35 kcal/mol to -15.06 kcal/ 
mol with a median score of -8.09 kcal/mol Steklac et al. (2021). Com-
pounds from the second L data set, together with the validation set V, 
achieved docking scores from -1.69 kcal/mol to -15.96 kcal/mol with a 
median score of -8.97 kcal/mol. Compounds proposed by the Depart-
ment of Organic Chemistry at SUT (data set O) achieved docking scores 
ranging from -4.70 kcal/mol to -15.01 kcal/mol with a median score of 
-9.09 kcal/mol. An improvement in the median docking score and its 
variance is expected, as the compounds were suggested with the aim of 
increasing the binding affinity towards SARS-CoV-2 3CLpro. The lowest 
median value of the docking score was observed for the data set B with 
-11.75 kcal/mol. The docking scores for this set ranged from -7.78 
kcal/mol to -15.71 kcal/mol. However, this ought to be expected as the 
B data set contains a selection of the best scoring compounds from 

several publications Wu et al. (2020); Hosseini and Amanlou (2020); 
Adem et al. (2020); Shah et al. (2020); Fischer et al. (2020). 

A two percent of the compounds from our sets (S,L,B,O,V) reached 
excellent docking scores below -13 kcal/mol. This holds especially true 
for the compounds in the B data set, where as many as 13 out of 45 
compounds achieved this or lower score Steklac et al. (2021). Seven 
additional compounds (out of 172) proposed in the O data set achieved a 
comparable docking score and can be considered as a basis for further 
targeted synthesis and subsequent in vitro experiments, see Fig. 3. 

Hydrogen bond analysis of combined data from all data sets used 
revealed that the majority of compound-protein complexes are stabi-
lized by six and fewer hydrogen bonds, with only 330 complexes sta-
bilized by more than six hydrogen bonds, see Fig. 4. The most commonly 
predicted participants in the formation of hydrogen bonds include S1 
subside amino acids Glu166 (56.05 % of observed cases), His163 (17.90 
%) and Gly143 (15.01 %). Only about 8 % of the examined compounds 
formed hydrogen bonds with the catalytic dyad His41-Cys145 found in 
the S2 subside, indicating that the mode of action of most compounds is 
to block the access to the catalytic dyad rather than its direct inhibition. 
Other amino acids frequently predicted to participate in the formation of 
hydrogen bonds include Thr190 (38.38 %), Gln192 (27.07 %), and 
Asn142 (15.70 %). 

Table 3 shows the top five ranked compounds from each separate 
data set along with their free energies of binding and the amino acids 
that participate in the formation of hydrogen bonds. The extended 
version of this table that includes up to 20 compounds from each data set 
can be found in Table S2. (Note that all docking scores and their pre-
dictions are compiled in the csv files of the Supplementary Material zip 
container.) The putative binding modes of the two top scoring com-
pounds to SARS-CoV-2 3CLpro can be found in Figure S1. 

Data sets S and B: Compounds in the S and B data sets are part of the 
previously reported study of ̌Stekláč et al. Steklac et al. (2021). However, 
differences arise between the results presented herein and Štekláč et al. 
Steklac et al. (2021) due to different LGA settings (previously, the total 
number of docking runs was set to 50 and the number of energy eval-
uations was 50,000,000). Due to the stochastic nature of AutoDock 
protocols, certain compounds have achieved different docking scores 
under different parameters. These differences vary up to 2.5 kcal/mol, 
which is comparable with the AutoDock scoring function standard error 
Morris et al. (2009). Nevertheless, the results achieved in these two 
instances show consistency, as 17 out of the top 20 scoring compounds 
for each data set remain the same with only slight variations in their 
order. The interested reader is pointed to the original article Steklac 
et al. (2021), where the binding affinities as well as the docking poses 
are thoroughly discussed. 

Data sets L and V: The overall best scoring compounds with the 
lowest free energy of binding can be found in the most robust data set, in 
which as many as 40 compounds exhibit 3CLpro binding affinities similar 

Fig. 2. Normalized distribution of data sets accounted in this study (splits per 10 atoms).  

Table 2 
Summary of ML methods used.  

Abbreviation Package Approach Descriptor 

TF TensorFlow NN DScribe/SOAP 
XG XGBoost GBDT DScribe/SOAP 
SP SchNetPack DTNN SchNet  
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to the top five compounds from other sets (below -14 kcal/mol). Pla-
zomicin (-14.75 kcal/mol) is a broad-spectrum aminoglycoside anti-
biotic used for the treatment of severe urinary tract infections. Its effect 
on COVID19 treatment has not yet been explored/reported. A high 
binding affinity (-15.11 kcal/mol) was also reported in the case of an yet 
uninvestigated compound (CID: 5289508). Eldecalcitol (-15.36 kcal/ 
mol), a D-vitamin analogue, is used for the treatment of osteoporosis 
Sanford and McCormack (2011). Its primary effect is the reduction of 
calcium reabsorption into the body from bone, leading to increased bone 
mineral density while decreasing the risk of further bone fractures 
Hatakeyama et al. (2010). An excellent docking score of Eldecalcitol is in 
agreement with our previously reported study Steklac et al. (2021), in 
which the pair of D-vitamin analogues calcitriol and calcifediol had 

shown high potential for the inhibition of SARS-CoV-2 3CLpro. Here one 
can find a further reason (besides the immunomodulatory role) Chiodini 
et al. (2021); Bouillon et al. (2018) why D-vitamin is suggested to be 
administered to patients during the COVID19 treatment. The second 
highest scoring compound, neladenoson bialanate (-15.49 kcal/mol), 
was part of separate clinical trials as a potential drug for the treatment of 
systolic and diastolic heart failures Voors et al. (2019). No repurposing 
study of any of the four aforementioned compounds (plazomicin, eld-
ecalcitol, compound with CID: 5289508, neladenoson bialanate) was 
previously published in connection with possible inhibition of 
SARS-CoV-2 replication through 3CLpro deactivation. Bicotrizole (-15.96 
kcal/mol) is a phenolic benzotriazole with broad-spectrum ultraviolet 
radiation absorbing potential. It has previously been reported to have 
the highest inhibitory potential against 3CLpro from compounds selected 
in Jiménez-Alberto et al. Jimenez-Alberto et al. (2020), but it has been 
disregarded from further inspection based on its properties which make 
it unsuitable for therapeutic use (poor water solubility) Mavon et al. 
(2007). 

Data set O: Compounds from the data set proposed by the Depart-
ment of Organic Chemistry at SUT showed lower binding affinity (less 
negative docking score) to the SARS-CoV-2 3CLpro structure than com-
pounds from other sets. The notable exception is the compound denoted 
as O_099, with a docking score of -15.01 kcal/mol. Inspection of the 
hydrogen bond patterns reveals that the docking score is largely driven 
by the shape complementarity of this compound with the targeted 
cavity. From the 20 best scoring compounds of the data set O, 13 form H- 
bonds with the protein structure. The recurring pattern in compounds 
from the O data set is the presence of multiple large substituents on the 
main molecular skeleton, such as phenyl groups substituted to various 
degrees and/or adamantyl groups. For instance, the aforementioned 
compound O_099 contains three benzimidazole groups, each with one 
adamantyl substituent. Other O compounds shown in Table 3 contain at 
least two aromatic groups (e.g., imidazole, benzene, furane, and benz-
imidazole rings) that offer various modes of substitution. These obser-
vations will be further utilized in the synthesis of compounds with 
enhanced binding affinity towards the SARS-CoV-2 3CLpro unit. 

3.2. Neural networks with TensorFlow and Keras 

The TF neural network training is shown in Figures S2a,b. The Mean 
Square Error (MSE) evaluated during the training process of both sets (S 

Fig. 3. Docking scores of data sets with respect to the size of the compounds (number of atoms). (a) blue/red - compounds from L/V set, respectively. (b) blue/red/ 
green - compounds from S/B/O set, respectively. 

Fig. 4. Frequency of predicted hydrogen bonds formed between the docked 
compounds and 3CLpro across (S, L/V, B, O) data sets. 
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and L) shows that the validation set V becomes well assessed within 20 
NN epochs (orange lines). The training set itself can also be considered 
well balanced with respect to the docking score prediction within the 20 
epochs (blue lines), see Figures S2a,b. The final (predicted vs. expected) 

correlation diagrams of the S and L TF training sets are depicted in 
Figures S3a,b. 

The test results for both TF trained NNs are depicted in Fig. 5. Here 
(see Fig. 5), the S trained TF NN is tested against L, B, and O data sets 
and the L trained one is tested against S, B, and O data sets. Furthermore, 
the linear regression fits (slope, intercept, standard errors, and R2), mean 
square error (MSE), and individual maximum absolute error (MAE) 
outliers are compiled in Table 4. These test results show that both TF 
trained NNs are capable to predict the docking scores with reasonable 
accuracy, i.e., the MSE is below 3 kcal/mol and mostly below 1 kcal/ 
mol, see Fig. 5. Thus, taking into account the docking score evaluation 
error of 2-3 kcal/mol Morris et al. (2009), these results are to be 
considered reliable. It is actually of no surprise that the best MSE was 
obtained for the combination of the training set S and the test set S (MAE 
outlier of 2.06 kcal/mol was found for the compound with CID: 5291). 
Compared to the combination of train/test set L (MAE outlier of 6.91 
kcal/mol was found for the compound with CID: 123966), the MSE for 
the train/test set S is lower by more than a half. The explanation of this 
result appears rather trivial, the S data set is ten times smaller than L, 
and hence the TF NN should be capable to adapt to a smaller set more 
accurately than to a larger one. On the other hand, the L trained TF 
model is more successful in docking score prediction for the external test 
sets compared to the S model. This is expected because a larger manifold 
of data allows for a better tuned ML protocol with a superior predictive 
capacity. This is confirmed with respect to the MSE, MAE outlier, R2, or 
slope values, see Table 4. The actual MAE outliers for the S trained TF 
NN are 8.48 (CID: 10945) for test set L, 4.99 (CID: 123794) for test set B, 
and 2.75 (compound O_15) for test set O (all values are in kcal/mol). In 
the case of L trained TF NN, the MAE outliers are 2.87 (CID: 5459840) 
for the S test set, 3.39 (CID: 123794) for the B test set, and 2.59 (com-
pound O_99) for the O test set (all values are in kcal/mol). 

All linear regression slopes are positive, and their values deviate 
from one by a small margin (none of the slopes is below 0.75). The in-
tercepts are well defined with respect to the zero value in the ideal case 
and/or the formal docking score error. Only test set B shows slopes 
above one, and the largest MSE and MAE outlier values (and/or the 
worst R2) among the predicted TF NN scores. These prediction results 
can be attributed to the presence of a non-negligible amount of com-
pounds with a larger number of atoms than those present in training sets 
L and S, see Fig. 2. Thus, the ML prediction of docking scores for a given 
compound (or a set of compounds) correlates strongly with the number 
of atoms, see below. This can also be seen in the subsequent XG and SP 
predictions, see below. 

3.3. Gradient boosted decision trees with XGBoost 

The same V data set as used for the validation (training progress) 
during training of both NN (training sets S and L) was also employed to 
control the termination of the XG GBDT parameter optimization process. 
Optimization of the XG GBDT parameter stopped after 10 iterations 
during which the RMSE (or the MSE) of the validation set did not 
improve. The XG MSE of the validation set during parameter optimi-
zation is shown in Figures S2c,d (orange line), including the MSE of the 
actual docking score prediction for the given training set (blue line). The 
correlation of XG predicted and expected docking scores of both training 
sets is shown in Figures S3c,d and Table 4. 

Prediction results for the S, L, B, and O test sets of both training sets 
are depicted in Figs. 6 and S3c,d. As found for TF, the XG approach is 
successful in the prediction of the expected docking scores. The MSE and 
MAE outlier values (including R2) are reasonable when taking into ac-
count the error of the AutoDock scoring function (2-3 kcal/mol) Morris 
et al. (2009), and comparable with the TF NN performance results. The L 
test set evaluated for the XG S training set shall be discussed in more 
detail as an example, see Fig. 6a. The correlation (represented by a linear 
fit - red line) is skewed because of the 0.745 slope, hence the predicted 
docking score values are overestimated compared to the reference 

Table 3 
Top five scoring compounds from each data set for the 3CLpro 6WQF structure 
with their docking scores (DS) and amino acids participating in predicted H- 
bond formation.  

Data 
set 

CID Name DS 
[kcal/ 
mol] 

H-bond 
forming amino 
acids 

S 118628567 Subasumstat -14.45 Glu166, 
Thr190  

53472683 Vazegepant -14.40 Thr190  
6918155 Ciclesonide -14.38 Thr26, Glu166, 

Gln189  
5281040 Montelukast -14.27 Asn142, 

Glu166  
5459840 20- 

Hydroxyecdysone 
-14.04 Thr26, Gly143, 

Glu166, 
Arg188, 
Thr190, 
Gln192 

B 25151504 Cobicistat -15.71 Asn142  
24873435 Simeprevir -14.71 Ser46, Glu166, 

Gln189  
3010818 Telaprevir -14.66 Thr26, His41, 

Asn142, 
Glu166  

45110509 Paritaprevir -14.27 Phe140, 
Gly143, 
Cys145, 
Gln189  

5362440 Indinavir -14.02 Glu166 
L 3571576 Bisoctrizole -15.96 Thr26, Asn142, 

Gly143  
56848985 Neladenoson 

bialanate 
-15.49 Thr26, Asn142, 

Glu166  
6918141 Eldecalcitol -15.36 Thr25, Thr26, 

Cys44, Asn142, 
Arg188, 
Thr190, 
Gln192  

5289508a - -15.11 Thr26, His163, 
Gln189  

42613186 Plazomicin -14.75 His41, Phe140, 
Glu166, 
Arg188, 
Gln189, 
Thr190, 
Gln192 

O O_099a - -15.01 -  
O_104a - -14.01 Gly143, Gln189  
O_120a - -13.74 Gln189, 

Thr190, 
Gln192  

O_101a - -13.73 Glu166  
O_095a - -13.64 Glu166 

P’ ZINC000049593065a - -15.81 Leu141, 
Asn142, 
Ser144, 
His163, Glu166  

ZINC000028472118a - -15.56 Ser46, Asn142, 
Gly143, 
Thr190, 
Gln192  

ZINC000072190175a - -15.15 Asn142  
ZINC000049942448a - -15.11 Leu141, 

Gly143, 
Ser144, His163  

ZINC000095535846a - -14.96 Asn142, 
His164, 
Glu166, 
Gln189  

a Compound does not have a trivial name 
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Fig. 5. Correlation between TF predicted and AutoDock calculated (expected) docking scores for: (a) L / S, (b) S / L, (c) B / S, (d) B / L, (e) O / S, (f) O / L (test/ 
training set). The black dashed line represents the ideal correlation between the predicted and expected results and the red solid lines represent linear regression fits 
between the expected (docking) results and the predicted ones. 
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docking scores below ca. -9 kcal/mol and underestimated for com-
pounds with the highest inhibition potential found by AutoDock. 
However, the resulting MSE of 1.163 kcal/mol indicates a reasonable 
performance when considering the score span of about 14 kcal/mol in 
this test set, yet certain outliers are clearly visible. The MAE outlier is 
fairly large, 7.95 kcal/mol (CID: 123966). 

The inference of the S trained XG predicted scores from the B and O 
test sets is shown in Figs. 6c and 6e. The correlation for the B test set is 
clearly the worst, the slope of the linear fit is 0.605, the MSE is 2.740 
kcal/mol, and the MAE outlier is 4.58 kcal/mol (compound CP9 from 
Fischer et al. Fischer et al. (2020)), see below and in Table 4. It is worth 
noting that the B test set shows the worst prediction reliability for TF 
NNs as well. Interestingly, the TF slopes for the B test set are larger than 
one. The XG (S training set) results of the O test set practically copy 
those of the L test set, the slope value is 0.742, the MSE is 1.301 
kcal/mol, and the MAE outlier is of 4.82 kcal/mol (compound O_102) 
which is comparable to the B test set MAE outlier. As already found for 
TF ML, the better performance of the O test set compared to B can be 
attributed to a well-defined composition of the O test set with respect to 
the number of atoms in (the molecular weight of) the compounds. 
Furthermore, the O test set does not show a large variation in the 
compounds’ structure. 

The results of the trained XG GBDT with the L training set are more 
optimistic than in the case of the S training set (being in close resonance 
with the TF results). Although the B test set improves only slightly in 
terms of the slope, intercept, MSE, and MAE outlier, the R2 values 
become worse, see Table 4 and below. Compared to the results shown in 
Fig. 6a, Fig. 6b depicts the reversed train-test (L-S) setup order, which 
leads to a decrease of the MSE by almost a factor of two (0.713) in the L 
training set XG predictions, including the improvement of the MAE 
outlier and R2, see Table 4. There is also a notable improvement of the 
slope (intercept) of the linear fit, 0.866 (-0.728 kcal/mol), indicating a 

tendency to slightly underestimate the top scores. The MAE outlier is 
decreased to 3.72 kcal/mol (CID: 53477854) and the outliers are now 
biased by a much narrower error bar and distributed more regularly 
with higher prediction accuracy achieved for the less potent compounds. 
It has been mentioned (see Fig. 2) that the count of compounds with a 
lower number of atoms (up to 70) is well accounted for in the training 
sets and the docking score prediction for such compounds is more ac-
curate than for larger compounds (like those in test set B). Additionally, 
as already stated (subsection 3.1, Docking scores), only 40 compounds 
of the L set exhibit binding affinities (docking scores) below -14 kcal/ 
mol, hence it can be assumed that the desired property will suffer from a 
certain bias (e.g., XG GBDT tends to underestimate the best scoring 
compounds). Figs. 6d and 6f show the inference accuracy of L training 
set with respect to the B and O test sets. No significant improvement of 
the predictive power of the L training set is observed for the B test set XG 
docking scores, when compared to the S training set. The MSE decreases 
from 2.740 to 2.409 kcal/mol, the slope increases from 0.605 to 0.640, 
and MAE outlier decreases to 3.59 kcal/mol (CID: 25151504), which is 
similar to the S training set (3.72 kcal/mol, CID: 53477854) and still 
larger than in the case of the O test set (2.40 kcal/mol, O_95) of the L 
trained XG GBDT. In contrast, the description of the O test set (Fig. 6f) by 
the L trained XG GBDT is superior to the S one (Fig. 6e). The MSE de-
creases to less than half (0.596 kcal/mol), although the actual slope is 
almost unchanged, 0.745, and the MAE outlier is reduced by a factor of 
two, respectively, see Table 4. A better prediction of the docking scores 
of compounds from the O test set by the L trained XG GBDT (including 
the improved statistics) is further reflected in the shift of the crossing 
points between the ideal correlation of expected and predicted corre-
lation lines towards the better scoring compounds. 

Table 4 
Machine learning results: slope, intercept, slope stderr (σs), intercept stderr (σi), R2, MSE, and MAE outlier.  

TF training set test set slope intercept σs σi R2 MSE MAE 

S S 0.887 -0.619 0.006 0.055 0.958 0.342 2.058 
S L 0.755 -2.126 0.005 0.042 0.757 1.124 8.479 
S B 1.245 2.648 0.132 1.576 0.673 2.855 4.989 
S O 0.780 -1.394 0.030 0.282 0.803 1.098 2.894 
L L 0.837 -1.452 0.004 0.037 0.835 0.761 6.914 
L S 0.894 -0.577 0.010 0.087 0.904 0.565 2.870 
L B 1.030 0.435 0.109 1.300 0.674 1.774 3.388 
L O 0.946 -0.051 0.028 0.268 0.869 0.671 2.587 
XG training set test set slope intercept σs σi R2 MSE MAE 
S S 0.893 -0.452 0.005 0.045 0.972 0.371 2.326 
S L 0.745 -2.198 0.005 0.043 0.749 1.163 7.953 
S B 0.605 -3.379 0.064 0.763 0.674 2.740 4.577 
S O 0.749 -1.658 0.035 0.329 0.733 1.366 4.823 
L L 0.850 -1.331 0.003 0.029 0.896 0.490 3.725 
L S 0.866 -0.728 0.010 0.092 0.887 0.713 3.716 
L B 0.640 -3.132 0.072 0.853 0.649 2.409 3.591 
L O 0.758 -2.037 0.024 0.230 0.852 0.580 2.399 
SP training set test set slope intercept σs σi R2 MSE MAE 
S S 0.916 -0.378 0.008 0.073 0.933 0.436 2.666 
S L 0.816 -1.603 0.005 0.048 0.739 1.240 8.889 
S B 1.542 5.262 0.222 2.642 0.528 9.510 10.395 
S O 0.828 -1.058 0.037 0.352 0.746 1.183 3.758 
L L 0.849 -1.329 0.004 0.038 0.832 0.775 5.781 
L S 0.916 -0.346 0.011 0.092 0.897 0.632 3.436 
L B 1.143 1.565 0.174 2.067 0.501 4.545 8.044 
L O 0.928 -0.486 0.034 0.322 0.816 0.708 4.675 
SP training set test set slope intercept σs σi R2 MSE MAE 
S ’averaged’ S 0.752 -1.682 0.012 0.108 0.813 1.107 3.607 
S ’averaged’ L 0.650 -2.998 0.005 0.045 0.669 1.549 8.140 
S ’averaged’ B 0.504 -4.205 0.065 0.776 0.581 4.124 4.718 
S ’averaged’ O 0.662 -2.622 0.030 0.289 0.736 1.202 4.406 
L ’averaged’ L 0.863 -1.123 0.004 0.032 0.875 0.587 5.068 
L ’averaged’ S 0.879 -0.507 0.010 0.092 0.891 0.794 5.114 
L ’averaged’ B 0.920 -0.054 0.096 1.142 0.681 2.164 4.285 
L ’averaged’ O 0.787 -1.475 0.024 0.230 0.862 0.746 5.322  
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Fig. 6. Correlation between XG predicted and AutoDock calculated (expected) docking scores for: (a) L / S, (b) S / L, (c) B / S, (d) B / L, (e) O / S, (f) O / L (test/ 
training set). The black dashed line represents the ideal correlation between the predicted and expected results and the red solid lines represent linear regression fits 
between the expected (docking) results and the predicted ones. 
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3.4. Neural networks with SchNetPack 

Two different ways to aggregate the results from the prediction block 
of SchNetPack (SP) were used, denoted as ’summed’ and ’averaged’ and 
employed for both the S and L training sets. This results in four distinct 
neural networks, which ought to be considered. Herein, we will focus in 
more detail on the pictorial representation of the SP ’summed’ results 
given in Fig. 7 and the complementary details about SP ’averaged’ re-
sults are given in Figure S4. The linear regression fits (as well as the MSE 
and MAE outlier values) of the training and test sets [S, L, B, O] are given 
in Table 4. The MSE of the SP ’summed’ training process is shown in 
Figures S2e-f. It can be seen that the training lasted for almost 600 and 
200 epochs for S and L sets with respect to a stable MSE value of the 
validation V set (orange line), respectively. The MSE of each training set 
stabilizes after ca. 200 SP ’summed’ epochs, see blue lines in 
Figures S2e-f. The SP ’averaged’ validation and training MSEs are 
similar to the ’summed’ approach, and the magnitude of MSE fluctua-
tions in the validation sets and the MSE convergence with the number of 
epochs are both consistent, see Figures S2g-h. 

Based on the results presented in Figs. 7 and S4, the SP approach is 
successful in predicting the docking scores as found for the previous ML 
models. As was already the case in the previous two ML techniques, the S 
train set for S test set prediction yields lower MSE and the slope (R2) 
values are closer to the ideal value compared to the L train L set set 
combination, see Table 4 and Figures S3e,f. The MAE outliers of the 
’summed’ SP approach for the S and L training sets are 2.67 (CID: 
118628567) and 5.78 kcal/mol (CID: 5280899), respectively, and the SP 
’averaged’ MAE outliers are 3.61 (CID: 5281040) and 5.07 kcal/mol 
(CID: 9811704), respectively. Nevertheless, the SP predictive power for 
the other test sets is better for the L training set. The MSE values are 
consistently lower for both test sets (O and B) in the case of the L vs. S 
training set comparison (0.820 and 4.545 kcal/mol vs. 1.002 and 9.510 
kcal/mol, respectively). It is fair to note that the ’summed’ SP MAE 
outlier of O test set is smaller for the S training set (3.76 kcal/mol, O_98) 
compared to L training set (4.68 kcal/mol, O_99). The respective MAE 
SP ’averaged’ outlier values are 4.41 (O_120) for the S and 5.32 kcal/ 
mol (O_95) for the L training sets. Nonetheless, considering the 2-3 kcal/ 
mol error of the AutoDock scoring function, both SP predicted scores for 
both training sets provide the verification of a reasonable choice of the 
training set and neural network model. When comparing the ’summed’ 
and ’averaged’ SP results, the ’summed’ SP procedure shows a better 
prediction behavior for the S, L, and O test sets when considering the 
slope, R2, MSE and MAE outlier statistics, see Table 4, Figs. 7 and S4. 
However, this trend becomes reversed for the B test set. The B test set 
MSE SP ’averaged’ value for the S training set is only 4.124 kcal/mol 
compared to the value of the SP ’summed’ approach of 9.510 kcal/mol 
and only 2.164 kcal/mol vs. 4.545 kcal/mol for the L training set. The SP 
’summed’ MAE outliers (train S 10.40 kcal/mol, CID: 5361 and train L 
8.04 kcal/mol, CID: 5361) are larger than in the ’averaged’ scenario 
(train S 4.72 kcal/mol, CID: 25151504 and train L 4.29 kcal/mol, CID: 
9854073). Interestingly, the slope of the B test set is larger than one for 
the ’summed’ SP NN (as is the case of the TF NNs), while the ’averaged’ 
SP NN slope is below one (as is the case in the XG GBDT approach). 

4. Discussion 

After testing three different S and L trained machine learning models, 
it was found that the larger training set L leads to a better docking score 
prediction of external test sets as expected (lower MSE and MAE outlier 
values and the linear regression parameters are closer to their ideal 
values). In addition, the B test set indicates an issue with compounds 
whose size (i.e., the number of atoms) notably exceeds the compounds’ 
size present in the training sets (the distribution of the number of atoms 
in the compounds of test set B is shifted to larger values, see Fig. 2). 
Thus, the results for the B test set are the worst (MSE, MAE outlier, and 
linear regression results). Note that all calculated and predicted docking 

scores are available in a zip container of the Supplementary Material. 
To further explore the prediction behavior of the trained ML models, 

the results for the production set P will be discussed below. The L trained 
TF, XG, and SP predictions of the docking scores for the P data set are 
shown in Figs. 8a,c,e (blue dots) to present the absolute performance of 
the ML models used. The comparison of the predicted docking scores of 
the P data set (Fig. 8) with the AutoDock scores for the S, L, B, and O 
data sets (Fig. 3) looks very alike. The docking scores tend to decrease 
monotonically up to compounds with 80 atoms, after which TF and XG 
predictions plateau at -15.3 (ZINC000096300428) and -13.2 kcal/mol 
(ZINC000058485982), respectively. In the case of the SP ’summed’ 
model, lower docking score predictions are obtained compared to TF 
and XG, namely -20.9 kcal/mol (ZINC000072266997), see Figs. 8a,c,e 
(ZINC000072266997 is actually omitted in Fig. 8e). 

To assess the quality of the ML prediction capacity ca. 1200 com-
pounds from the P data set were randomly chosen and merged into the 
P’ data set, see the Data sets of compounds subsection of the Methods 
section. The ML prediction of docking scores for the P’ data set is shown 
in Figs. 8a,c,e (red dots), including the 20 top ranking compounds of P’ 
(black dots) as found by AutoDock, see Table S2. Below, the best 
Autodock scoring compounds of P’ will be highlighted first, subse-
quently, the performance of the ML prediction will be considered 
together with further options for ML protocol improvements discussed 
as last. 

P’ docking scores: Compounds from the data set P’ have achieved 
docking scores ranging from -2.68 kcal/mol to -15.81 kcal/mol. The 
docking score variance should not be surprising, since this data set 
contains compounds with a regular distribution of the number of atoms 
(compounds with fewer atoms tend to achieve worse docking scores). It 
is important to note that there were 27 compounds with a docking score 
above -1 kcal/mol. The common trait among them is their size (number 
of atoms), 24 of these compounds have more than 101 atoms, while the 
remaining three compounds are in the 71-100 atoms number range. 
Thus, it can be surmised that the unusually small docking score is a 
result of noncomplementarity of their shape with the protein cavity. 
Excluding these 27 compounds, which are left out of any further dis-
cussion, the median docking score of P’ was -8.71 kcal/mol. The 20 best 
scoring compounds from the P’ data set include 11 compounds tested in 
vivo only, six compounds with human exposure, and three compounds in 
clinical trials, see Tables 3 and S2. A common pattern among these 
compounds (7 out of 20) is their observed/predicted activity at Mu-type 
and Delta-type opioid receptors based on ChEMBL 20 Gaulton et al. 
(2016). Three out of five top scoring compounds (ZINC000049593065, 
ZINC000072190175, ZINC000049942448) exhibit this activity. There 
are six compounds in the selection of the 20 best scoring compounds 
with neither observed nor predicted activities based on ChEMBL 20. The 
common identifiers of these structures are the high number of aromatic 
rings and amine and ketone functional groups, offering various means of 
hydrogen bond formation. The hydrogen bond pattern for this produc-
tion set loosely follows the observations made for the data sets discussed 
in the molecular docking results section, with the identified hydrogen 
bonds to Asn142, Glu166, Gln189 and Thr190. 

P’ docking score prediction: The correlation between the expected 
and predicted docking scores of the P’ data set shows consistency with 
up to 60 atoms in a compound, see Fig. 8 and Table S3. The MSE for the 
docking score predictions for compounds with fewer than 61 atoms are 
lower than 2 kcal/mol, see Table S3. Still, the presence of outliers with 
an absolute error above 2 kcal/mol between the predicted and expected 
docking scores for subsets of compounds with 20-41 and 40-61 atoms 
leads to worse linear regression slopes. In total, there are 36, 21, and 34 
such 2 kcal/mol outliers for compounds with up to 61 atoms in the TF, 
XG, and SP ’summed’ results of data set P’, respectively. In addition, 
only one outlier is found in the SP ’summed’ prediction with an absolute 
error above 4 kcal/mol. In the case of compounds with the number of 
atoms larger than 60, the MSE values are worse than 4 kcal/mol. 
Nevertheless, 105, 126, and 103 compounds have the absolute 
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Fig. 7. Correlation between SP ’summed’ predicted and AutoDock calculated (expected) docking scores for: (a) L / S, (b) S / L, (c) B / S, (d) B / L, (e) O / S, (f) O / L 
(test/training set). The black dashed line represents the ideal correlation between the predicted and expected results and the red solid lines represent linear regression 
fits between the expected (docking) results and the predicted ones. 
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Fig. 8. The performance of ML docking score predictions for set P (a) TF; (c) XG; and (e) SP. Correlation of the predicted and expected docking scores of P’ per 20 
atoms batches with the size of the compounds (b) TF; (d) XG; and (f) SP. 
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prediction error below 2 kcal/mol in the case of TF; 130, 140, and 103 
compounds in the case of XG; and 111, 93, and 87 compounds in the case 
of the SP ’summed’ predicted docking scores of 61-80, 81-100, and 101- 
120 atoms in the subsets of P’ compounds, respectively. The prediction 
outliers above 2 kcal/mol tend to be overestimated, see Fig. 8. This 
means that the ML approaches would suggest these compounds as 
suitable and their rejection would be based on the subsequent evaluation 
of the docking score. This also manifests itself in the top 20 AutoDock 
scoring compounds of P’ which, albeit shift to compounds with the 
number of atoms above 80, are being well assessed by the trained ML 
models, see Figs. 8a,c,e (black dots). Hence, the trained ML models 
incline towards false positive results for docking score prediction. Still, 
the essential motivation for ML docking score prediction, i.e., the 
reduction of the required CPU time and resources by rejection of less 
suited compounds, is accomplished. When considering the time re-
quirements for the direct docking score evaluation of a single com-
pound, which is 3-5 CPU hours, the ML protocol is orders of magnitude 
faster, i.e, the descriptor preparation and docking score prediction for 
hundreds to thousands of compounds happens in a matter of seconds. 

It is of no doubt that the inclusion of compounds containing a higher 
number of atoms within the training sets is desirable to improve the 
docking score prediction. Essentially, two strategies (and/or hypotheses 
of the way in which larger molecules are included in the training set) can 
be considered. First is a training set of molecules with a normal, i.e., 
Gaussian, distribution tailored towards the larger compounds (up to 150 
atoms). The second approach accounts for an exponential distribution 
with respect to the size of compounds, due to the increase in their 
structural variability with the number of atoms. The advantage of the 
first approach is the promise of a well-defined accuracy for the entire 
size span of the compounds, with the danger that the larger compounds 
are still not sufficiently represented (overestimation of docking scores). 
The second approach should be much better suited for the prediction of 
docking scores of larger molecules, while the lighter compounds (e.g., 
below 40 or 60 atoms) might be predicted less accurately. Although the 
protein cavity was not explicitly accounted for within the ML process, 
the inclusion of compounds that are not able to bind to the active site in 
the training set is also desirable. Thus, the ML model can comprehend 
this information, which is very relevant for compounds with more than 
100 atoms. This is the case for the P’ set where 12 compounds with 
docking scores above -6 kcal/mol that are considerably overestimated in 
the ML predictions, see Figs. 8b,d,f. In addition, the suitability of the 
application of an ML model for the prediction of a docking score of a 
particular compound could be automated on the basis of the evaluation 
of structural similarity with compounds from the training set. A further 
step towards a more robust prediction of docking scores employs an 
iterative (add on what you have) extension of the training set Gentile 
et al. (2020); Ton (2020) with respect to compounds whose docking 
scores were available or were not assessed accordingly (i.e., taking into 
account outliers and inclusion of compounds with up to 120 atoms). The 
aforementioned points are worth the effort in the forthcoming studies. 
These should improve the robustness of ML docking score prediction, 
allowing to extend these ML models to additional protein targets of the 
virus in similar drug repurposing strategies, and help in the development 
of ML assisted drug design. Herein, the focus was to explore the per-
formance of different ML models to predict the docking scores of com-
pounds using a direct Cartesian coordinates space (xyz/mol2/sdf/pdb) 
file format for the generation of ML descriptors. 

5. Conclusions 

All three ML approaches are successfully trained to predict docking 
scores. Naturally, the larger training set (L) yields better predictions of 
the docking scores compared to the smaller one (S). 

It is worth pointing out that the worst ML prediction was obtained for 
test set B that contains compounds with a higher number of atoms than 
those present in the training sets. 

The potential of the trained ML models to predict docking scores has 
been evaluated for the in vivo ZINC data set (P). Our ML approaches are 
suited for an accurate docking score prediction of compounds containing 
up to 60 atoms (ca. 600 Da). In addition, the ML predicted docking 
scores of larger compounds are overestimated (i.e., false positive), 
which means that these compounds are classified as potential candidates 
for docking score validation when employing these ML processes in a 
drug repurposing strategy. 

Hence, the direct Cartesian coordinates space-based descriptors are 
proved useful in the ML based docking score prediction. Thus, they are a 
valid alternative with respect to the single string SMILES representation, 
descriptors of which are based on molecular fingerprints. In addition, 
the direct Cartesian coordinates space-based representation of com-
pounds appears to be a relevant choice for the inclusion of the protein 
cavity effects (direct interaction) within the ML protocol in the future. 
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The following files are available free of charge.  

• mmc2.pdf: Tables: XGBoost parameters; Top scoring compounds 
from each data set; P’ machine learning results per 20 atom subsets 
in the size of compounds. Figures: Putative binding modes of the two 
best scoring compounds from each data set; Validation for S and L 
training process; Results for S and L training process; The S and L 
training set of the ’averaged’ SchNet architecture performance. 
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• csv files with docking scores and/or their predictions for all sets; csv 
file with SMILES codes and overlap with PubChem and ZINC data-
bases for the O set compounds; pdf file (mmc3.pdf) with docking 
scores and structural formulas for the O set compounds. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.compbiolchem.2022.107656. 
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