
A review: Blood pressure monitoring based on PPG
and circadian rhythm

Cite as: APL Bioeng. 8, 031501 (2024); doi: 10.1063/5.0206980
Submitted: 5 March 2024 . Accepted: 26 June 2024 .
Published Online: 23 July 2024

Gang Chen,1 Linglin Zou,2 and Zhong Ji1,3,a)

AFFILIATIONS
1College of Bioengineering, Chongqing University, Chongqing 400030, China
2Department of oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
3Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing 400030, China

a)Author to whom correspondence should be addressed: jizhong@cqu.edu.cn

ABSTRACT

The demand for ambulatory blood pressure monitoring (ABPM) is increasing due to the global rise in cardiovascular disease patients.
However, conventional ABPM methods are discontinuous and can disrupt daily activities and sleep patterns. Photoplethysmography (PPG)
is gaining attention from researchers due to its simplicity, portability, affordability, and ease of signal acquisition. This paper critically
examines the advancements achieved in the technology of PPG-guided noninvasive blood pressure (BP) monitoring and explores future
opportunities. We have performed a literature search using the Web of Science and PubMed search engines, from January 2018 to October
2023, for PPG signal quality assessment (SQA), cuffless BP estimation using single PPG, and associations between circadian rhythm and BP.
Based on this foundation, we first examine the impact of PPG signal quality on blood pressure estimation results while focusing on methods
for assessing PPG signal quality. Subsequently, the methods documented for estimating cuff-free BP from PPG signals are summarized.
Furthermore, the study examines how individual differences affect the accuracy of BP estimation, incorporating the factors that influence
arterial blood pressure (ABP) and elucidating the impact of circadian rhythm on blood pressure. Finally, there will be a summary of the
study’s findings and suggestions for future research directions.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0206980

I. INTRODUCTION

According to a report by the World Health Organization (WHO)
in 2023, approximately 1.28 � 109 individuals between the ages of 30
and 79 worldwide are affected by hypertension.1 Shockingly, nearly
half of these adults (46%) remain unaware of their condition, while
less than half (42%) have received proper diagnosis and treatment.1

This makes hypertension a leading cause of premature deaths globally.
BP provides crucial physiological information related to cardiac func-
tion, vascular status, organ perfusion, and hemodynamics. Timely
identification of concealed hypertension, nocturnal hypertension, and
white coat hypertension is made possible through the utilization of
continuous ambulatory blood pressure monitoring (ABPM), thereby
enhancing the effectiveness of preventing and treating hypertension.2

Currently, the conventional method used to periodically measure BP
involves inflating and deflating a cuff to impede blood flow. However,
this method is unsuitable for early detection and diagnosis of hyper-
tension due to its limitations. Additionally, patient discomfort arises

from cuff inflation during use. Invasive arterial cannulation allows for
continuous BP measurement, but it is invasive, expensive, and incon-
venient to use outside specialized settings, such as operating rooms or
intensive care units (ICUs). Noninvasive continuous ABPM has gained
more attention compared to clinical invasive methods or traditional
intermittent cuff-based measurements.

Due to its cost-effectiveness and convenient extraction, the pho-
toplethysmography (PPG) signal is well suited for continuous moni-
toring of BP, oxygen saturation, heart rate, respiration, and blood
glucose.3 Consequently, it is widely regarded as the most hopeful non-
invasive method for continuously monitoring BP. PPG employs opto-
electronic equipment to detect variations in the tissue blood volume
without invasive procedures. This method is based on Lambert-Beer’s
law,4 which states that light attenuates as it travels through blood due
to factors such as path length, tissue density, and absorption. Similar to
the intensity of light passing through the skin,5 periodic fluctuations in
the blood volume are observed as blood is ejected from and returned
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to the heart. The PPG waveform provides valuable insights into sub-
jects’ cardiovascular function and has been theoretically linked to
blood pressure regulation.6

The waveform of blood pressure and PPG recorded synchro-
nously during dynamic monitoring is depicted in Fig. 1. Their wave-
form trends exhibit a high degree of consistency, with identical periods
observed. Thus, it can be inferred that a robust correlation exists
between BP and PPG. The studies conducted by Xing et al.7 and
Mousavi et al.8 provide evidence for this correlation.

Consequently, an increasing number of researchers are embark-
ing on investigations into wearable continuous noninvasive blood
pressure (CNIBP) monitoring devices based on PPG sensors. To
enhance the portability, comfort, and accuracy of these wearables, PPG
sensor placement in relevant studies encompasses various locations
including fingers,9,10 wrists,11,12 upper arms,13 chest,14 ears,15 nose
bridge,16 forehead,17 and even human epidermis.18 Moreover, the
design of PPG sensors has evolved from single-sensor configurations
to multi-sensor integration approaches as well as innovative materials
like fiber optic sensors.10,12,19,20 Currently, integrating PPG sensors
into smartwatches represents a promising avenue for development.
However, these studies encounter challenges related to noise interfer-
ence such as motion artifacts that affect the reliability of PPG signals.
Furthermore, users have increasingly higher expectations regarding
the portability, comfort, and accuracy of wearable devices.

Currently, there are commercially available wearable devices for
CNIBP monitoring based on PPG signals. These devices include
Somnotouch-NIBP developed by Somnomedic GmbH in Germany,21

ViSi Mobile System manufactured by Sotera Wireless in the United
States,22 andWATCHD smartwatch designed by HUAWEI in China.23

Somnotouch-NIBP has obtained CE (Conformit�e Europ�eenne) certifica-
tion and enables continuous beat-to-beat BP monitoring. The device
comprises a finger PPG sensor and a three-lead electrocardiogram
(ECG) connected to an integrated wrist-worn device.21 After calibrating
the device using a cuff placed on the opposite upper arm for BP mea-
surement, pulse transit time (PTT) is derived by measuring the time
interval between the R wave on the ECG and the corresponding pulse
waveform in the finger PPG signal.21 The PTT method is used to

estimate blood pressure using a nonlinear model. The ViSi Mobile
System has received both the United States Food and Drug
Administration (FDA) and CE certification, allowing for continuous
beat-to-beat monitoring of blood pressure. The system consists of a fin-
ger photoelectric plethysmography device and a three-lead ECG. After
calibrating with the upper arm cuff on the same side, the pulse arrival
time (PAT) is determined by measuring the time delay from the R-peak
of the ECG to the position of maximum second derivative in the corre-
sponding PPG waveform.22 This measurement is then used to estimate
BP. WATCH D has received the China National Registration Class II
Medical Device Certification. It is equipped with a micro air pump and
a bladder cuff, making it compatible with both oscilloscope and PPG
technology for BP measurement. Before initiating ABPM, calibration of
the BP measurement using the oscilloscope method is necessary.
Although these three devices enable wearable CNIBP monitoring, the
accuracy of BP estimation diminishes over time, necessitating frequent
cuff calibration. The first two devices require chest electrodes for ECG
collection, thereby compromising their portability and comfort.
Consequently, these three devices still fail to meet users’ requirements
for accuracy, portability, and comfort in wearable CNIBP monitoring
devices, thus becoming a focal point for future research. Table I provides
an overview of commercially wearable CNIBPmonitoring devices.

This study presents an overview of the impact of PPG signal qual-
ity on the accuracy of BP predictions and recent advancements in cuff-
free PPG-based BP estimation. Additionally, it emphasizes the impact
of individual variations and circadian rhythms on blood pressure mea-
surements, offering insights for future development of portable contin-
uous ABPM devices utilizing PPG signals. The Web of Science and
PubMed databases were searched using keywords such as
“Photoplethysmography,” “PPG,” “blood pressure,” “estimation,” “sig-
nal quality,” “quality assessment,” “SQA,” “SQI,” “single PPG,” “single
Photoplethysmography,” “circadian rhythm,” “diurnal rhythm,” and
“day-night rhythm” to find relevant literature. The exclusion criteria
were applied as follows:

• Duplicate articles in two search engines
• Patent article
• Review
• Articles unrelated to this study
• Dissertation
• Non SCI articles

According to this exclusion criterion, the screening figures for the
second, third, and fourth parts of this study (Figs. 2–4) were obtained.

The article’s structure is illustrated in Fig. 5. In step 1, the PPG
optical module is employed to collect PPG signals from the finger
artery, followed by signal quality evaluation in step 2 (Part II of the
article). This section summarizes the impact of PPG signal quality on
BP estimation results, encompassing its influence on blood pressure
and methods for evaluating signal quality. Subsequently, the PPG
input step 3 will be employed for blood pressure estimation by elimi-
nating infeasible signals. Part III of this article elucidates the details of
this step, encompassing diverse reported approaches for estimating BP
based on PPG signals. These methods include estimation techniques
utilizing pulse wave velocity (PWV) or PTT, analysis methodologies
grounded in pulse wave analysis (PWA), and estimation methods reli-
ant on individual pulse waves, accompanied by corresponding evalua-
tions. Following that, in step 4, the circadian rhythm of systolic bloodFIG. 1. Comparison of BP and PPG waveforms. The sampling frequency is 125 Hz.
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TABLE I. Summary of commercially wearable CNIBP monitoring devices.

Device
Position of PPG

sensors
Calibration
required Principles of measurement Advantages Disadvantages

Somnotouc-
h-NIBP

Finger-PPG Initial cali-
bration
required

PTT is obtained by synchro-
nously capturing the time
interval between the ECG R
wave and the corresponding
positions of finger PPG wave-
form. Following initial cuff

calibration for BP, PTT is uti-
lized to estimate BP.

Utilizing this technol-
ogy for beat-to-beat BP
estimation, as well as
24-h ECG, pulse oxim-
etry, and actigraphy

assessments.

The accuracy of BP
monitoring may grad-
ually diminish over
time. Not suitable for
extended wear due to
lack of portability and

discomfort.

ViSi mobile
system

Finger-PPG Calibration
once per 12 h

ViSi PAT is defined as the
temporal delay between the R
peak of the ECG and the

maximum second derivative
of the corresponding PPG
waveform. After initial cuff
calibration for BP, PAT can
be utilized to estimate BP.

By leveraging this tech-
nology for beat-to-beat
BP estimation, along
with continuous

assessment of ECG,
blood oxygen levels,
heart rate, respiratory

rate, and body
temperature.

The accuracy of BP
estimation will gradu-
ally decrease over time,
so frequent calibration
is needed to maintain
optimal performance.

Not suitable for
extended wear due to
lack of portability and

discomfort.
Watch D Wrist-PPG Calibration

once per 12 h
BP was measured using an

oscilloscope method, employ-
ing a micro pump and blad-
der cuff. Prior to conducting
ABPM, calibration was per-
formed by measuring BP with
the oscilloscope method, fol-
lowed by estimation of BP

through analysis of wrist PPG
waveform.

This portable and
comfortable device can
be used for ABPM as
well as monitoring

ECG, heart rate, blood
oxygen, and body
temperature.

Frequent calibration is
necessary to ensure

accurate BP
estimation.

FIG 2. Study flow diagram of signal quality.
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pressure (SBP)projected from step 3 will be utilized to self-correct the
blood pressure prediction model from step 3, thereby ensuring accu-
racy and stability in continuous blood pressure prediction. In Part IV
of this article, we discussed the influence of individual differences on
the accuracy of blood pressure estimation, encompassing factors
impacting ambulatory blood pressure and the circadian rhythm’s effect
on blood pressure. Finally, continuous blood pressure values estimated
based on PPG and circadian rhythm guide long-term monitoring of
subjects from step 4 back to step 1. Section V offers a detailed discus-
sion along with potential directions for future research. At the conclu-
sion of the article, Part VI presents a comprehensive overview of the
entire study.

II. EFFECT OF PPG SIGNAL QUALITY ON BLOOD
PRESSURE ESTIMATION RESULTS

A. Effect of noise in PPG signals on blood pressure
estimation results

The accurate recognition of signal features in PPG signals is com-
promised due to their inherent nonlinearity and non-stationarity, as
well as their susceptibility to various forms of noise.24 This adversely
affects the precision and stability of models used for BP prediction.
Particularly, the presence of arm or finger movements can introduce
motion artifacts that may alter PPG waveforms, rendering them
unsuitable for diagnostic purpose and potentially leading to significant

FIG. 3. Study flow diagram of blood pressure estimate.

FIG. 4. Study flow diagram of individual difference.
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medical problems.25 Hence, noise reduction plays a pivotal role in sig-
nal research.26 For PPG signals, which have a primary frequency band
ranging from 0.5Hz to 5Hz, linear filters prove effective in denoising
when there is minimal overlap between their spectrum and that of the
noise.27,28 However, when the noise exhibits a wide spectrum charac-
teristic, resulting in aliasing of both the signal and noise spectra, con-
ventional filtering methods may induce signal distortion.

The generation of noise in the PPG signal is primarily attributed
to physiological factors, such as exercise or muscle contraction, and
non-physiological factors, including signal loss caused by continuous
electrical stimulation, device displacement, or network disconnec-
tion.28–31 Furthermore, various other factors can also impact the PPG
waveform, encompassing respiration, low blood flow perfusion, tem-
perature at the measurement site, skin pigmentation, alignment of light
source and photodetector, sensor-skin connection quality, contact
pressure level applied during measurement process as well as subject
posture and ambient light conditions.32–37 These sources of interfer-
ence compromise the integrity of the PPG signal and subsequently

influence blood pressure monitoring outcomes. Henceforth, it
becomes imperative to promptly identify and eliminate invalid signals
for subsequent signal analysis.

B. Methods for determining the performance of PPG
signals

Currently, methods for evaluating the usability of PPG signals
can be broadly categorized into three groups: PPG waveform feature-
based approaches, template matching techniques, and machine learn-
ing (ML)/deep learning (DL) methods.38,39 The signal quality evalua-
tion, utilizing the three methodologies, is succinctly outlined in Tables
II and III as provided herein. Among these methods, the first two
belong to traditional approaches that initially extract various signal
quality indexes (SQIs) from PPG signals and subsequently classify
pulse waves into either clean or damaged categories or further divide
them into clean, acceptable, and damaged categories based on heuristic
rules, empirical judgment, or thresholds determined by ML

FIG. 5. Article’s structure figure.
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algorithms. Currently available SQI extraction methods primarily rely
on statistical principles, time domain analysis techniques, frequency
domain analysis methods as well as template matching techniques.40

1. PPG waveform feature method

The PPG waveform feature methods typically involve the deriva-
tion of temporal, spectral, or pattern-related features from an

individual pulse wave. These extracted features are subsequently uti-
lized for classification purpose based on a predetermined threshold.
Elgendi et al.41 conducted an evaluation and comparison of eight SQIs
extracted from PPG. They discovered that skewness (SSQI) emerged as
the most suitable indicator for assessing PPG signals, offering potential
applications in enhancing the diagnosis and monitoring of abnormal
BP conditions. According to the research findings of Elgendi et al.,41

Liang et al.42 aimed to determine the optimal filter type and sequence

TABLE III. Summary of signal quality assessment based on the template matching method and ML/DL methods.

Category Study Dataset Samples Classification grade Result

Template
matching

54 Volunteers’
data/MIMIC II

19/– 2 Volunteers’ data: accuracy: 91.5% 6 2.9%, sensitivity:
94.1% 6 2.7%, specificity: 89.7% 6 5.1%.

MIMIC II: accuracy: 98.0%, sensitivity: 99.0%, specificity:
96.1%.

ML/DL 60 Volunteers’ data 10 3 The sensitivity and specificity of high-SQI PPG are 0.81 and
0.9, while the sensitivity and specificity of low-SQI PPG are

0.84 and 0.93.
61 Volunteers’ data 76 2 balanced accuracy: 0.975, Sensitivity: 0.964, specificity:0.987
62 MESA 2055 2 � � �
63 MIMIC II 12 000 2 The proposed probabilistic filtering framework significantly

enhances the accuracy of BP estimation compared to using raw
data.

TABLE II. Summary of signal quality assessment based on the PPG waveform feature method.

Category Study Dataset Samples
Classification

grade Result

PPG
waveform
features

42 Guilin People’s
Hospital’ data

219 3 The final evidence demonstrates that the fourth-order Chebyshev
II filter exhibits superior efficacy in enhancing the SQI of PPG.

49 MIT-BIH/
BIDMC

16/53 2 ECG MAPE 3.9%, 3.6%, PPG MAPE 6.0%, BP MAPE 5.0%

50 MAHNOB-
HCI/Vicar

–/10 � � � The sensitivity and accuracy of peak detection were 97.35% and
98.25%, 97.83% and 97.02, respectively.

44 MIMIC II/III � � � 2 The outliers could be efficiently filter out.
45 MIMIC II,

CONTEC, E4,
Capnobase

� � � � � � The algorithm suggested has demonstrated remarkably better
results in the context of wearables, with an Fscore surpassing 0.92.

46 MIMIC II/III 150 2 SBP SD 3.24mmHg MAE 2.38mmHg, DBP SD 1.73mmHg MAE
1.23mmHg. Compared to not using SQA, the accuracy of SBP and

DBP increased by 19.56% and 24.61%, respectively.
47 MIMIC II 12 000 2 The SD of prediction errors for SBP and DBP increased by 11.68%

and 10.81%, respectively. The MAE increased by 14.79% and
11.70%, respectively

48 Volunteers’
data/MIMIC

III/CSL

471/16199/605 3 The RF classifier demonstrated superior performance with an
overall mean accuracy of 96.8%. Other evaluation indicators in the
confusion matrix all exceeded or approached the threshold of 0.98.

43 Volunteers’ data 20 2 During exercise, the MAE of SBP and DBP decreased from 36.6
and 13.6mmHg to 4.8 and 3.47mmHg

41 MIMIC III � � � 2 F1:97%
52 Volunteers’ data 8 2 The balance accuracy (BACC) of green light, red light, and infra-

red light increased by 21.3%, 21.6%, and 19.0%, respectively.
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configuration for effectively reducing noise and enhancing signal qual-
ity in both original and filtered PPG signals. Initially, the signal seg-
ments were classified into three categories (G1: excellent, G2:
acceptable, and G3: unqualified) using SSQI. Subsequently, various
types of filters were employed for signal filtering, with SSQI used to
evaluate the effectiveness of these filters. The results indicated a signifi-
cant improvement in the SQI when employing a fourth order
Chebyshev II filter. Hayashi et al.43 employed support vector machines
(SVM) as a classifier to categorize PPG signals into acceptable and
unqualified signals across various conditions, including rest, exercise,
and recovery. They utilized the SSQI feature to eliminate low-quality
signals, with the aim of enhancing diagnostic accuracy and healthcare
standards. Following the removal of unqualified signals using SSQI,
both SBP and diastolic blood pressure (DBP) predicted mean absolute
errors (MAE) notably decreased, particularly during exercise state
where SBP reduced from 36.6mm Hg to 4.8mm Hg and DBP
decreased from 13.6mm Hg to 3.47mm Hg. The noise elimination
technique proposed by Lin et al.44 relies on the analysis of pulse wave
characteristics to effectively filter out outliers. Five evaluation indica-
tors were initially extracted from the pulse wave. Median filtering was
then used to derive median lines corresponding to these indicators. An
acceptable threshold range was established near each median line for
individual pulse evaluation. If any feature value exceeds the predeter-
mined threshold, the corresponding part of the pulse is eliminated. A
newmethod proposed by Banerjee et al.45 uses frequency domain anal-
ysis to evaluate the quality of PPG signals. Metrics for assessing signal
quality were derived from the spectrum’s cardiac and respiratory com-
ponents, while a differential evolutionary algorithm was employed to
optimize threshold. Roy et al.46 utilized four features, namely, approxi-
mate entropy, spectral entropy, Hjorth complexity, and Higuchi fractal
dimension, as input feature vectors for the self-organizing map binary
classifier to distinguish between “clean” and “damaged” classes. The
evaluation was conducted using over 150 samples from the MIMIC II/
III waveform database. Compared to not utilizing signal quality assess-
ment (SQA), the accuracies of SBP and DBP improved by 19.56% and
24.61%, respectively. Salah et al.47 proposed a continuous two-step
cleaning technique, which consists of an initial mild threshold screen-
ing to identify clearly abnormal signals, followed by a fine cleaning
using the principal component analysis (PCA). The model’s perfor-
mance was enhanced when trained on the processed data, leading to a
reduction in the prediction error and an increase in the correlation
between predicted and actual blood pressure values. Prasun et al.48

employed a combination of time and frequency domain analysis to
derive seven distinct features, which were then integrated and applied
with various ML classifiers for the purpose of classifying signals into
three categories (clean, partially clean, and damaged). The final ran-
dom forest (RF) classifier demonstrated extraordinary performance,
achieving a mean accuracy of 96.8% in evaluations across four datasets.
The other evaluation indicators in the confusion matrix exceed or
approach the threshold of 0.98.

Furthermore, novel measurement methods based on PPG wave-
forms have been proposed by researchers. Adami et al.49 proposed a
universal framework that employs the techniques of empirical mode
decomposition and discrete wavelet transform for simultaneous decom-
position of electrocardiogram (ECG), PPG, and BP signals. This decom-
position process generates respiratory signals such as ECG-derived
respiration (EDR), PPG-derived respiration (PDR), or BP-derived

respiration (BDR). Subsequently, the signal purity index (SPI) is com-
puted for each respiratory signal at different time points, serving as the
SQI to assess signal quality based on the Hjorth parameter.
Additionally, an evaluation of signal quality parameters is performed in
conjunction with the extended Kalman filter to mitigate the impact of
low-quality segments during estimation. Furthermore, EDRs, PDRs, or
BDRs are fused together to estimate respiratory rate. Experimental eval-
uations were conducted using both MIT-BIH multi-channel sleep map
database and Beth Israel Deaconess Medical Center (BIDMC) database
yielding mean absolute percentage errors (MAPE) of 3.9% and 3.6% for
ECG signals, respectively, while MAPE values for PPG and BP signals
were found to be 6.0% and 5.0% correspondingly. Based on the spectral
characteristics of remote photoplethysmography (rPPG), Fan et al.50

proposed a metric to assess signal quality for accurate estimation of
PTT. This metric aims to identify high-quality signals, detect any poten-
tial noise, and assess the overall reliability of rPPG measurements. The
sensitivity and accuracy of peak detection evaluated using the
MAHNOB-HCI dataset and Vicar dataset were 97.35% and 98.25%,
respectively, as well as 97.83% and 97.02%. Schmith et al.51 conducted a
comprehensive quality evaluation of PPG signals by analyzing the shape
of short segmented attractors in an analytical manner. This approach
demonstrated effective classification performance for both good and
bad PPG signal segments, F1 score achieved 97%. Although slightly
inferior to DL methods in terms of results, this completely analytical
method eliminated the need for training or calibration, rendering it
highly suitable for real-time applications. The PPG quality metric pro-
posed by Tiwari et al.52 is based on modulation spectrum characteristics.
Experimental results on multi-wavelength PPG datasets demonstrated
that the combination of the proposed metric and traditional metrics
outperformed several conventional SQIs significantly. Specifically, the
balance accuracy (BACC) for green, red, and infrared light was
improved by 21.3%, 21.6%, and 19.0%, respectively.

2. Template matching method

The template matching method is a commonly employed tech-
nique for assessing regularity in PPG signal segment classification, as
high-quality signal segments are expected to exhibit similar pulse wave
shapes.53 Lim et al.54 utilized principal component analysis to generate
multiple primary templates and subsequently updated these templates
based on the incoming clean PPG pulses. Correlation coefficients were
then employed to classify PPG pulses into two categories: good and
bad. In comparison with volunteer data, this algorithm exhibits supe-
rior accuracy, sensitivity, and specificity on the MIMIC II database.
The signal quality evaluation method developed by Papini et al.55

involves the utilization of dynamic time warping barycenter averaging
of multiple pulses, based on a template approach. Notably, this method
exhibits enhanced stability in performance as it eliminates the need for
alignment processes within the set. Song et al.56 proposed an adaptive
matching template algorithm based on rules to evaluate the quality of
PPG waveforms. This algorithm computes the correlation coefficient
between an individual PPG waveform and a mean template of PPG
waveforms. The primary focus of this approach is to judge signal qual-
ity by analyzing variations in both signal amplitude and time differ-
ence. However, due to its limited adaptability, researchers have begun
exploring alternative solutions that leverage the morphological charac-
teristics of PPG signals. Alam et al.57 utilized a combination of
template matching and kurtosis to classify the quality of PPG signals.

APL Bioengineering REVIEW pubs.aip.org/aip/apb

APL Bioeng. 8, 031501 (2024); doi: 10.1063/5.0206980 8, 031501-7

VC Author(s) 2024

pubs.aip.org/aip/apb


The accuracy of classifying 96500 signal segments was 96.5%. The ini-
tial application of the incremental-merge segmentation algorithm by
Yang et al.58 involved the identification of the peak and onset of the
PPG signal beat, followed by a combination of thresholding and adap-
tive template matching to evaluate the quality classification of the PPG
signal. Gazi et al.59 employed two template matching techniques along
with two distinct thresholds to effectively eliminate outliers present in
PPG signal beats.

Traditional template matching and PPG waveform feature meth-
ods often exhibit limited accuracy and database-specific overfitting,
thereby constraining their universality.

3. Machine learning/deep learning methods

With advancements in computer science and technology, an
increasing number of researchers are utilizing ML/DLmethods to eval-
uate the quality of PPG signals. In a study conducted by Liu et al.,60 a
fuzzy neural network with five-layer was utilized to assess the SQI.
Based on the observed changes in the output of each stroke measured
using commercial equipment, the signals quality are classified into
three categories. By calculating the stroke output from PPG and input-
ting extracted parameters into their developed model, they assessed
the performance of SQI evaluation. The research findings demonstrate
that PPG with high SQI and low SQI exhibit comparable levels of sen-
sitivity and specificity. Roh et al.61 utilized a convolutional neural net-
work (CNN) to transform PPG signals into 2D images and
successfully classified them into two distinct categories. The resulting
model demonstrated notable sensitivity and specificity. Rinkevi�cius
et al.62 proposed an algorithm that utilizes ECG guidance to assess the
quality of PPG signals. The algorithm accurately identifies the onset of
the PPG pulse by detecting R and T waves in the ECG signal.
Subsequently, it calculates the absolute second derivative of the PPG
signal envelope and applies thresholds to identify lower-quality PPG
pulse waves. Chen et al.63 proposed a data-driven model that utilized
the maximum entropy principle to select a probability model for evalu-
ating beat-to-beat quality of PPG signals, followed by signal filtering
based on physiological rules.

Despite the commendable performance of ML/DL in evaluating
PPG signal quality, certain challenges persist. These include the pres-
ence of multiple model parameters, prolonged computation time, and
the need for a significant amount of annotated data to aid in model
training and validation. The laborious task of manually annotating
thousands of PPG signals by experts further restricts the suitability of
such methods primarily to offline applications.

III. THE PPG-BASED METHOD FOR BLOOD PRESSURE
EVALUATION
A. The PWV or PTT methods for assessing blood
pressure

PWV or PTT is a widely used indicator for estimating BP. PTT is
a metric that measures the time difference between pulse waves in dif-
ferent segments of the arterial system. It has an inverse correlation
with PWV. Additionally, the PAT can be determined by calculating
the time between the R peak on an ECG and the peak in PPG. There
are two common methods for measuring PTT/PAT. The first involves
synchronously acquiring ECG and PPG signals. The second involves
using multiple sensors placed at both extremities to calculate temporal
intervals between signals from different anatomical regions.

PWV is primarily influenced by arterial vascular compliance. The
M-K equation (1) was derived in previous studies by considering the
propagation of pulse waves and the correlation between vascular
parameters and pulse wave velocity. This equation was first introduced
by Moens and Korteweg,64,65

PWV ¼
ffiffiffiffiffiffi
Eh
qD

s
: (1)

Among them, E represents the arterial elastic modulus, h refers to the
thickness of the arterial wall, D signifies the inner diameter of arterial,
and q stands for the blood density. After calculating PTT/PWV/PAT,
the mentioned equation can be utilized to estimate BP. The study con-
ducted by Lazazzera et al.66 involved strategically placing two sensors
on the front and back of the smartwatch to simultaneously capture
PPG signals from both the wrist and fingertips. By incorporating time
intervals of PPG readings from these two locations into a linear model,
they successfully achieved accurate estimation of blood pressure. The
accuracy assessment was performed on a sample size consisting of 44
participants, yielding results that closely aligned with the standards set
by AAMI. Tabei et al.67 used mobile phone cameras to simultaneously
capture PPG signals from both index fingers, which were then utilized
for estimating BP by calculating PTT.

Furthermore, PPG is integrated with other physiological signals
to estimate blood pressure by determining the spatial separation
between two anatomical points and calculating PTT or PAT.
Marzorati et al.68 successfully estimated blood pressure by combining
PPG with phonocardiogram (PCG) to continuously extract PAT.
Huynh et al.69 combined impedance plethysmography (IPG) sensors
with PPG sensors placed on the wrist and index finger, respectively, to
calculate PTT and estimate BP. Yousefian et al.70 utilized ballistocar-
diography (BCG) and PPG signals collected from a wristband to esti-
mate BP. They employed wrist PTT as proximal and distal timing
benchmarks for BCG data analysis. Table IV presents an overview of
the PTT methods utilized in this article for assessing BP.

The BP assessment methods mentioned above, which are based
on PWV or PTT, require the use of at least two sensors, resulting in
increased cost and noise as well as challenges to portability.
Furthermore, owing to interindividual physiological variations, these
methods exhibit suboptimal accuracy in estimation and require fre-
quent calibration.

TABLE IV. Summary of the PTT methods for assessing blood pressure.

Study
Signals acquisition

method Subjects

Result (mmHg)

SBP DBP

66 Wrist PPG þ finger PPG 5þ 44 ME: �1.52 ME: 0.39
STD: 9.45 STD: 4.93

67 Both index finger PPG 6 MAE: 2.07 MAE: 2.12
STD: 2.06 STD: 1.85

68 Finger PPG þ Chest PCG 20 MAE: 3.06 MAE: 1.83
69 Finger PPG þ Wrist IPG 15 RMSE: 8.47 RMSE: 5.02

STD: 0.91 STD: 0.73
70 Wrist PPG þWrist BCG 22 MAE: 7.6 MAE: 5.1
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B. The PWAmethod for assessing blood pressure

The data collected from the PPG waveforms included various
physiological information. They also exhibited strong correlations with
the cardiovascular system. Confirming the physiological meaning of
pulse waves, PWA extracts comprehensive features from PPG and
associated waveforms using robust artificial intelligence algorithms to
estimate BP. The investigation into techniques for predicting BP using
PWV can currently be categorized into two primary domains: explor-
ing features that demonstrate a robust connection with BP and
enhancing artificial intelligence algorithms through optimization
methods. The association between BP and several characteristics of the
PPG waveform, including the aforementioned PTT, has been experi-
mentally validated. The features utilized in previous studies can be cat-
egorized into characteristics in the temporal domain, characteristics in
the frequency domain, demographic data, and so forth. Specific details
regarding these features are illustrated in Fig. 6.

ML technology is used to explore the nonlinear relationship
between the PPG signal and BP, resulting in a breakthrough for BP pre-
diction models. Chen et al.71 utilized an open dataset to extract 14 char-
acteristics from both ECG and PPG signals, carefully selecting these
characteristics based on the mean impact value (MIV) index.
Subsequently, a genetic algorithm was employed to optimize a support
vector regression (SVR) model for precise BP prediction. Tan et al.72

conducted a study in which they simultaneously captured PPGs and
ECGs from 10 subjects and screened time-domain features using the

MIV index. This study used a BP network with genetic algorithms (GA)
to build models for SBP and DBP. The proposed algorithm demon-
strated superior performance compared to both traditional regression
models and ANN. However, it is important to note that the credibility
and generalizability of the model may have been affected by the limited
number of subjects used in the above-mentioned two studies.

Furthermore, several studies have utilized more intricate DL
models to estimate BP by extracting pertinent PPG features. Li et al.73

used the DL framework to estimate BP by extracting seven features,
including PTT. The DL framework comprises bidirectional temporal
layer and multilayer long short-term memory (LSTM) incorporating a
residual blocks. Evaluation using the MIMIC II dataset demonstrated
that the estimated SBP achieved grade B accuracy according to the
BHS standard, while DBP attained grade A accuracy. Senturk et al.74

assessed the accuracy of three ML models for estimating BP by extract-
ing features from the MIMIC II data and combining them with some
chaotic features. The research demonstrated that nonlinear autoregres-
sive neural networks with external inputs (NARX) outperformed other
models. However, the size of the dataset used is not explicitly stated,
which could impede comparisons of results between studies. In this
article, Table V presents the method used for estimating BP using
through PWA.

The method used to estimate BP through PWA involves a multi-
tude of extracted feature parameters, and the screening process for
determining these parameters is intricate, resulting in significant dis-
parities in estimation outcomes. Furthermore, due to the potential

FIG. 6. Partial PPG feature schematic diagram. The sampling frequency is 500 Hz.
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inclusion of irrelevant features and inadequate exploration of informa-
tion embedded within PPG waveforms, the accuracy of PPG waveform
benchmark detection becomes crucial in determining the results.

C. The method of using single PPG to assess blood
pressure

Currently, technology based on PTT and PWA can achieve
acceptable accuracy for cuff-free blood pressure measurement.
However, these methods require multiple sensors, such as PPG and
ECG, to collect physiological signals. This limits their suitability for
truly wearable applications. Therefore, Khalid et al.75 compared the
accuracy of three ML algorithms in assessing BP. The algorithms uti-
lized only three essential pulse features extracted from high-quality
PPG signals: area, rise time, and 25% pulse width. The results demon-
strated that the regression tree (RT) performed the best. Furthermore,
they also evaluated the estimation accuracy for three different clinical
blood pressure categories: normal blood pressure, hypertension, and
hypotension. A noninvasive and continuous method for assessing BP
using a single PPG sensor was proposed by Hu et al.76 They considered
the formation mechanism of PPG signals and employed a three
Gaussian model to extract features. XgBoost was identified as the opti-
mal model for BP estimation. Dey et al.77 developed a model for BP
assessment using lasso regression, which incorporated demographic
information and PPG features. The threshold for dataset classification
was determined by using the median value of demographic informa-
tion. The demographic information from different categories was com-
bined with PPG features and inputted into their respective prediction
models to estimate blood pressure. Acciaroli et al.78 conducted a
dynamic system analysis to estimate BP from PPG signals using an
autoregressive exogenous (ARX) model based on kernel regularization.
The feasibility of this approach was assessed by analyzing PPG time
series obtained from multiple individuals in 10 resting states. The
results demonstrate that the method achieved an average root mean
square error (RMSE) of 6.5mm Hg over a short duration. However, it
is important to note that the data used for model training and valida-
tion in this method are sourced from the same participant, which can
result in overfitting issues.

Recent rapid advances in DL have enabled numerous research
efforts to extract complex multidimensional features from PPG signals
and apply advanced convolutional processing capabilities to continu-
ous BP monitoring. Baek et al.79 proposed an integrated CNN model
for predicting BP without the need for feature extraction. They also

explored the combination of PPG signals with different wavelengths
using this approach. The results showed that green PPG provided bet-
ter BP prediction performance for most subjects, achieving similar
accuracy as other methods using single PPG. Sadrawi et al.80 proposed
a genetic algorithm-optimized deep convolutional autoencoder to
explore the potential of using a single PPG signal for generating suc-
cessive arterial blood pressure (ABP). Ma et al.81 introduced KD-
transformer, a method based on transformer architecture that incorpo-
rates a knowledge distillation strategy for accurately estimating BP
waveforms. To extract informative features from PPG signals while
accounting for inherent physiological parameter variations and noise,
this approach employs a strategy of backtracking feature reduction
and feature combination. To mitigate motion artifacts, Pankaj et al.82

proposed a DL framework for estimating BP. The framework utilizes a
single-channel PPG signal through superwavelet transform and opti-
mization while simultaneously classifying the BP. The superwavelet
transform method is used to convert 1D PPG signals into 2D super-
resolution spectrograms. This approach effectively separates the true
components of the PPG signal from peak values associated with
motion artifacts, thereby achieving artifact removal. Establishing a
benchmark is crucial for evaluating the increasing number of ML
methods that utilize PPG signals for BP estimation. Gonz�alez et al.83

extensively compared 11 state-of-the-art models on four different data-
sets, across feature-to-label, signal-to-label, and signal-to-signal catego-
ries. They employed mean absolute scaled error (MASE) as an
evaluation metric for comparing BP models across various datasets.
Table VI presents the methods discussed in this article for estimating
BP using a single PPG.

The ML methods mentioned above are mainly used for single-
point or short-term blood pressure measurement, which does not
meet the clinical needs of continuous long-term blood pressure moni-
toring. However, the use of DL approaches fails to meet the interpret-
ability requirements of feature parameters and estimation models in
the medical field due to their algorithmic black box nature.
Additionally, DL models have numerous parameters and are computa-
tionally complex, rendering them unsuitable for real-time blood pres-
sure estimation.

IV. THE IMPACT OF INDIVIDUAL VARIATIONS ON THE
ACCURACY OF BLOOD PRESSURE ESTIMATION

The BP is a quantification of the sideforce exerted by the circulat-
ing blood on the endothelial linings of blood vessels. Specifically, ABP

TABLE V. Summary of the PWA methods for assessing blood pressure.

Study Dataset Features Algorithm

Result (mmHg)

SBP DBP

71 MIMIC III 14 GA-SVR MAE: 3.27 MAE: 1.16
STD: 5.52 STD: 1.97

72 Volunteers’ data 10 subjects 17 GA-BP RMSE: 2.114 RMSE: 1.3
73 MIMIC 50 subjects 7 BiLSTM þ residual-LSTM MAE: 6.726 MAE: 2.516

STD: 14.505 STD: 6.442
74 MIMIC II 19 NARX-NN MAE: 0.0224 MAE: 0.0417

STD: 2.211 STD: 1.2193
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refers to the lateral pressure exerted by blood on the arterial wall dur-
ing its flow within an artery, playing a crucial physiological role in
ensuring adequate circulation. ABP exhibits normal physiological fluc-
tuations that include the following:

(1) The circadian rhythm of ABP
ABP exhibits a distinct circadian rhythm, with diurnal peaks
and nocturnal troughs in most individuals. Therefore, achieving
optimal hypertension control necessitates maintaining blood
pressure within the ideal range both during the day and at
night.

(2) Sports
The response of BP to exercise is characterized by an increase in
SBP, DBP, and mean arterial pressures. However, the increase
in SBP demonstrates a more significant impact.

(3) Age and Gender
Age and gender disparities in ABP exist. Generally, pediatric
individuals have lower ABP than adults. As age advances, adults
show an increase in both SBP and DBP; however, the increase
in SBP is greater than that of DBP. Adult males tend to have
slightly higher ABP than females; however, these gender differ-
ences diminish following menopause.

A. The influencing factors of ABP

To establish a specific ABP, the vascular system must first be
adequately filled with blood. Then, ventricular contraction propels
blood into the aorta, converting its work into two forms of energy:

kinetic energy that drives blood flow and potential energy stored
in the arterial wall as elastic potential energy and pressure energy
(systolic pressure). However, injected blood cannot generate suffi-
cient ABP without peripheral resistance and ventricular ejection.
After ventricular ejection ceases, elastic retraction occurs in the
aorta and large arteries, converting stored potential energy into
both pressure energy (diastolic pressure) and kinetic energy to
drive blood flow.

Hence, the influencing factors of blood pressure encompass
various determinants that impact the establishment of ABP,
including circulating blood volume, stroke volume, peripheral
resistance, elasticity of aortic, and large arterial wall, as well as
heart rate.84 Heart rate is calculated based on the time duration
between R peaks identified in ECG recordings. In terms of aortic
and large artery wall elastic properties, PTT can serve as a relevant
characteristic parameter due to its close association with PWV.
According to Lin et al.’s study,85 selecting significantly correlated
parameters serves as indicators of peripheral resistance and stroke
volume. It is widely acknowledged from a medical perspective
that the circulating blood volume corresponds to approximately
7%–8% of an individual’s body weight. Weight can be considered a
viable parameter for assessing circulating blood volume.

1. Stroke volume

Stroke volume pertains to the quantity of blood expelled into the
aorta in one instance of contraction by the left cardiac ventricle. A rise

TABLE VI. Summary of the methods for estimating blood pressure from single PPG.

Study Dataset Algorithm

Result (mmHg)

SBP DBP

75 Queensland 32 subjects RT ME: �0.1 ME: �0.6
SD: 6.5 SD: 5.2

76 MIMIC 44 subjects RF, AdaBoost, XgBoost, LightGBM, CatBoost MAE: 5.38 MAE: 3.05
Queensland 31 subjects SD: 9.66 SD: 4.88

Guilin People’s Hospital 219 subjects
77 Volunteers’ data 205 subjects Lasso Regression model MAE:6.9 MAE:5.0

STD:9.0 STD:6.1
78 Volunteers’ data 10 subjects ARX models with kernel-based regularization MEAN RMSE:6.5
79 Volunteers’ data 26 subjects CNN MAE:5.28 MAE:4.92
80 Volunteers’ data 18 subjects GA-LeNet/U-Net MAE: 2.54 MAE: 1.48
81 Mindray dataset 467 subjects KD-Informer (transfer learning) ME: 0.02 ME: 0.01

MIMIC SD: 5.93 SD: 3.87
82 MIMIC III CNN (superlet transform) MAE: 2.71 MAE: 2.42

SDAE: 3.29 SDAE: 3.94

83 Sensors, UCI, BCG, PPGBP

Feat2Lab: LightGBM, SVR, RF,
MLP, AdaBoost

Feat2Lab: SVR and LightGBM perform the best.

Sig2Lab: ResNet, spectroResNet, MLPBP Sig2Lab: ResNet is the best model.
Sig2Sig: U-Net, PPGIABP, V-Net Sig2Sig: U-Net perform the best.

Across categories: Sig2Lab and Sig2Sig methods
perform the best
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in the volume of blood pumped per heartbeat causes a greater flow of
blood into the artery, leading to higher SBP, subsequently followed by
DBP and pulse pressure (PP). Notably, SBP predominantly reflects the
magnitude of stroke volume.

2. Heart rate

An increase in the heart rate results in a shortened ventricular
diastole, reduced peripheral blood flow, and increased blood volume in
the large arteries. This leads to an elevation of DBP and accelerated
blood flow velocity, which in turn causes an increase in SBP. However,
the rise in SBP is not as significant as that of DBP, resulting in a
decrease in PP.

3. Peripheral resistance

Peripheral resistance is primarily generated in arterioles. An
increase in peripheral resistance results in a significant reduction in
blood flow velocity during diastole toward the heart’s periphery. At the
end of diastole, blood accumulates within the aorta, resulting in an ele-
vation of both DBP and SBP; however, DBP increases more signifi-
cantly than SBP, leading to a decrease in PP. Therefore, DBP mainly
reflects the degree of peripheral resistance.

4. Elasticity of aorta and large artery wall

The significant rise in SBP, accompanied by a decline in DBP and
a substantial increase in PP, can be attributed to the reduced elastic
properties of the aorta and large artery walls. The effect of reduced
elasticity on PP is particularly noticeable.

5. Circulating blood volume

The simultaneous decrease in both SBP and DBP is attributed to
a reduction in circulating blood volume, with SBP demonstrating a
more pronounced decline, thereby resulting in a decrease in PP.

All of the analyses mentioned assume that other variables remain
constant and only consider the impact of a single factor on ABP.
However, in practical scenarios, these five factors may change simulta-
neously, requiring a comprehensive consideration of all variables when
analyzing factors that influence alterations in ABP.

B. The influence of circadian rhythm on BP

BP exhibits a circadian rhythm, with a decline during sleep and a
gradual increase upon awakening.86 In 1988, O’Brien et al.87 reported
that individuals with a mean diurnal BP difference of less than 10 or
5mm Hg had a history of recurrent stroke; these individuals are
referred to as non-dippers.87 Normally, blood pressure decreases by
approximately 10%–20% during the night compared to daytime levels,
which defines the dipper pattern. However, individuals who exhibit
less than a 10% decrease in nighttime blood pressure relative to day-
time levels are classified as non-dippers, as shown in Table VII.
Moreover, a nocturnal blood pressure drop of at least 20% is termed
an extreme dipper. Conversely, if nighttime blood pressure exceeds
daytime values (a ratio of nighttime to daytime blood pressure �1), it
is referred to as a reverse-dipper, also known as an inverted dipper or
rising type. Studies have shown that non-dipper and reverse-dipper
individuals are more susceptible to severe target organ damage and

exhibit higher cardiovascular risk compared to dippers.88,89 Reverse-
dipper individuals face significantly elevated risks (48%) for cardiovas-
cular disease compared with dipper individuals,90 particularly heart
failure, which carries the greatest risk. Assessing nocturnal blood pres-
sures is crucial as they hold greater relevance for mortality outcomes
than daytime measurements.88 Consequently, ABPM has become an
essential method in the prevention and treatment of hypertension due
to its capability to provide comprehensive data on diurnal and noctur-
nal blood pressure, as well as circadian rhythm patterns.

The discontinuous nature of current ABPM disrupts sleep. To
tackle this issue, Radha et al.91 employed wrist-worn PPG sensors and
LSTM neural networks to devise a methodology for estimating noctur-
nal reductions in SBP based on the overall trends of BP during daily
activities. The performance of LSTM was compared with traditional
ML and non-ML approaches. The study found that the LSTM neural
network was more effective, with a RMSE of 3.126 2.20mm Hg for
the decrease in nocturnal SBP and a correlation coefficient of 0.69 with
actual SBP decline. However, all estimation models used in the study
had suboptimal accuracy and did not meet the requirements for practi-
cal application. To mitigate the impact of ABPM on sleep, work, and
daily activities, Finnegan et al.92 conducted a study on the correlation
between PPG features and nocturnal BP patterns. The study selected
PPG signals from 742 patients who were about to be discharged from
the ICU from the MIMIC-III database and extracted 19 features to
assess the correlation between their circadian rhythm and SBP circa-
dian rhythm. The study found that five features had stronger correla-
tions than HR. Additionally, combining these 19 PPG and PAT
features significantly improved the accuracy of nighttime BP classifica-
tion. However, it is necessary to note that this study was conducted at
a population level rather than an individual level and did not include
subjects who had been discharged from the hospital.

Therefore, exploring the construction of BP estimation models in
diverse physiological states and forming model clusters for accurate BP
estimation is worthwhile. Categorizing long-term BP data based on the
circadian rhythm of human BP and developing specific models for dif-
ferent physiological states can effectively capture fluctuations caused
by varying physiological conditions. During BP estimation, an adaptive
selection process is used to choose the appropriate model from the
cluster based on input characteristic parameters representing the indi-
vidual’s physiological state. This ensures self-calibration of the model.

V. DISCUSSION AND FUTURE RESEARCH DIRECTION
A. Discussion

This paper comprehensively elucidates the influence of PPG sig-
nal quality on blood pressure estimation. The subsequent analysis tasks
heavily rely on denoising PPG signals and processing low-quality ones,
which pose a significant challenge. Current methods relying on PPG
waveform features and template matching exhibit limited accuracy
and are prone to overfitting when applied to certain databases.
Although ML/DL methods have demonstrated good performance in

TABLE VII. Categorization of nocturnal blood pressure dipping in relation to daytime
levels.

Reverse-dipper Non-dipper Dipper Extreme dipper

� 0% <0%–<10% � 10%–<20% � 20%
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quality assessment, they are limited by excessive model parameters,
long computation time, and the requirement for a large amount of
annotated data. These limitations prevent them from meeting the
requirements of continuous signal quality assessment. Additionally,
there is currently no standardized approach for handling missing sig-
nals or breakpoints caused by acquisition limitations or network trans-
mission issues in practical scenarios. Typically, the nearest good PPG
signal before and after the gap is used for interpolation of missing seg-
ments. Additionally, PPG signals exhibit variations in shape and
amplitude across different body parts (fingers, wrists, upper arms, ears,
etc.), detection methods (reflection or transmission), and subjects (age,
gender, skin color, BMI, etc.). Furthermore, the current research lacks
objective standards for evaluating signal quality and relies on subjective
criteria. Therefore, it is imperative to establish unified evaluation
standards and publicly available datasets with quality labels to validate
assessment methods. Regrettably, no prior research has addressed this
issue. To meet the real-time signal quality assessment requirements of
portable devices while ensuring accuracy in assessment results, a light-
weight model based on physiological principles should be employed
for reconstructing clean PPG signals or more precise thresholds should
be utilized to eliminate poor-quality signals.

Subsequently, the present article provides a comprehensive analy-
sis of PPG signal-based methodologies for noninvasive BP estimation
without the need for cuffs. The use of PWV or PTT for BP estimation
requires at least two sensors, resulting in increased hardware cost and
noise levels, making them non-portable. Additionally, these methods
exhibit low estimation accuracy and require frequent calibration due
to substantial physiological variability among individuals. Blood pres-
sure estimation methods based on PWA exhibit significant result var-
iations due to the extraction of numerous feature parameters and the
complexity associated with screening methods for determining such
parameters. Additionally, this approach may incorporate irrelevant
features and fail to fully exploit information contained within the PPG
waveform. Therefore, its effectiveness heavily relies on accurate detec-
tion of reference points within the waveform. Most ML techniques
used for single PPG-based blood pressure estimation are only suitable
for short-term measurements, failing to meet the requirements for
long-term continuous beat blood pressure monitoring. Although
attempts have been made to employ DL methodologies, their algorith-
mic black box nature poses challenges in terms of interpretability of
feature parameters and estimation models within medical applications.
Furthermore, DL models frequently require a large number of
parameters and lengthy computation times, making them unsuitable
for real-time BP estimation. Although many studies have investigated
noninvasive continuous BP monitoring using PPG signals, current
measurement methods and devices are limited to laboratory settings
due to accuracy limitations, lack of portability, and frequent calibration
requirements. Currently, the decrease in accuracy of continuous non-
invasive cuffless blood pressure monitoring over extended durations
and the frequent need for calibration can be attributed to several fac-
tors. First, noise interference on PPG signals, particularly motion arti-
facts, poses a significant challenge. This necessitates optimizing sensor
design, employing robust sensing techniques, and enhancing signal
quality. Additionally, more effective methods for assessing signal qual-
ity should be utilized to eliminate unusable signals. Second, it is neces-
sary to identify features from PPG that are strongly correlated with BP.
Currently, it is known that the correlation between PTT/PWV and BP

is derived from the correlation between arterial compliance and pres-
sure. However, whether there are other blood pressure-related features
in the PPG waveform needs to be further investigated by researchers.
Finally, the current BP estimation model has limitations as it only con-
siders certain PPG and derived waveform features without fully incor-
porating physiological mechanisms and individual differences into its
construction, consequently leading to low long-term estimation
accuracy.

This article provides an overview of the factors that influence BP
and highlights the impact of circadian rhythm on BP regulation. The
factors include circulating blood volume, stroke volume, peripheral
resistance, aortic and large artery wall elasticity, and heart rate. High-
quality and uninterrupted monitoring of nocturnal BP is paramount
due to the significant influence of circadian rhythm on blood pressure
regulation, particularly during nocturnal hours when abnormal fluctu-
ations pose serious health risks. However, research in this area remains
insufficient. The incorporation of individual differences resulting from
factors influencing BP and circadian rhythms should be taken into full
consideration when developing BP estimation models, as individual
differences may contribute to a decline in the accuracy of such models
over time.

B. Future research direction

The dataset used in the current study has limitations in terms of
demographic characteristics and quality criteria. To enhance the mod-
el’s applicability and generalization ability, future research should aim
to establish a more comprehensive and diverse dataset that incorpo-
rates annotated PPG signal quality. This will also provide a superior
benchmark for comparison and evaluation purpose within the
research field.

To address the urgent need for accurate and real-time evaluation
of PPG signal quality, it is necessary to establish unified quality evalua-
tion standards. Clean signals can be reconstructed from noisy signals
using lightweight models based on physiology. Alternatively, more pre-
cise thresholds can be used to classify and remove poor PPG signals,
while reasonable methods can be adopted to handle missing signals.

Currently, due to the lack of widely accepted PPG features that
have strong connectivities with blood pressure, the identification of
PPG features with clear physiological implications must be pursued in
future studies. Additionally, it is important to deploy existing offline
training models on mobile phones or other wearable devices, taking
into account algorithmic accuracy, computational complexity con-
straints, and suitability for real-time blood pressure estimation.
Consequently, developing lightweight and precise models presents a
significant challenge for future research.

Previous studies have primarily focused on the average blood
pressure level, which has low accuracy and requires frequent calibra-
tion. To account for inter-individual physiological differences and fac-
tors that influence blood pressure, future research should incorporate
multiple physiological parameters and develop blood pressure estima-
tion models based on circadian rhythms to form clusters of models.
Accurate blood pressure estimation can be achieved by selecting
appropriate models within these clusters based on changes in physio-
logical characteristics.

Currently, commercialized wearable devices for CNIBP monitor-
ing still face several challenges. These include inaccurate BP estimation,
frequent calibration requirements, limited portability, and poor
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comfort. To address these issues, it is important to optimize sensor
design and utilize more robust sensing technologies to improve signal
quality. Additionally, successful implementation of signal quality eval-
uation methods and continuous blood pressure estimation models, as
mentioned in previous research directions, is necessary for further
improvement. A comfortable wearing method is used to overcome
interference caused by static water pressure changes and motion arti-
facts, and eliminate the need for cuff calibration based on a single PPG
signal. These devices can effectively meet the accuracy requirements
for long-term continuous ABPM.

Currently, the majority of self-generated datasets utilized in
research are not publicly accessible, impeding the progress of research
in this domain as other researchers have to replicate the process of
generating their own datasets. We advocate for researchers to openly
share their self-developed datasets and propose establishing a stan-
dardized framework for dataset composition, thereby facilitating better
sharing and advancing progress in this field.

Furthermore, the current validation standards for blood pressure
measurement devices primarily derive from the American Association
for the Advancement of Medical Instrumentation (AAMI), the
European Society of Hypertension (ESH), the Institute of Electrical
and Electronics Engineers (IEEE), and the International Organization
for Standardization (ISO). Almost all relevant studies adhere to these
aforementioned standards for validation. However, it is worth noting
that none of the first three standards propose specific validation crite-
ria for continuous cuff-free blood pressure measurement. On the other
hand, ISO 81060-3:2022 standardizes continuous noninvasive blood
pressure validation by requiring each predicted blood pressure value to
be outputted within a 30-s cycle and necessitating invasive arterial
catheterization to obtain reference label values.93 These requirements
fail to meet ICU and operating room demands in terms of tracking
rapid changes in blood pressure and are unsuitable for data collection
outside these settings. Consequently, there is a need to develop new
validation standards in future research on continuous noninvasive
blood pressure that not only cater to tracking rapid fluctuations but
also encompass diverse populations for data collection purpose.
Additionally, there is a necessity to enhance the verification require-
ments for long-term stability of blood pressure accuracy, as well as val-
idate the impact of different measurement positions relative to the
heart level on blood pressure and assess the influence of physical
movement on blood pressure. Henceforth, all forthcoming studies on
continuous noninvasive blood pressure should undergo validation
according to this novel standard.

VI. CONCLUSION

This article reviews the research progress of continuous monitor-
ing technology for cuffless BP based on PPG. It covers the impact of
PPG signal quality on BP estimation results, including PPG signal
quality evaluation methods. It also discusses cuffless BP estimation
technology based on PPG signals and the impact of individual differ-
ences on BP estimation accuracy, including factors affecting arterial
blood pressure and the impact of circadian rhythm on BP. After ana-
lyzing and discussing the matter, it was determined that there are
issues with the current process of CNIBP monitoring, from signal
acquisition to BP estimation. Possible future research directions are
suggested.

The completion of the proposed future research direction in this
article could potentially reduce treatment costs for hypertensive

patients worldwide and decrease the number of cardiovascular disease
deaths caused by hypertension. Portable BP monitoring devices based
on PPG and circadian rhythms can be utilized for continuous BP mon-
itoring. Portable and comfortable wearable devices can be used to
unconsciously and accurately track changes in BP throughout the day,
including at night. This extensive review aims to contribute to the
advancement of CNIBP measurement.
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