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Abstract
Oxidative stress is a proposed mechanism in brain aging, making the study of
its regulatory processes an important aspect of current neurobiological
research. In this regard, the role of the aging regulator insulin-like growth factor
I (IGF-I) in brain responses to oxidative stress remains elusive as both
beneficial and detrimental actions have been ascribed to this growth factor.
Because astrocytes protect neurons against oxidative injury, we explored
whether IGF-I participates in astrocyte neuroprotection and found that blockade
of the IGF-I receptor in astrocytes abrogated their rescuing effect on
neurons. We found that IGF-I directly protects astrocytes against oxidative
stress (H O ). Indeed, in astrocytes but not in neurons, IGF-I decreases the
pro-oxidant protein thioredoxin-interacting protein 1 and normalizes the levels
of reactive oxygen species. Furthermore, IGF-I cooperates with trophic signals
produced by astrocytes in response to H O such as stem cell factor (SCF) to
protect neurons against oxidative insult. After stroke, a condition associated
with brain aging where oxidative injury affects peri-infarcted regions, a
simultaneous increase in SCF and IGF-I expression was found in the cortex,
suggesting that a similar cooperative response takes place . Cell-specificin vivo
modulation by IGF-I of brain responses to oxidative stress may contribute in
clarifying the role of IGF-I in brain aging.
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Introduction
Oxidative stress is usually considered a mechanism of brain aging1. 
However, contradictory data2 and lack of firm evidence3 makes it 
difficult to firmly establish its actual significance in this process 
(see López-Otín et al.4 for a recent review). One important aspect 
that requires further clarification in this regard is the relationship 
between oxidative stress and insulin peptides, a well conserved 
family of hormones firmly linked to aging. Extensive work in ver-
tebrates and invertebrates indicates that the insulin-like growth fac-
tor I (IGF-I)/insulin signalling (IIS) pathway has a negative impact 
on aging. It has been argued that this detrimental action is medi-
ated by reducing cell defences to oxidative stress5–7 which, in turn 
is harmful for neuronal survival1. However, IGF-I has been shown 
to be largely neuroprotective8, even in conditions such as ischemic 
injury or brain trauma where oxidative stress is most likely a major 
pathogenic mechanism9. Thus, it is unclear whether or not IGF-I 
protects the brain against oxidative stress as the current evidence 
is contradictory.

A possible explanation for these apparently contradictory obser-
vations may be that modulation of the cellular response to oxida-
tive stress by IGF-I is cell-dependent10. Until now, only neurons 
have been studied in this regard. However, astrocytes, a major cel-
lular element of the brain, are essential contributors to neuronal 
homeostasis and are coupled to neurons in the response to oxida-
tive stress in order to help protect them11. It is thus possible that 
IGF-I participates in the response of astrocytes to oxidative stress 
as part of the overall brain response encompassing all types of brain 
cells, not only neurons. Contrary to what we previously observed in 
neurons12, we report here that IGF-I protects astrocytes against 
oxidative stress and, very significantly, also co-operates with astro-
cytes to protect neurons.

Methods
Animals
We used postnatal rats and mice for in vitro cultures (P0-3 days 
for astrocytes and P7 for neurons) and 3 month old mice for in 
vivo experiments. P2 Wistar rats (8 g ± 0.04 body weight, n=240, 
Harlan, Spain), P3 (2 g ± 0.03, n=36, Harlan) and 3 months old (27.6 g 
± 0.812; n= 24) C57BL6 mice and P7 GFP transgenic mouse pups 
(4.25 g ± 0.22, n=126; in-house colony) were used. Pups used were 
of both sexes and no attempt to sex them was done. Adult mice were 
male. Rat tissue was used in all in vitro experiments except when 
using GFP cell derived from transgenic mice. In vivo experiments 
were done in mice for future comparisons with transgenic mice. 
All efforts were made to minimize suffering and reduce the number 
of animals. Animals were kept under light/dark, 12 h/12 h) condi-
tions following EU guidelines (directive 86/609/EEC) and handled 
according to institutionally-approved procedures (CSIC bio-ethics 
subcommittee project code SAF2010-1703). Animals were fed ad 
libitum with laboratory rodent chow (Teklad Global 2018S) and 
kept in standard laboratory cage conditions with 4 animals/cage.

Reagents
Antibodies used in this study are detailed in Table 1. The different 
drug inhibitors used in the study are given in Table 2. Hydrogen 
peroxide (H

2
O

2
) and the calcium chelator BAPTA-AM were pur-

chased from Sigma (Steinheim, Germany). IGF-I and SCF were 
purchased from Prospec-Tany Technogene, (Israel).

Plasmids
pECE-FOXO3 and pECE-FOXO3-TM (triple mutant T32A/S253A/
S315A, herein called MFOXO3) were kindly provided by ME 
Greenberg (Harvard Medical School, Boston, USA). p6xDBE-luc 
(reporter luciferase plasmid with six copies of the DAF16 fam-
ily protein-binding element) and pRL-TK (TK-Renilla luciferase) 
were a kind gift of BM Burgering (University Medical Centre, 
Utrecht, The Netherlands). Dominant negative IGF-IR expression 
plasmid was kindly donated by D. Le Roith (Mt Sinai, New York, 
USA). Plasmids expressing shRNA for TXNIP1 were purchased 
from Origene (USA). Txnip1 plasmid was purchased from Thermo 
Scientific Open Biosystems (Waltham, USA).

Cell culture and transfections
Cerebellar granule cultures were produced from either P7 rat or 
GFP transgenic mouse cerebella as previously described13. In brief, 
cells were plated onto 6 or 12-well dishes coated with poly-l-lysine 
(1 μg/ml) at a respective final density of 1.5×106/well or 0.45×106/
well. Cells were incubated at 37°C/5% CO

2
 in Neurobasal (Gibco, 

USA) medium supplemented with 10% B27 (Gibco), glutamine 
(5 mM) and KCl (25 mM). All experiments were carried out in 
2–7 day old cultures, with neurons showing neurite extensions. Dif-
ferent times in vitro were used to analyze time-dependent param-
eters such as cell survival. Rat granule neurons were transfected 
24 h after plating. The DNA: transfection agent ratio (Neurofect, 
Genlantis, San Diego, USA) was 1:7. The percentage of neurons 
transfected was 5–10%, as assessed with a GFP vector. Neurons 
were left untreated for at least 48 hours. On the day of the experi-
ment, medium was replaced with Neurobasal + 25 mM KCl. Two 

      Amendments from Version 1

We very much appreciate the expert reviews that will help us 
improve this manuscript and our future work. As indicated by 
Dr Margeta we describe two sets of in vitro actions of IGF-I that 
may be roughly labeled as “astroprotection” and “neuroprotection 
through astrocytes”. We assumed that enhanced resilience of 
astrocytes to oxidative injury provided by IGF-I would positively 
impact on their ability to protect neurons in vivo. However, we do 
not have any direct experimental evidence that this is the case. 
We are planning quantitative proteomics of astrocytes with and 
without IGF-I receptors to address this lack of evidence. We 
have now deleted any comment suggesting this connection and 
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findings. Astro-protective effects of IGF-I (anti-oxidant and Txnip-
related, independent of neuroprotection) are now more specifically 
addressed as such. We now include the experiments required 
by the reviewer previously not shown (see new Figure 1D, and 
Figure 7A right panel) and have added the finding that astrocyte 
SCF release (and not only SCF mRNA, new Figure 6B right panel) 
is increased in response to oxidative stress. The latter reinforces 
our interpretation that IGF-I cooperates with astrocytes to protect 
neurons through SCF. The rest of the technical details requested 
and formal changes have been incorporated to the manuscript.
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Table 1. Antibodies used in the study.

ANTIBODY PRODUCT 
Nº MANUFACTURER WORKING 

CC SPECIES ISOTYPE ANTIGEN 
(EPITOPE)

AFFINITY 
PURIFIED REFERENCE

Akt1/2 (H-136) sc-8312
Santa Cruz 
Biotechnology 
(California, USA)

1:1000 rabbit polyclonal
aminoacids 
345–480 of 
human Akt1/2

unknown 42–45

β-actin (Clone 
AC-74) A5316 Sigma (Steinheim, 

Germany) 1:50000 mouse monoclonal
N-terminal end 
of β-isoform 
of actin

ascytes 
fluid

46–49

Cu/Zn 
superoxide 
dismutase 
(SOD)

SOD-101 Assay Designs 
(Michigan, USA) 1:1000 rabbit polyclonal Native rat 

Cu/Zn SOD yes 50,51

MnSOD 
superoxide 
dismutase 
(SOD)

SOD-111 Assay Designs 
(Michigan, USA) 1:2500 rabbit polyclonal Native rat Mn 

SOD yes 52–55

p44/p42 MAPK 
(ERK1/2) 9102 Cell Signalling 

(Danvers, USA) 1:2000 rabbit polyclonal
sequence in 
the C-terminal 
of rat p44MAPK

yes 56–59

phospho-Akt 
(Ser473) 9271 Cell Signalling 

(Danvers, USA) 1:1000 rabbit polyclonal

residues 
surrounding 
Ser473 of 
mouse Akt

yes 46,60–63

phospho- 
ERK1/2 
(Thr202/Tyr204)

9101 Cell Signalling 
(Danvers, USA) 1:2000 rabbit polyclonal

residues 
surrounding 
Thr202/Tyr204 
of human p44 
MAPK

yes 63,63,63–66

SCF sc-9132
Santa Cruz 
Biotechnology 
(California, USA)

1:1000 rabbit polyclonal
aminoacids 
26–214 of 
human SCF

unknown 67–69

TXNIP1 K0205-3 MBL (Nagoya, 
Japan) 1:2000 mouse monoclonal

human 
recombinat 
TXNIP

unknown no refs

hours later, IGF-I (10-7 M) and/or hydrogen peroxide (H
2
O

2
) at 

doses of 50–150 μM were added. Inhibitory drugs were given 45 min 
before treatments. We used H

2
O

2
 as an oxidant stimulus because it 

is an endogenously produced reactive oxygen species (ROS) that 
serves as a precursor to hydroxyl radicals and possesses signalling 
capacities14. Astrocyte cultures were prepared from P3 rat or GFP 
mouse forebrain, as previously described15 after animals were sac-
rificed by decapitation. Cells were grown on Dulbecco’s modified 
Eagle’s medium F12 (DMEM-F12) supplemented with 10% fetal calf 
serum. After 12 days astrocytes were seeded at 2.5×105 or 1.25×105 
cells/well in 6-well and 12-well culture plates, respectively. On the 
day of the experiment cells were treated with IGF-I (10-7M), H

2
O

2
 

(50–200 μM) and/or inhibitors, as above. For transfection, astrocytes 
were seeded at 2.5×105 or 1.25×105 cells/well in 6-well and 12-well 
culture plates respectively, and after 16 h constructs were mixed with 
Fugene HD (Roche, Switzerland) in a 1:3 ratio, and added follow-
ing the manufacturer’s instructions. Alternatively, astrocytes were 
electroporated (2×106 astrocytes with 2 μg DNA or shRNA) before 

seeding using an astrocyte Nucleofector Kit (Lonza, Switzerland). 
After electroporation, cells were plated to obtain a final cell den-
sity on the day of the experiment similar to that obtained with the 
transfection method. All experiments were performed after 48 h. 
The transfection efficiency was 20–30% and 60–80% for electropo-
ration, as assessed with a GFP vector. At least three independent 
experiments were done in duplicate wells.

Co-cultures
For co-cultures, 1.25×105 wild type mouse astrocytes/well were 
seeded on 12-well plates and grown with DMEM-F12 plus 10% 
FBS. After 48–72 hours, GFP neurons were isolated and plated 
onto astrocytes. We used forebrain astrocytes and cerebellar neu-
rons because in our experience the forebrain and cerebellum yielded 
very high numbers of astrocytes and neurons, respectively (thus 
minimizing animal use). Furthermore, in this study we were inter-
ested in exploring general, rather than region-specific neuroprotec-
tive characteristics of astrocytes. Nevertheless, we also carried out 

Page 4 of 23

F1000Research 2014, 3:28 Last updated: 26 NOV 2014



co-cultures with neurons and astrocytes from the same region (fore-
brain) and the results obtained were identical than when using cells 
from differing regions (see Figure 2 in results). Culture medium 
was changed to DMEM-F12 plus B27, 4 mM glutamine and 25 mM 
KCl (the latter only in the case of neurons). Two days later, co-
cultures were treated with 100 nM IGF-I ± 50–100 μM H

2
O

2
. Pic-

tures were taken every 24 hours up to 5–7 days as above. For protein 
silencing or overexpression, 2×106 astrocytes were electroporated 
in a Nucleofector®II (Amaxa Biosystems Lonza, Switzerland) and 
seeded at 1.25×105/well. Co-cultured neurons were seeded as 
described above. Viability of neurons was assessed by counting the 
number of cells expressing GFP using Incucyte software (2010A) 
with a set cell size threshold to avoid including GFP+ cell debris and 
dying cells. This threshold ranged from 8–36 μm2 to 70–200 μm2 
depending on the experiment. Viability is expressed as percentage 
of GFP+ cells at the beginning of the experiment (time 0). At least 
three independent experiments were done.

Cell assays
Cell viability was determined by four different methods. The first 
assessed astrocyte death by quantification of the amount of lactate 
dehydrogenase (LDH) released from damaged astrocytes into the 
culture medium. LDH levels were measured after 16 h of treatment 
with different H

2
O

2
 concentrations using a commercial kit (Roche 

Diagnostics, Germany). When using transfected astrocytes, a GFP-
pCMV vector and the different constructs under evaluation were 
used in a 1:5 ratio. In this case, GFP+ astrocytes were scored prior 
to treatment to determine baseline survival (time 0) and at different 

times as indicated in the results. Alternative viability assays for 
astrocytes included measuring cell metabolism with fluorescein 
diacetate (0.1 μg/ml FDA) or number of propidium iodide (PI) 
cells12 as specified in the results section. For the latter, astrocytes or 
neurons were stained with 2 μg/ml PI as a marker of dead cells plus 
DAPI staining as a marker of total cell number. PI+ and DAPI+ cells 
were counted under a Leica CTR 6000 fluorescence microscope. 
Percentage of viable cells indicates the number of PI+ cells related 
to total cell number. The experiments were done in triplicate and a 
total of three independent experiments were done. For neuronal-
specific viability assays cerebellar neurons from GFP mice were 
seeded on 12-well plates (4.5×105 cells) coated with poly-L-Lysine 
and grown with Neurobasal medium plus B27, 4 mM glutamine 
and 25 mM KCl. After 4–5 days, cultures were treated with 100 nM 
IGF-I in the presence or absence of 50–100 μM H

2
O

2
. Pictures of 

GFP+ cells (green fluorescence) were taken every 24 hours up to 
3 days in an IncucyteTM 2010A Rev2 system (Essen BioScience, 
USA). Viability of neurons in co-culture experiments was measured 
as described above.

Immunoassays
Western blotting was performed as described13. Cells were washed 
once with ice-cold PBS and lysed with 1% NP-40, 150 mM NaCl, 
20 mM Tris, pH 7.4, 10% glycerol, 1 mM CaCl

2
, 1 mM MgCl

2
, 

400 μM sodium vanadate, 0.2 mM PMSF, 1 μg/ml leupeptin, 
1 μg/ml aprotinin and 0.1% phosphatase inhibitor cocktails I and 
II (Sigma-Aldrich). To normalize for protein load, membranes 
were reblotted (Re-Blot, Chemicon, USA) and incubated with an 

Table 2. Drug inhibitors used in the study.

Target Inhibitor Dose Supplier

CALCINEURIN CYCLOSPORIN A 500 nM Sigma-Aldrich

ERK MAPK U0126 20 µM Tocris Bioscience

Extracellular Ca2+ CdCl2/EGTA 100 µM/10 mM Sigma-Aldrich

IGF-IR PPP 120 nM Calbiochem

Intracellular Ca2+ BAPTA/AM 5–10 µM Calbiochem

JNK InsolutionTM JNK INHIBITOR II 10–20 µM Calbiochem

mTOR InsolutionTM RAPAMYCIN 100 nM Calbiochem

NF-KB QNZ 10–20 nM Enzo Life Sciences

p38 MAPK SB203580 hydrochloride 20 µM Calbiochem

PDK1 OSU-03012 10 µM Echelon

PI3K LY294002 25 µM Calbiochem

PKA KT5720 60 nM Tocris Bioscience

PKC/PKA Ro 31-8220 20–900 nM Calbiochem

PKCα, PKCβI, PKCε Rho 32-0432 0.2 µM Calbiochem

PKC isotypes (α,β,γ,δ,ζ,µ) Go6983 6 nM–20 µM Tocris Bioscience

PP1 TAUTOMYCIN 2 nM Calbiochem

PP2A OKADAIC ACID (495609 Insolution) 2.5 nM Calbiochem

PROTEASOME MG-132 5 nM–3 µM Calbiochem

PROTEIN SYNTHESIS CYCLOHEXIMIDE 1 µg/ml Calbiochem
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appropriate control antibody (see Results). Levels of the protein 
under study were expressed relative to protein load. Different 
exposures of each blot were collected to ensure linearity and to 
match control levels for quantification.

Densitometric analysis was performed using Analysis Image Pro-
gram (Bio-Rad, USA). A representative blot is shown from a total 
of at least three independent experiments. IGF-I levels in culture 
medium were measured using Quantikine ELISA for mouse/rat 
IGF-1 (R&D Systems, USA). In brief, cells were treated as described 
above and 1 ml of culture medium was collected after 24 hours, 
spun to eliminate cell debris, and stored at -80ºC. Samples were 
lyophilized overnight and resuspended in 150 μl of calibrator 
buffer. After vortexing, samples were centrifuged 10 min/14,000 
rpm (Hettich, Germany) and assayed according to manufacturer’s 
instructions. A total of three and four independent experiments 
were done for neurons and astrocytes, respectively. SCF levels in 
culture medium were measured by western blot after collecting the 
supernatants and processing them as described above for IGF-I. 
After lyophilisation, samples were resuspended in western blot 
lysis buffer and protein levels were measured by Bradford (Biorad, 
Germany) following the manufacturer’s instructions to normalize 
for protein load in SDS-PAGE gels.

Luciferase assays
Luciferase assays were done as previously reported12. In brief, cells 
were transfected with a reporter construct bearing six canonical 
FOXO binding sites (6×DBE- luciferase) and co-transfected with 
different constructs, as indicated in each experiment. Transfec-
tions were performed in triplicate dishes. Luciferase counts were 
normalized using TK-Renilla luciferase. At given times, neurons 
were lysed in passive lysis buffer (PLB) and luciferase activity was 
analysed using a luminometer and dual luciferase assay kit accord-
ing to the manufacturer (Promega, USA). Background lumines-
cence was subtracted. Luciferase activity was expressed as fold of 
increase over control levels. At least three independent experiments 
were done.

Flow cytometry
After 18h of exposure to H

2
O

2
, cell death was assessed. Cells were 

detached using 0.25% Trypsin-1.3 mM EDTA (Invitrogen) during 
5–10 minutes, centrifuged (200×g, 5 min/4ºC), and resuspended in 
cold PBS. Propidium iodide (PI 5 μg/ml; Sigma) in PBS was added 
prior to flow cytometry analysis using a FACSAria cytometer (BD 
Biosciences). Fluorescence intensity, forward scatter (FSC), and 
side scatter (SSC) were collected in logarithmic scale. The emission 
filter used was 600–620 nm band pass (FL3). A fluorescence blank 
was measured and subtracted from the fluorescence of the sample. 
Dead cells were identified as red fluorescence positive events with 
low FSC (small PI permeable cells). Debris was always excluded 
from the analysis. At least three independent experiments were 
conducted.

ROS measurement
Mitochondrial O

2
- production levels were measured by using the 

fluorescent probe MitoSOXTM Red (Life Technologies, USA). 
Briefly, astrocytes were pre-treated overnight with IGF-I and then 
200 μM H

2
O

2
 were added during 1 hour. Cells were incubated 

with 1.5 μM MitoSOXTM Red in DMEM-F12 for 10 min/37ºC and 
washed 3 times with PBS. Astrocytes were then trypsinized and 
fluorescence was measured by flow cytometry (510 nm excita-
tion/580 nm emission) using the cytometer, as described15. A total 
of six independent experiments were done. Alternatively, ROS gen-
eration was assessed in astrocytes cultured on coverslips with the 
fluorogenic marker carboxy-H

2
DCFDA (Molecular Probes, USA) 

during 30 min/37ºC, protected from the light. When using this ROS 
marker it is not possible to distinguish endogenous ROS from 
exogenously applied H

2
O

2
. Nevertheless, we compared this method 

to the oxidation of luminol (which detects superoxide anions) that 
distinguishes H

2
O

2
 from other ROS and we obtained identical 

results with either method (data not visualized). The reason we used 
carboxy-H

2
DCFDA is because we could obtain both qualitative 

(cell images) and quantitative (fluorimetry assay) measurements 
within the same assay. After incubation with carboxy-H

2
DCFDA, 

cells were gently washed 3 times with warm DMEN, and mounted, 
or, alternatively, lysed for fluorimetry. Pictures were taken at 40× 
magnification using a Leica fluorescence microscope (Germany). 
A representative picture is shown. Fluorescence intensity in lysed 
cells was measured using a FluoroStar fluorimeter.

Growth factor gene array
An RT2 ProfilerTM PCR Array (SABiosciences, USA) was used to 
screen a battery of growth factors following the manufacturer’s 
recommendations. After treatment, astrocytes were lysed and 
RNA extracted using Trizol (Life Technologies, USA). The result-
ing cDNA synthesis reaction was diluted in water, mixed with the 
qPCR master mix, and loaded in a 96 well PCR Array plate. PCR 
was performed following manufacturer’s instructions.

Brain focal ischemia
Three-month old male mice (4–6 per group) were anesthetized with 
3% isoflurane (in 70% N

2
O, 30% O

2
) for induction and with 2% 

isoflurane for maintenance. Rectal temperature was maintained at 
36.5 C with a heating pad. The frontal branch of the medial cerebral 
artery (MCA) was exposed and occluded permanently by suture 
ligation as previously reported, with modifications16. Briefly, an 
incision perpendicular to the line connecting the lateral canthus of 
the left eye and the external auditory canal was made to expose and 
retract the temporalis muscle. A burr hole was drilled, and frontal 
and parietal branches of the MCA were exposed by cutting and 
retracting the dura. The frontal branch of the MCA was elevated and 
ligated with a suture nylon monofilament 8/0. Following ligation, 
a sharp decrease of blood flow was evidenced with a laser Doppler 
flowmetry (Järfalla, Sweden). Following surgery, mice were returned 
to their cages, kept at room temperature and allowed free access 
to food and water. All physiological parameters measured: rectal 
temperature, mean arterial pressure and blood glucose levels were 
not different between groups. Sixteen hours after medial cerebral 
artery occlusion (MCAO), animals were killed by neck dislocation 
by an experienced researcher to assess infarct outcome. The brain 
was removed and the infarcted area isolated and processed for RNA 
and protein isolation.

Quantitative PCR
Total RNA isolation from cell lysates or brain tissue was carried 
out with Trizol. One μg of RNA was reverse transcribed using High 
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Capacity cDNA Reverse Transcription Kit (Life Technologies) 
according to the manufacturer’s instructions. For the quantification 
of specific genes, total RNA was isolated and transcribed as above 
and 62.5 ng of cDNA was amplified using TaqMan probes for 
Txnip1, IGF-I or SCF and 18S as endogenous control (Life Tech-
nologies). Each sample was run in triplicate in 20 μl of reaction 
volume using TaqMan Universal PCR Master Mix according to the 
manufacturer’s instructions (Life Technologies). All reactions were 
performed in a 7500 Real Time PCR system (Life Technologies). 
Quantitative real time PCR analysis was carried out as previously 
described17. Results were expressed as relative expression ratios on 
the basis of group means for target transcripts versus reference 18S 
transcript. At least three independent experiments were done.

Statistical analysis
Data are expressed as mean ± SEM. Differences among groups were 
analyzed by one- or two-way ANOVA followed by a Newman-Keul’s 

or Student’s t-test using Graph Pad Prism 5 software. A p<0.05 was 
considered significant.

Results
Astrocyte neuroprotection against oxidative stress requires 
IGF-I signalling onto astrocytes
Whereas neurons cultured without astrocytes are very sensitive to 
acute oxidative insult elicited by H

2
O

2
 (Figure 1A), when cultured 

with astrocytes, neurons become very resilient (Figure 1A). To deter-
mine whether IGF-I participates in the neuroprotective effects of 
astrocytes against oxidative stress we first confirmed that it is endog-
enously produced by these cells. As shown in Figure 1B, not only 
astrocytes but also neurons (albeit at much lower levels) secrete 
IGF-I into the culture medium. In response to H

2
O

2
 astrocytes secrete 

lower, but still substantial, amounts of IGF-I, and so IGF-I may 
still participate in neuroprotection by astrocytes. To directly test 
this possibility we blocked IGF-I signalling in astrocytes with a 

Figure 1. IGF-I signalling participates in astrocyte neuroprotection against oxidative injury. A) Neurons are protected from oxidative 
stress in the presence of astrocytes whereas when cultured alone they rapidly die. Viability of GFP neurons was measured as the number of 
green (GFP+) cells two days after H2O2 treatment in the presence or absence of wild type astrocytes (F=41.85; ***p<0.001 vs. neurons alone. 
B) Both astrocytes and neurons secrete IGF-I, although astrocytes produce much higher levels (*p<0.05 vs neurons). H2O2 lowers IGF-I 
secretion. C) In the presence of a dominant negative IGF-IR (IGF-IR DN) signalling by IGF-I was markedly reduced. Astrocytes were transfected 
with IGF-IR DN or mock transfected, and the ratio pAkt/Akt (histograms) was measured as an index of IGF-I signalling. Representative blots 
and quantitative histograms are shown (2 way ANOVA, IGF-I and IGF-IR DN interaction: p<0.05, F=6.99; IGF-I p<0.01, F=13.46; IGF-IR DN 
p<0.05, F=7.06; Post-hoc: **p<0.01 vs control (mock-transfected) and *p<0.05 vs. IGF-I+IGF-IR DN). D) Blockade of IGF-IR function with 
IGF-IR DN compromises neuroprotection by astrocytes. GFP neurons were seeded on top of wild type astrocytes transfected with an IGF-IR 
DN construct or mock-transfected (control) and exposed to 100 µM H2O2. Viability of GFP neurons was measured after 5 days (2 way ANOVA, 
H2O2 and IGF-IR interaction: p<0.05, F=10.77; H2O2 p<0.01, F=68.92; IGF-IR DN p<0.05 F=17.86; post-hoc: ***p<0.001, *p<0.05 vs. Control; 
##p<0.01 vs mock). Experiments were done at least 3 times in this and following figures. Bars are SEM in all figures.
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dominant negative (DN) IGF-IR18 (Figure 1C) and determined their 
ability to protect neurons against oxidative challenge. As shown in 
Figure 1D, a significantly greater percentage of neurons co-cultured 
with mock-transfected astrocytes survived after H

2
O

2
 challenge 

than when cultured with astrocytes transfected with DN IGF-IR.

We next used pharmacological blockade of the IGF-I receptor using 
picropodophyllin (PPP), an antagonist of IGF-IR (Figure 2A). As in 
this case both the neuronal and astrocyte receptors are blocked, we 
first determined whether neurons are affected by PPP blockade of 
the IGF-I receptor. In the presence of H

2
O

2
, neurons cultured alone 

die regardless of the presence or absence of proper IGF-I signalling 
since PPP did not increase neuronal death (Figure 2B). This agrees 
with our previous findings that IGF-I does not protect cultured neu-
rons against oxidative stress12. Confirming the results seen with 

astrocytes transfected with dominant negative IGF-I receptor, a 
reduction in neuroprotection by astrocytes was seen when co-cultured 
neurons were exposed to PPP. In the presence of H

2
O

2
, significantly 

fewer co-cultured neurons survived with PPP (p<0.01 H
2
O

2
+PPP 

vs. H
2
O

2
 alone; Figure 2C). To rule out region-specific actions of 

astrocytes on neuroprotection we then co-cultured neurons and 
astrocytes from the same brain region (forebrain) and treated them 
with PPP. As shown in Figure 2D, forebrain neurons were similarly 
sensitive to blockade of IGF-IR when co-cultured with forebrain 
astrocytes. The observation that even supra-physiological doses of 
IGF-I (100 nM) added to the co-cultures only produced a modest 
additional effect on neuronal survival after oxidative insult con-
firmed the idea that endogenous IGF-I is required by astrocytes 
for neuroprotection (Figure 2E). Hence, endogenous production of 
IGF-I is necessary and sufficient to protect neurons.

Figure 2. Endogenously produced IGF-I protects neurons against oxidative injury. A) The IGF-IR inhibitor PPP blocks IGF-I signalling in 
astrocytes. Astrocytes were treated with 120 nM PPP 1h before adding IGF-I while pAkt levels were measured 10 minutes after adding IGF-I. 
Ratios are shown in histograms (2 way ANOVA, IGF-I and PPP interaction: p<0.01, F=33.07; IGF-I p<0.01, F=27.38; PPP p<0.001, F=112.3; 
post-hoc: **p<0.01 vs. IGF-I alone). Representative blot is shown. B) Blockade of IGF-IR signalling with PPP in neurons cultured alone does not 
affect H2O2 toxicity after 3–4 days of exposure (2 way ANOVA, H2O2 and PPP interaction: F=0.069; H2O2 p<0.01, F=12.43; PPP F=3.66; post-
hoc: **p<0.01 vs. respective controls). Note that PPP alone does not affect neuronal survival. C) Viability of cerebellar neurons co-cultured with 
forebrain astrocytes decreased significantly when treated with PPP for six days. PPP treatment in the presence of H2O2 decreased neuronal 
viability even further (2 way ANOVA, H2O2 and PPP interaction: F=0.097; H2O2 p<0.05, F=9.65; PPP p<0.01, F=31.33; post-hoc: *p<0.05 vs 
untreated control and #p<0.05 vs H2O2). D) Viability of forebrain neurons co-cultured with forebrain astrocytes decreased significantly when 
treated with PPP for five days. PPP treatment in the presence of H2O2 decreased neuronal viability even further (2 way ANOVA, H2O2 and PPP 
interaction: p<0.001, F=23.74; H2O2 p<0.001, F=321.6; PPP p<0.001, F=151.3, post-hoc: ***p<0.01 vs. untreated control and ### p<0.01 vs. 
H2O2). E) When co-cultured with wild type astrocytes, neuronal survival after five days of exposure to 100 µM H2O2 was moderately increased 
in the presence of 100 nM IGF-I (2 way ANOVA, H2O2 and IGF-I interaction: F=0.542; IGF-I p<0.05, F=7.28; H2O2 p<0.001, F=25.9; post-hoc: 
*p<0.05 vs. control or H2O2). I+H: IGF-I + H2O2.
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IGF-I protects astrocytes against oxidative stress
IGF-I-dependent neuroprotection by astrocytes appears to also 
involve a direct action of IGF-I on astrocytes. Because it is known 
that astrocytes are more resistant to oxidative damage than neurons, 
we explored whether IGF-I was involved in this greater resilience. 
Contrary to neurons (Figure 3A), IGF-I protected astrocytes against 
H

2
O

2
-induced death (Figure 3B). The protective effect of IGF-I 

involved blockade of the activation of FOXO 3, a transcription 
factor involved in brain responses to oxidative stress19, by H

2
O

2
 

(Figure 3C). Inhibition of FOXO 3 by IGF-I was mediated by Akt; 
i.e.: an Akt-insensitive mutant of FOXO (M-FOXO3) abrogated 
IGF-I effects while wild type FOXO3 did not interfere with its pro-
tective actions (Figure 3D). Indeed, in astrocytes IGF-I activates 

Akt in the presence of H
2
O

2
 (Figure 3E), whereas in neurons H

2
O

2
 

blocks this canonical pathway12. Underlying the protective actions 
of IGF-I on astrocytes was its ability to block excess ROS after 
exposure to H

2
O

2
 as determined by flow cytometry using MitoSOX 

(Figure 4A) or fluorometry with carboxy-H
2
DCFDA (Figure 4B).

We then determined possible mediators of the anti-oxidative actions 
of IGF-I on astrocytes. We examined whether modulation of SODs 
could be involved because these anti-oxidant enzymes constitute 
an important detoxifying mechanism in cases of excess ROS. We 
found that cytosolic Cu/ZnSOD was increased by IGF-I, H

2
O

2
, or 

both (Figure 5A), while mitochondrial MnSOD was increased only 
by H

2
O

2
 (Figure 5B). Thus, increases in SOD levels form part of 

Figure 3. IGF-I protects astrocytes against oxidative stress. A) Whereas IGF-I increases neuronal survival under control conditions, it does 
not protect neurons from H2O2 induced death. This confirms previous observations12. Neuronal mortality was measured by counting PI+ cells 
6h after treatment. H2O2 induces neuronal death in a dose-dependent manner irrespective of the presence of IGF-I (2 way ANOVA, H2O2 and 
IGF-I interaction: p<0.001, F=10.3; IGF-I p<0.05, F=9.98; H2O2 p<0.001, F=128.7; post-hoc: ***p<0.001 vs. no H2O2¸, # p<0.05 vs control). B) 
IGF-I treatment protects astrocytes from H2O2 induced death. Astrocyte demise was measured by counting PI+ cells 24 h after H2O2 (100 µM). 
H2O2 exerts a dose-dependent effect that is reduced by IGF-I (2 way ANOVA, H2O2 and IGF-I interaction: p<0.01, F=5.36; IGF-I p<0.001, 
F=30.29; H2O2 p<0.001, F=60.42; post-hoc: *p<0.05 vs control). C) IGF-I blocks FOXO activity induced by H2O2 (100 µM). FOXO activity was 
measured with a luciferase reporter in astrocytes treated with IGF-I, H2O2 or both for 24 h (2 way ANOVA, H2O2 and IGF-I interaction: p<0.001, 
F=25.98; IGF-I p<0.001, F=49.58; H2O2 p<0.01, F=10.47; post-hoc: ***p<0.001 vs no treatment). D) Protection by IGF-I against cell death 
induced by H2O2 requires blockade of FOXO activity. Astrocyte viability was measured by counting GFP+ astrocytes after co-transfection 
of GFP and a FOXO wild type (wt) or an Akt-insensitive mutant of FOXO (M-FOXO; 2 way ANOVA, M-FOXO and IGF-I interaction: p<0.01, 
F=59.99; IGF-I p<0.05, F=13.31; M-FOXO p<0.01, F=21.84; post-hoc: *p<0.05 vs no IGF-I). E) IGF-I increases phosphorylation of Akt (pAkt) 
in the presence of H2O2 in a dose-dependent fashion. Representative blots are shown. Lower histograms indicate quantification of pAkt/Akt 
ratio in the presence of IGF-I as shown in the right blot. pAkt levels were measured after 15 min. (*p<0.05 and ***p<0.001 vs. no H2O2).
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Figure 4. IGF-I reduces oxidative stress in astrocytes. A) H2O2 increases the number of astrocytes expressing mitochondrial O2
-. This 

increase is prevented when cells are pre-treated with IGF-I. Mitochondrial O2
- levels were detected with MitoSOX by flow cytometry. Astrocytes 

were treated overnight with IGF-I and for 1 hour more with 200 µM H2O2 (2 way ANOVA, H2O2 and IGF-I interaction: F=1.27; IGF-I p<0.05, 
F=8.18; H2O2 p<0.01, F=16.18; post-hoc: **p<0.01 H2O2 vs control, *p<0.05 H2O2 vs IGF-I + H2O2). B) IGF-I lowers ROS levels after treatment 
of astrocytes with H2O2 (100 µM). Left: representative photomicrographs of astrocytes stained with carboxy-H2DCFDA to detect ROS and 
DAPI to stain cell nuclei. The increase in fluorescent cells elicited by H2O2 was markedly diminished by IGF-I. Right histograms: fluorimetric 
quantification of ROS levels with carboxy-H2DCFDA confirmed the rescuing action of IGF-I on astrocytes exposed to H2O2. (2 way ANOVA, H2O2 
and IGF-I interaction: p<0.05, F=7.38; IGF-I p<0.05, F=5.89; H2O2 p<0.05, F=8.49; post-hoc: **p<0.01 H2O2 vs control, IGF-I, or IGF-I + H2O2).

Figure 5. SOD responses to oxidative stress in astrocytes. A) Cu/ZnSOD levels in astrocytes are modulated by IGF-I and H2O2. B) MnSOD 
levels are enhanced by H2O2 but not by IGF-I (*p<0.05 and **p<0.01 vs control).

Page 10 of 23

F1000Research 2014, 3:28 Last updated: 26 NOV 2014



as compared to mock-transfected astrocytes. Accordingly, IGF-I, 
which inhibits FOXO, also reduced TXNIP1 levels (Figure 6A). 
Strikingly, H

2
O

2
, which stimulates FOXO activity in astrocytes 

(Figure 3D), also inhibited TXNIP1 (Figure 6A), suggesting alter-
native routes of TXNIP1 regulation in the presence of H

2
O

2
. When 

IGF-I and H
2
O

2
 were simultaneously added to astrocytes, TXNIP1 

levels were markedly decreased (p<0.05 vs. IGF-I or H
2
O

2
 alone, 

Figure 6A). To determine the impact of downregulation of TXNIP1 

the astrocyte response to H
2
O

2,
 and IGF-I does not appear to inter-

fere with these enzymes. Because FOXO participates in cellular 
responses to ROS, we looked for signals downstream of FOXO 
inactivation by IGF-I such as thioredoxin inhibitor 1 (TXNIP1), 
a pro-apoptotic protein dependant on FOXO activity and related 
to anti-oxidant responses20. We first confirmed that in astrocytes 
TXNIP1 is also controlled by FOXO; i.e.: in astrocytes express-
ing dominant negative Foxo, TXNIP1 levels were 89% reduced 

Figure 6. Both H2O2 and IGF-I reduce TXNIP1 in astrocytes. A) Levels of the pro-oxidant protein TXNIP1 are reduced by IGF-I and H2O2. 
Inhibition is greater when both are added together (F=156.6; ***p<0.001 vs. control and ###p<0.001 (vs. IGF-I) and #p<0.05 (vs. H2O2). Levels 
of actin in each sample were measured to normalize TXNIP1 levels. B) Western blot: transfection of astrocytes with shRNA TXNIP1 results 
in reduced TXNIP1 levels as compared to astrocytes transfected with scrambled shRNA (SCR). Left panel: TXNIP1 shRNA silencing makes 
astrocytes less sensitive to H2O2 toxicity. Astrocyte viability was measured by FDA in the presence of 200µM H2O2 (2 way ANOVA, TXNIP1 
and H2O2 interaction: F=2.94; TXNIP1 shRNA, F=2.94; H2O2, p<0.001, F=35.5; post-hoc: **p<0.01 vs control). Right panel: However, neuronal 
viability is not increased by reduced TXNIP1 in astrocytes as neurons die in the same proportion after H2O2 challenge. Viability of neurons 
was determined after co-culture for three days with astrocytes transfected with TXNIP1 shRNA (2 way ANOVA, TXNIP1 and H2O2 interaction: 
F=0.93; TXNIP1 shRNA, F=0.0097; H2O2; p<0.05, F=10.95). C) In neurons, only H2O2 decreases TXNIP1 levels, whereas IGF-I does not 
(***p<0.001 vs control). D) Reduction of TXNIP1 by IGF-I and H2O2 in astrocytes depends on Ca2+ as in the presence of the calcium chelator 
BAPTA-AM, the decrease is abrogated. (F=7.226; *p<0.05 and ***p<0.001 vs. control). C=control, I=IGF-I, H=H2O2, H+I=H2O2 + IGF-I.
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on astrocyte survival we inhibited its expression with shRNA (blot 
in Figure 6B left panel) and found that astrocytes became resistant 
to H

2
O

2
 when TXNIP1 levels were low (Figure 6B). Overexpres-

sion of TXNIP1 did not alter the response of astrocytes to H
2
O

2
 

whereas co-culture of neurons with astrocytes depleted of TXNIP1 
did not result in enhanced neuronal survival (Figure 6B right panel), 
indicating that this route is involved in the response of astrocytes 
to oxidative stress but not in neuroprotection. Interestingly, in neu-
rons, TXNIP1 was downregulated only in the presence of H

2
O

2
, but 

not after IGF-I treatment (Figure 6C). Thus, IGF-I down-regulates 
TXNIP1 only in astrocytes, not in neurons.

We then analyzed possible pathways involved in the inhibitory 
effect of H

2
O

2
 and IGF-I on TXNIP1. Using kinase inhibitors we 

ruled out the idea that the main kinases downstream of the IGF-I 
receptor or H

2
O

2
 were involved. In fact, inhibition of most of these 

kinases resulted in altered basal levels of TXNIP1 (not visualized), 
suggesting that basal levels of this protein are tightly regulated 
in astrocytes. Other inhibitory drugs of different pathways where 
IGF-I participates (PKC, PKA, CnA, PDK-1, NFκB, among others) 
gave similar negative results. However, inhibition of Ca++ flux with 
5 μM BAPTA abrogated TXNIP1 decreases in response to either 
H

2
O

2
 or IGF-I while only slightly, but not significantly affecting 

basal levels (Figure 6D).

IGF-I cooperates with SCF produced by astrocytes to 
protect neurons against oxidative stress
We next analyzed possible neuroprotective effects of IGF-I through 
astrocytes. Using a commercial gene array for growth factors we 
screened growth factor production by IGF-I-treated astrocytes in 
response to H

2
O

2
. Among the several growth factors that increased, 

stem cell factor (SCF) showed the highest elevation (Table 3). We 
confirmed by qPCR that SCF mRNA was increased after H

2
O

2
 

whereas IGF-I decreased it (Figure 7A upper panel). Accordingly, 
levels of soluble SCF (sSCF) in culture medium from astrocytes 
treated with H

2
O

2
 were also increased (Figure 7A, lower panel). 

As SCF has been shown to be neuroprotective21, we determined 
whether it protects neurons against H

2
O

2
 and found that while SCF 

alone did not exert any protection, co-treatment with IGF-I resulted 
in significantly greater neuronal survival (p<0.05; Figure 7B). We 
then examined pathways underlying this cooperative action of 
IGF-I and SCF. Under basal conditions, the activity of extracel-
lular signal-regulated kinase (Erk; measured as pErk/Erk ratio), a 
canonical kinase in IGF-I signalling, was increased by IGF-I as 
expected, and to a lesser extent also by SCF (Figure 7C). Basal Erk 
activity was also increased by H

2
O

2
. However, Erk was no longer 

activated by IGF-I or SCF in the presence of H
2
O

2
. Only when both 

were added together to H
2
O

2
-challenged cultures Erk activity was 

increased (Figure 7C). No interactions were found with Akt, the 
other canonical kinase pathway activated by IGF-I.

To determine the in vivo relevance of these observations we sub-
mitted mice to brain ischemia as this brain insult is associated to 
oxidative stress22, and both IGF-I9 and SCF23 have been shown to 
be neuroprotective after ischemia. We found that IGF-I mRNA is 
increased after middle cerebral artery occlusion (MCAO) both in 
the ipsilateral and contralateral cortex, while only the contralateral 
side showed increased SCF mRNA levels compared to intact mice 

Table 3. Growth factors array.

Upregulated genes Downregulated genes

Gene 
symbol Fold regulation Gene 

symbol Fold regulation

Bmp4 34.1544 Amh -43.2611

Bmp8a 19.7667 Bdnf -5.4642

IGF-I 185.7219 Bmp1 -51.304

IL7 54.0417 Bmp2 -8.3513

Inhbb 595.9304 Bmp3 -311.6969

SCF 3072.0799 Bmp6 -30.211

VEGFb 22.0239 Bmp7 -40.3361

Clcf1 -7.5162

Csf1 -6.4666

Csf3 -102.9643

Cxcl1 -35.4079

Cxcl12 -49.3166

Egf -24.916

Ereg -10.8078

Fgf1 -11.353

Fgf10 -15.6273

Fgf14 -12.7639

Fgf18 -21.0245

Fgf2 -9.6934

Fgf22 -13.5011

A battery of growth factors was screened with an RT2 ProfilerTM PCR Array. In 
brief, astrocytes were treated or not with IGF-I+H2O2 for 16 h and total RNA 
was isolated. After performing the RT-PCR, total cDNA was assayed for PCR 
Array. PCR data was analyzed with the RT2 Profiler PCR Array Data Analysis 
version 3.5 software provided by the manufacturer. Significantly up- or 
downregulated genes are shown.

(Figure 7D). However, levels of SCF protein were elevated after 
MCAO in both the damaged and contralateral sides compared to 
normal mice (Figure 7E). This suggests that after brain ischemia the 
contralateral cortex produces higher amounts of SCF that eventu-
ally reach the ischemic side. Under this condition IGF-I may inter-
act with SCF to promote neuronal survival in the ipsilateral cortex.

Update 1: Data on the responses of neurons and astrocytes to 
oxidative injury in the presence of insulin-like growth factor I

27 Data Files 

http://dx.doi.org/10.6084/m9.figshare.991456 

Discussion
The present results indicate that IGF-I exerts a protective action on 
astrocytes contributing to the resilience of these glial cells against 
oxidative stress. IGF-I also cooperates with astrocytes to protect 
neurons. These observations highlight the importance of cell-
specific and cell-cooperative aspects of IGF-I protection against 
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Figure 7. IGF-I cooperates with SCF to promote neuronal survival. A1) Upper panel: H2O2 stimulates SCF mRNA levels in astrocytes 
after 16 h of exposure whereas IGF-I partially counteracts this increase (F=38.67; *p<0.05 vs. control and IGF-I, #p<0.05 vs. H2O2). 
A2) Lower panel: H2O2 stimulates SCF secretion. SCF levels in supernatants from astrocyte cultures treated or not with H2O2 and/or IGF-I 
for 24 h. A representative western blot is shown (*p<0.05 vs control). B) SCF and IGF-I cooperate to protect neurons from oxidative stress. 
Neurons were pre-treated with SCF, IGF-I or both 48 h before adding H2O2 (50 µM) and viability was assessed after overnight treatment 
(F=12.09, ***p<0.0001 vs H2O2), H: H2O2; I: IGF-I. C) When H2O2 is present, Erk phosphorylation is significantly increased only when both 
SCF and IGF-I are added to the cultures but not with either alone. Neurons were treated with 100 nM IGF-I, 20 ng/ml SCF and 50 µM H2O2 
for 5 minutes and pErk levels were measured by western blot and normalized for total Erk. (*p<0.05 and **p<0.01 vs. control without H2O2 
and #p<0.05 vs. H2O2). D) SCF and IGF-I mRNA levels increased 16 hours after middle cerebral artery occlusion (MCAO) in the contralateral 
side (CONTRA) in the case of SCF (F=31.53; ***p<0.001 vs. intact control mice) and in both sides in the case of IGF-I (F=7.853; *p<0.05 and 
**p<0.01 vs. control). E) SCF protein levels increase after MCAO in both sides of the cortex (F=12.38; *p<0.05 and ***p<0.001 vs. control). 
A representative blot is shown. Six, five and four animals were used per group, respectively. Levels of actin in each sample were measured 
to normalize for total protein levels.

oxidative challenge. Thus, a better understanding of the trophic 
role of IGF-I in the brain requires taking into account its effects on 
astrocytes (and other brain cells) and the functional links of these 
cells with neurons. While these observations do not help settle the 

role of oxidative stress in brain aging they put forward an important 
aspect of possible mechanisms involved in aging; regulatory signals 
such as IGF-I may not modulate the response of the different cells 
and even tissues to oxidative stress in the same way.
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The protection provided to astrocytes by IGF-I against oxidative 
stress may contribute to the greater resilience of these cells to oxi-
dative challenge. In addition, astrocytes are coupled to neurons in 
the response to oxidative stress and provide them with ample 
detoxification support11. Among different anti-oxidant defences 
provided by astrocytes to neurons, we now find that IGF-I, which 
cannot protect isolated neurons against excess ROS12 cooperates 
with SCF secreted by astrocytes to support neurons (Figure 8). 
While in response to oxidative stress the production of IGF-I by 
cultured astrocytes and neurons is decreased, after brain ischemia 
IGF-I levels are actually higher due to increased synthesis and accu-
mulation in microglia, vessels and astrocytes24. Therefore, in vivo, 
astrocytes and neurons will receive IGF-I input from various local 
sources, suggesting that the response of increased IGF-I after 
brain ischemia reflects an endogenous neuroprotective mechanism 
against oxidative injury. This conclusion apparently contradicts 
other evidence that IIS activity is pro-oxidant. Thus genetic abla-
tion of ISS components in the nematode Caenorhabditis elegans25 
or in higher organisms such as the fruit fly26 or mice27, increases 
organism resistance to oxidative stress. For example, mice with 
reduced IGF-I activity (hemizygous for the IGF-I receptor) have 
lower levels of ROS in the brain28,29. However, these mice devel-
oped greater cell damage after oxidative injury29. Conceivably, the 
effects of modulating IGF-I signalling prior to ROS insult (as when 
using genetic models) may not be the same compared to after 
insult. For example IGF-I protects nerve cells and/or the brain 
against diverse types of ROS-related insults30–34. In this regard, 
we recently reported that in a cellular model of Friedreich’s ataxia 
(which elicits oxidative damage) neurons responded to IGF-I only 
when they became frataxin deficient, but not under normal condi-
tions15. Collectively these observations emphasize the importance 

not only of cell type but also of context dependency of IGF-I neuropro-
tection in relation to oxidative stress.

A role for oxidative stress in many neurodegenerative diseases is 
gaining increasing acceptance35. Aberrant production of ROS in the 
central nervous system is linked to neurodegenerative diseases such 
as Alzheimer’s dementia, Parkinson’s disease or stroke, all of them 
associated to aging36. However, as already commented, the role of 
oxidative stress in brain aging is still unclear. An attempt to explain 
these apparently opposing observations is that moderate ROS levels 
may activate survival pathways37. The present findings agree with 
this proposal. Thus, doses of H

2
O

2
 up to 100 μM do not elicit astro-

cyte death probably because IGF-I helps maintain their anti-oxidant 
capacity. In this regard our results show that astrocytes in response 
to IGF-I and/or H

2
O

2
 activate antioxidant signalling including 

upregulation of Cu/ZnSOD and MnSOD coupled to downregula-
tion of pro-oxidant proteins such as Txnip1. Txnip1 inhibits thiore-
doxin (Trx), a protein that reduces protein disulfides as well as 
H

2
O

2
. The Txnip-Trx axis plays an important role in different brain 

diseases in which oxidative stress is implicated38.

There is ample evidence that different trophic factors, including 
SCF39, contribute to reduce cell damage due to oxidative stress 
after brain stroke40. We have found that in vitro IGF-I and SCF 
exert a cooperative neuroprotective effect against oxidative stress, 
suggesting that they may exert a similar beneficial role in vivo as 
after brain stroke both factors are upregulated in the lesioned area. 
Indeed, a cooperative neuroprotective effect of SCF with insulin 
has been reported41. The intracellular mechanisms mediating coop-
eration between these two factors involve Erk, a kinase activated 
by IGF-I.

Figure 8. Schematic representation of IGF-I neuroprotection through astrocytes. Left: under basal conditions IGF-I exerts potent 
neuroprotective actions directly onto neurons, as extensively documented previously8 (also shown in Figure 3A), and probably also through 
astrocytes. In the presence of H2O2 (right side) the actions of IGF-I on neurons and astrocytes can be summarized in 5 points: 1) IGF-I 
loses its ability to directly protect neurons, 2) IGF-I secretion by astrocytes is diminished, 3) IGF-I reinforces astrocyte defences against 
oxidative stress by down-regulating pro-oxidant mechanisms such as TXNIP1. 4) IGF-I cooperates with SCF secreted by astrocytes to 
promote neuronal survival. 5) However, the precise mechanism(s) downstream of astrocyte IGF-I receptors underlying enhanced astrocyte 
neuroprotection remains to be determined. Cytotoxic effects are depicted in red while cytoprotective actions are indicated in blue trace.
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 Marta Margeta
Department of Pathology, University of California San Francisco, San Francisco, CA, USA

In the revised article, the authors have addressed most of my concerns. There still remain a few relatively
minor issues, mostly involving data presentation / manuscript readability rather than scientific validity.

As in the prior version of the manuscript, the authors claim in Fig. 8 (model figure) that IGF-1 has a
neuroprotective effect under basal conditions (i.e. in the absence of H O ) and now explicitly cite
Fig. 3A in support of this claim. However, as previously, Fig. 3A includes no information on the
statistical significance of IGF-1 effect on the neuronal death in the absence of H O (by eye, the
IGF-1 effect seems very modest). In the legend for Fig. 3A, the authors state that "#" means "

" but symbol "#" is not used in the figure - perhaps it hasp<0.05 vs control
been accidentally omitted?
 
I appreciate that, as I suggested, the authors repeated statistical analyses for many experiments
and are now using two-way rather than one-way ANOVA where appropriate. However, the results
of this analysis are buried in the figure legends and are described in a fairly non-transparent,
difficult to understand way; the figures themselves are largely unmodified. To make the paper more
accessible to future readers, the graphs for experiments analyzed by 2-way ANOVA should show
statistical significance for all post-hoc comparisons that were performed (including the effects that
were not significant, to make this clear); for a 2x2 experimental condition grid this means all 4
post-hoc comparisons should be shown in terms of statistical significance. As an example, for the
experiment in Fig. 2B, the authors should show statistical significance for (1) H O  vs vehicle in
control; (2) H O  vs. vehicle following PPP pre-treatment; (3) control vehicle vs. PPP vehicle; and
(4) control H O  vs. PPP H O . Analogous pairwise comparisons should be shown for all
experiments using 2-way ANOVA.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Author Response 09 May 2014
, Cajal Institute, SpainIgnacio Torres Aleman

In response to the minor points raised by the reviewer:

The symbol # in Figure 3A is missing due to a typographical error.

2 2

2 2 

2 2
2 2

2 2 2 2
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The symbol # in Figure 3A is missing due to a typographical error.
 
We now incorporate the requested table for the experiments analyzed by 2-way ANOVA
including non-significant values.

 No competing interests were disclosed.Competing Interests:

Version 1

 06 March 2014Referee Report

doi:10.5256/f1000research.3363.r3862

 Vince C Russo
Centre for Hormone Research, Murdoch Children’s Research Institute, Parkville, VIC, Australia

This manuscript by Laura Genis and co-workers is very interesting and the data presented are of
significant scientific value. These studies provide further understanding of the cellular and molecular
mechanisms involved in neuronal damage and rescue following oxidative stress. Of particular interest are
the protective effects of IGF-I on neuronal cells mediated via the astrocytes. To these, the
synergistic/additive effects of SCF on IGF-I are novel and interesting.

I have only few minor suggestions - mainly to improve graphic illustrations:
In figure 1B, IGF-I ELISA, the conditioned media from astrocytes and neuronal cells is analysed for
IGF-I levels but the values are express in ng/ug of protein, why?
 
In Figure 3E I asume that the graph shows the % phosphorylation for the IGF-I treatment? This
should be properly label.
 
In Figure 4 a statistical significance is shown for the 'untreated', but it should shown for the IGF-I
which actually prevents MitoO2. I have a similar comment for the graph below in figure 4B.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 07 February 2014Referee Report

doi:10.5256/f1000research.3363.r3443

 Carlos Matute
Department of Neuroscience, País Vasco University, Leioa, Spain

This is an excellent paper with data relevant to CNS protection against oxidative stress.
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I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 06 February 2014Referee Report

doi:10.5256/f1000research.3363.r3440

 Marta Margeta
Department of Pathology, University of California San Francisco, San Francisco, CA, USA

In this paper, the authors attempt to elucidate the role of IGF-I in the astrocyte-mediated protection of
neurons against oxidative stress. While this is an important topic and the authors present a lot of
interesting data, the paper is unfocused and the results do not fully support the conclusions. As such, I
feel that the paper cannot be approved for indexing until substantively revised.

Major comments:
The paper presents three essentially independent sets of data and then tries to connect them into a
single coherent story, without direct experimental evidence that it is appropriate to do so.
Specifically, Figs. 1 and 2 present evidence that IGF-I plays an important role in the
astrocyte-mediated neuroprotection, both at baseline conditions and under oxidative stress; this is
the most interesting part of the paper (and the part that is most relevant to the paper’s current title).
Figs. 3-6 show data that elucidate some aspects of IGF-I effect on astrocytes, but do not establish
the importance of these effects/mechanisms for IGF-I- and astrocyte-mediated neuroprotection.
(Notably, the authors have actually established that one of these mechanisms, IGF-I-induced
decrease in the expression of astrocytic TXNIP1,  play a role in the astrocyte-mediateddoes not
neuroprotection. Surprisingly, these key results are not shown despite the fact that an entire figure
[Fig. 6] is devoted to the IGF-I modulation of TXNIP1).

Finally, Fig. 7 shows that IGF-I and SCF applied together (but not separately) have a
neuroprotective effect in the absence of astrocytes and that their expression is increased in an in

 stroke model. However, the authors again fail to show that these observations are in any wayvivo
relevant for the astrocyte-mediated neuroprotection shown in Figs. 1 and 2. To connect these
currently unconnected experimental threads, the authors need to use their neuron-astrocyte
co-culture system to establish the link between astrocyte-mediated neuroprotection and (1)
IGF-I-mediated increase in the expression of astrocyte antioxidant enzymes, (2) IGF-I-mediated
decrease in the astrocyte ROS levels, and (3) astrocyte secretion of SCF; the experiments should
be performed both at baseline and under oxidative stress conditions. Alternatively, the paper
needs to be re-written in a way that makes it very clear (1) that the data presented in the paper
represent a series of independent observations that do not add up to a coherent whole and (2) that
the mechanism mediating IGF-I-induced neuroprotection in the mixed neuron-astrocyte
environment currently remains unexplained. If choosing this route, the authors should also change
the title of the paper to something more neutral and descriptive.
 
The authors do not show some important experimental data, ostensibly “for clarity”; these data
need to be included in the revised paper. Specifically, as already stated in point #1, the authors
mention (but do not show) that depleting astrocytes of TXNIP1 does not result in increased
neuronal survival (page 16). This finding, if properly established, indicates that the IGF-I-mediated
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neuronal survival (page 16). This finding, if properly established, indicates that the IGF-I-mediated
decrease in TXNIP1 and the IGF-I/astrocyte-mediated neuroprotection are two entirely unrelated
phenomena. Given the paper’s overall title and conclusions, this is a key experiment that needs to
be shown. Similarly, it is important to show the results of IFG-IR DN experiment performed under
oxidative stress conditions (page 7).
 
In many experiments, the authors do not use appropriate statistical analyses. Specifically, given
the experimental design, two-way (rather than one-way) ANOVA should be used to analyze data
shown in Figs. 1B-C, 1D (after missing data are included), 2A-E, 3A-D, 4A-B, and 6B.
 
Fig. 8 (the model) does not accurately represent the experimental results. For example, the authors
state in the Fig. 8 legend that “under basal conditions IGF-I exerts potent neuroprotective actions

” when in fact, IGF-I has no clear neuroprotective effect when applied todirectly onto neurons
neurons cultured alone (Fig. 3A, 0 µM H O  condition) – the IGF-I-induced decrease in neuronal
cell death is small [~5% based on the graph] and does not appear statistically significant, although
the authors do not comment on this one way or the other. Similarly, the figure legend mentions that
IGF-1 down-regulates astrocytic TXNIP1 – a finding that is accurate but not relevant for the
astrocyte-mediated neuroprotection illustrated by the figure. Thus, Fig. 8 should either be altered to
more meaningfully represent the paper’s findings or, if the authors decide to re-write the paper in a
more descriptive fashion, could be eliminated altogether.

Minor comments:
Why are neurons cultured under depolarizing conditions (25 mM KCl)?
 
The co-culture experimental set-up should be described under a separate heading, not buried
under “ ”.Cell assays
 
For similar experiments, the authors should use a similar type of plot to make the paper more
readable. For example, experiments in Figs. 3A and 3B have a very similar overall design – why
are the results shown very differently?
 
Neuronal viability is established by counting “ ”; the authors therefore need toall GFP-positive cells
show that their neuronal cultures are at least 95% and preferably 99% pure (i.e., do not contain a
significant population of GFP-positive glial cells).
 
Representative flow cytometry plots should be included in Fig. 4A.
 
To enhance readability, all figure panels should be labelled “astrocytes”, “neurons”, or “neurons +
astrocytes”, as appropriate. (The information is currently largely buried in the figure legends.)
 
In Fig. 5, authors should specify whether they are measuring mRNA or protein level (I assume the
latter, but it’s difficult to be sure).

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:
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Discuss this Article
Version 1

Author Response 07 Apr 2014
, Cajal Institute, SpainIgnacio Torres Aleman

We would like to respond to some of the points raised by the reviewers.

In response to points raised by the first reviewer :Marta Margeta
 
1: Why are neurons cultured under depolarizing conditions (25 mM KCl)?

As shown in  cerebellar granule cells requirehttp://cshprotocols.cshlp.org/content/2008/12/pdb.rec11550
25 mM KCl to survive in vitro. We checked ourselves a long time ago this specific requirement and
confirmed that without it these neurons do not survive.

4: Neuronal viability is established by counting “all GFP-positive cells”; the authors therefore need to show
that their neuronal cultures are at least 95% and preferably 99% pure (i.e., do not contain a significant
population of GFP-positive glial cells).

We established neuronal-enriched culture methods long ago using neurofilament (Fig 1A in Torres-Aleman
) or beta3 tubulin as neuronal marker (., 1998et al Neuroscience, , Garcia-Galloway et al. Mol. Cell

). We have 90-95% cells showing neuronal markers. Less than 5% stain for glial markers.2003Neurosci., 
Cell morphology also helps to avoid counting non-neuronal GFP cells. 

In response to points raised by the third reviewer :Vince Russo
 
1: In figure 1B, IGF-I ELISA, the conditioned media from astrocytes and neuronal cells is analysed for IGF-I
levels but the values are express in ng/ug of protein, why?

IGF-I levels are expressed as ng/µg protein because supernatants were concentrated by lyophilization and
re-suspended in ELISA buffer. Protein in supernatants was measured by Bradford to normalize IGF-I
levels.

 No competing interests were disclosed.Competing Interests:

Author Response 06 Feb 2014
, Cajal Institute, SpainIgnacio Torres Aleman

We appreciate the comments of the reviewer. We understand that we did not succeed in conveying the
notion that IGF-I exerts specific actions on astrocytes related to Txnip1 ...etc that do not relate directly to
neuroprotection by astrocytes; we may call it " ". We will carefully re-write theastroprotection by IGF-I
manuscript to deal with this problem. The experiments with SCF were already done but not included in the

manuscript so we now can incorporate them: SCF secretion by astrocytes increases in response to
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manuscript so we now can incorporate them: SCF secretion by astrocytes increases in response to
oxidative stress. We´ll introduce the required changes once we received the assessment of the rest of the
referees. We thank the reviewer for her careful insight into our work that will substantially improve it.

 No competing interests were disclosed.Competing Interests:
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