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ABSTRACT Improved access to antiretroviral therapy (ART) and antenatal care has sig-
nificantly reduced in utero and peripartum mother-to-child human immunodeficiency
virus (HIV) transmission. However, as breast milk transmission of HIV still occurs at an
unacceptable rate, there remains a need to develop an effective vaccine for the pediat-
ric population. Previously, we compared different HIV vaccine strategies, intervals, and
adjuvants in infant rhesus macaques to optimize the induction of HIV envelope (Env)-
specific antibodies with Fc-mediated effector function. In this study, we tested the effi-
cacy of an optimized vaccine regimen against oral simian-human immunodeficiency vi-
rus (SHIV) acquisition in infant macaques. Twelve animals were immunized with 1086.c
gp120 protein adjuvanted with 3M-052 in stable emulsion and modified vaccinia
Ankara (MVA) virus expressing 1086.c HIV Env. Twelve control animals were immunized
with empty MVA. The vaccine prime was given within 10 days of birth, with booster
doses being administered at weeks 6 and 12. The vaccine regimen induced Env-specific
plasma IgG antibodies capable of antibody-dependent cellular cytotoxicity (ADCC) and
phagocytosis (ADCP). Beginning at week 15, infants were exposed orally to escalating
doses of heterologous SHIV-1157(QNE)Y173H once a week until infected. Despite the
induction of strong Fc-mediated antibody responses, the vaccine regimen did not
reduce the risk of infection or time to acquisition compared to controls. However,
among vaccinated animals, ADCC postvaccination and postinfection was associated
with reduced peak viremia. Thus, nonneutralizing Env-specific antibodies with Fc effec-
tor function elicited by this vaccine regimen were insufficient for protection against
heterologous oral SHIV infection shortly after the final immunization but may have con-
tributed to control of viremia.

IMPORTANCE Women of childbearing age are three times more likely to contract HIV
infection than their male counterparts. Poor HIV testing rates coupled with low adher-
ence to antiretroviral therapy (ART) result in a high risk of mother-to-infant HIV trans-
mission, especially during the breastfeeding period. A preventative vaccine could curb
pediatric HIV infections, reduce potential health sequalae, and prevent the need for life-
long ART in this population. The results of the current study imply that the HIV Env-
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specific IgG antibodies elicited by this candidate vaccine regimen, despite a high mag-
nitude of Fc-mediated effector function but a lack of neutralizing antibodies and poly-
functional T cell responses, were insufficient to protect infant rhesus macaques against
oral virus acquisition.

KEYWORDS ADCC, Fc-mediated antibody function, pediatric HIV vaccine, rhesus
macaque

The successful implementation of antiretroviral therapy (ART) for women living with
human immunodeficiency virus (HIV) has resulted in a drastic reduction of in utero

and peripartum mother-to-child transmission of HIV type 1 (HIV-1) in the last 2 deca-
des. Yet globally, between 400 and 500 infants continue to acquire HIV every day (1). The
majority of these infections occur during the breastfeeding period. Limited access to ART
in rural communities, HIV diagnosis late in pregnancy, gaps in linking antenatal care with
postnatal mother and infant care, acute maternal infection during the breastfeeding pe-
riod, and lack of ART adherence impede the prevention of HIV transmission by breast
milk (2–9). Transmission of HIV can occur throughout the breastfeeding period, with a cu-
mulative risk increase with every month of breastfeeding (10–13). However, in many
resource-limited countries, breast milk remains a necessary choice for nutrition and to
provide passive immunity to protect the infant against other endemic pathogens (6, 7,
14). Indeed, early weaning is associated with increased infant mortality (15–17), and the
WHO recommends exclusive breastfeeding for 6 to 12 months for infants born to HIV-
infected mothers (18). Infants born to mothers with known HIV-positive status are tested
at birth and immediately started on ART if found to be infected, whereas infants who ac-
quire HIV by breastfeeding often go undiagnosed until they develop clinical symptoms.
Prolonged HIV replication prior to diagnosis may severely interfere with multiple aspects
of normal immune and central nervous system development and impede immune recon-
stitution after ART initiation. Therefore, prevention strategies tailored to infants are
needed to further reduce the risk of pediatric HIV infections.

In nonhuman primate (NHP) models of HIV, infection of neonatal and infant rhesus
macaques (RM) with simian-human immunodeficiency virus (SHIV) can be prevented
by passive administration of broadly neutralizing HIV envelope (Env)-specific antibod-
ies (bNAbs) (19–21). The use of bNAbs as potential prevention strategy in HIV-exposed
infants is supported by results from ongoing clinical trials that indicate that bNAbs
(e.g., VRC01) are safe and well tolerated in human neonates (22). Clinical studies in
human adults, however, demonstrated only a minimal risk reduction of HIV infection
by preventative treatment with bNAbs (23, 24). Therefore, the development of an
effective HIV vaccine remains a high priority for this risk group. While the induction of
HIV bNAbs by vaccination remains challenging, antibodies with Fc-mediated effector
function can be induced more consistently and have been associated with partial pro-
tection in multiple NHP vaccine/challenge studies (25–29) and in the human RV144
HIV vaccine trial (30). Furthermore, the protective effect of bNAbs is not due solely to
their neutralization function but also depends, at least in part, on the Fc-mediated
effector functions of these bNAbs (31, 32).

Utilizing the pediatric rhesus macaque model, we previously compared different HIV
vaccine modalities, immunization intervals, and adjuvants to optimize the induction of
HIV Env-specific IgG antibodies with Fc-mediated effector functions (33–35). Building on
these results, in the current study, we tested the efficacy of an intramuscular (i.m.) vaccine
consisting of a modified vaccinia Ankara (MVA) virus vector expressing transmitted/foun-
der virus 1086.c gp120 combined with 1086.c HIV gp120 protein and 3M-052 adjuvant in
stable emulsion against oral SHIV acquisition in infant macaques. Consistent with our
prior findings, the vaccine induced high-magnitude Env-specific antibodies in plasma
with potent antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent
cellular phagocytic (ADCP) function. Nonetheless, these responses did not protect infant
rhesus macaques against subsequent heterologous oral SHIV challenge.
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RESULTS
Study design. The current study utilized infant RM that were randomly divided into

2 groups of 12 at birth (Table 1; Fig. 1). Infant RM in the vaccine group were immunized
at week 0 with 2 � 108 PFU of MVA-HIV 1086.c Env construct and 15 mg of 1086.c
gp120 protein mixed with 3M-052-SE adjuvant by the i.m. route. At weeks 6 and 12,
infants in the vaccine cohort received i.m. booster immunizations with MVA-HIV Env
and 1086.c gp120 protein in 3M-052-SE. In addition, to induce simian immunodefi-
ciency virus (SIV)-specific T cell responses, infant vaccinees were primed with 5 � 1010

viral particles of ChAdOx1.tSIVconsv239 expressing conserved SIV Gag/Pol epitopes at
week 0. These responses were boosted by immunizations with 2 � 108 PFU of
MVA.tSIVconsv239 at weeks 6 and 12. Control infants received an empty MVA vector at
weeks 0, 6, and 12 (Fig. 1). Once-weekly oral SHIV challenges were initiated at week 15,
3 weeks after the last immunization. Animals were followed for approximately 12 weeks
post-SHIV infection, with infection being defined two consecutive positive viral RNA
results for an animal.

Vaccine-induced 1086.c envelope-specific antibody responses.We first aimed to
confirm our prior findings that the vaccine regimen induces potent HIV Env-specific
antibody responses (35). Plasma 1086.c gp120-specific IgG responses were detected as
early as week 3 after the first immunization in the majority of animals (Fig. 2A).
Antibody levels were enhanced following the week 6 booster immunization, waned
slightly thereafter, and reached peak levels after the final immunization at week 12.
Geometric mean plasma HIV Env-specific IgG concentrations at week 14 (1,060,401 ng/
mL; 95% confidence interval [CI], 1,470,184; 21,020) were comparable to those elicited
in our prior study (1,251,467 ng/mL; 95% CI, 1,049,651; 53,481) (35). We also tested for
the induction of Env-specific plasma IgA antibody in vaccinated infants (Fig. 2B). The
induction of plasma Env-specific plasma IgA was delayed compared to that of plasma
IgG and was of lower magnitude. Env-specific IgG and IgA were also detectable in sa-
liva (Fig. 2C and D). The positive correlation between plasma and salivary Env-specific
IgG and IgA (Fig. 2E and F) implied that antibodies in saliva likely reflected transudation

TABLE 1 Summary of study animals

Group Animal Sex
Age (days) at 1st
immunization

No. of challenges to
achieve infection

Infecting
dose

Peak viremia
(copies/mL)

Mock RM1 Female 8 17 1:100 5.1� 107

Mock RM2 Male 8 3 1:1,000 1.3� 108

Mock RM3 Male 6 13 1:1,000 2.5� 106

Mock RM4 Female 6 14 1:100 7.1� 105

Mock RM5 Male 5 7 1:1,000 7.6� 106

Mock RM6 Female 4 4 1:1,000 1.3� 108

Mock RM7 Female 10 8 1:1,000 8.9� 106

Mock RM8 Male 10 15 1:100 4.3� 107

Mock RM9 Female 7 2 1:1,000 2.1� 107

Mock RM10 Male 7 30 Undiluted 3.1� 104

Mock RM11 Male 6 2 1:1,000 1.6� 107

Mock RM12 Male 4 3 1:1,000 3.5� 108

Vaccine RM13 Female 8 3 1:1,000 5.3� 106

Vaccine RM14 Male 7 15 1:100 1.7� 107

Vaccine RM15 Male 5 24 1:10 5.1� 105

Vaccine RM16 Male 5 1 1:1,000 2.0� 106

Vaccine RM17 Male 4 4 1:1,000 1.1� 106

Vaccine RM18 Male 3 2 1:1,000 1.2� 107

Vaccine RM19 Female 8 28 1:2 9.7� 106

Vaccine RM20 Male 8 3 1:1,000 4.7� 106

Vaccine RM21 Female 7 7 1:1,000 2.1� 106

Vaccine RM22 Male 7 15 1:100 4.5� 107

Vaccine RM23 Female 6 20 1:100 5.3� 107

Vaccine RM24 Male 6 23 1:10 1.4� 107

No Protection by Antibodies with Fc Effector Function

January/February 2022 Volume 7 Issue 1 e00839-21 msphere.asm.org 3

https://msphere.asm.org


from the plasma rather than local induction at mucosal sites. The limited saliva vol-
umes did not allow us to test for the secretory component of IgA to determine muco-
sal antibody production.

We next evaluated the avidity and functional potential of Env-specific plasma IgG.
The avidity of plasma IgG specific for 1086.c gp120 was measured by surface plasmon
resonance (SPR), and the median avidity score at week 14 was determined to be
2.4 � 107 (95% CI, 1.45 � 107, 6.5 � 107) (Fig. 3A), an avidity similar (P = 0.4; Wilcoxon
rank sum test) to the one in our previous study (median avidity score, 4.6 � 107; 95%
CI, 1.2 � 107, 9.6 � 107) (35). The avidity of plasma vaccine-elicited IgG was stronger for
the clade C consensus V3 than for the V1V2 epitope of 1086.c Env (Fig. 3A). The current
vaccine regimen elicited weak clade C tier 1 neutralization antibodies. In 7 of 12 vacci-
nated infants, the peak neutralization titers against the tier 1b virus I6644.v2.c33 were
.500 at week 14, but only 5 of the 7 animals had maintained tier 1b 50% inhibitory
dilution (ID50) titers of.500 by week 15 (Fig. 3B).

Because a main goal of the current design was to elicit nonneutralizing antibody,
we assessed the propensity of vaccine-elicited plasma antibody for FcR-mediated
ADCC. ADCC responses against Env 1086.c gp120 were detectable in 75% of vacci-
nated infants by week 9 and in 100% by the time of initial SHIV challenge at week 15
(Fig. 3C). Similar to vaccine-induced plasma Env-specific IgG, the high ADCC endpoint
titers and median granzyme B activity (Fig. 3D) in the current study were comparable
to those observed in our prior study (35). To assess the ADCC activity that was inde-
pendent of monocytes and could be attributed exclusively to NK cells (36), we per-
formed area scaling (37). NK cell-mediated ADCC activity ranged from 17.8% to 45.8%
(median, 33.75 [Fig. 3E]). In addition to ADCC, 1086.c Env-specific plasma antibodies
were also able to mediate ADCP (Fig. 3F). Relevant to both ADCC and ADCP function,
plasma IgG was capable of binding to Env 1086.c expressed on the surface of HIV-

FIG 1 Experimental design. In the vaccine group, 12 neonatal rhesus macaques (Table 1) were immunized with
2 � 108 PFU of MVA-HIV Env, HIV Env protein (15 mg) mixed with 3M-052-SE, and 5 � 1010 ChAdOx1.tSIVconsv239
viral particles at week 0. Booster immunizations of 2 � 108 PFU each of MVA-HIV Env, HIV Env protein in 3M-052-SE,
and MVA.tSIVconsv239 were provided at weeks 6 and 12. A second cohort of 12 age-matched RM received control
MVA immunizations at weeks 0, 6, and 12. Beginning at week 15, animals were challenged weekly with SHIV-1157
(QNE)Y173H viral stock diluted 1:1,000 in RPMI 1640 medium until infected. After 13 exposures, uninfected infants
(n = 11) were exposed to a 1:100 SHIV dose for 7 weeks, a dose that was increased to 1:10 for seven more exposures
in animals not infected by the 1:100 dose (n = 4). Two infants remained negative and became infected after challenge
with 1:2 dilution of virus stock (RM19) or undiluted (1:1) virus (RM10) (Table 1). SHIV exposures are indicated by arrows
with distinct shades of red based on virus dilution.
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infected cells (ICABA), with 11 of 12 infants having .20% binding at week 15 (range,
7.60% to 62.62%; mean, 44.70%) (Fig. 3G).

We also measured antibody responses relevant to the heterologous SHIV challenge
virus, including clade C 1157ipd3N4 Env-specific IgG and 1157(QNE)Y173H Env V1V2-
specific antibody responses. Although the overall magnitude of plasma binding anti-
bodies to 1157ipd3N4 gp120 was lower than for 1086.c gp120-specific IgG, the kinetics
of plasma binding antibodies to 1157ipd3N4 Env followed a pattern similar to that
observed for 1086.c gp120-specific IgG. All animals developed 1157ipd3N4 gp120-spe-
cific IgG after the second immunization, with peak responses at week 14, 2 weeks after
the third immunization (Fig. 4A). The median avidity score of plasma IgG against
1157id3N4 gp120 (1.9 � 106; 95% CI, 7.3 � 106, 2.3 � 106]) was about 1 log lower than
the avidity index for the vaccine immunogen 1086.c gp120, and the avidity for the
V1V2 region of 1157(QNE)Y173H was 1 log lower than the avidity for 1086.c V1V2

A B

C D

E F

FIG 2 C.1086 Env-specific antibody responses. Plasma concentrations of 1086.c gp120-specific IgG (A) and IgA (B)
were measured by ELISA and BAMA, respectively. Salivary IgG and IgA levels, measured by BAMA, are reported as
specific activity in nanograms of 1086.c gp120 IgG or IgA per mg of total IgG (C) or IgA (D). Dashed lines represent the
cutoff for positivity, defined as mean antibody levels in control animals plus 3 standard deviations (SD). Panels E and F
illustrate the Spearman correlation between plasma and saliva vaccine-induced IgG and IgA levels, respectively. Each
symbol represents an individual animal of the 12 vaccinated animals.
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(Fig. 3A and 4B). The vaccine regimen elicited high levels of Env-specific plasma anti-
bodies with ADCC activity against the clade C 1157ipd3N4 gp120 (Fig. 4C), with me-
dian endpoint titers (2.89 � 105) comparable to the median titer for 1086.c (2.99 � 105

[Fig. 3B]), although ADCC 1157ipd3N4-specific IgG endpoint titers exhibited greater
variability among the individual animals.

Cellular responses to vaccination. The majority of vaccinated animals developed
SIV Gag-specific T cell responses by week 14 in peripheral blood (Fig. 5A). In lymph
nodes, SIV Gag-specific T cell responses were detected in 9 of 12 vaccinees. (Fig. 5B).
SIV Gag-specific CD41 T cells appeared to produce predominantly tumor necrosis fac-
tor alpha (TNF-a) and interleukin 17 (IL-17), whereas a more mixed cytokine response
was observed in CD81 T cells. Polyfunctional cytokine responses were rare.

SHIV1157(QNE)Y173H challenge outcome. Starting at week 15, 3 weeks after the
third immunization, animals were challenged once weekly with SHIV by the oral route.
The initial virus dose consisted of 1:1,000-diluted virus stock, a dose that was purposely

FIG 3 Prechallenge antibody function of vaccinated infant macaques. (A) Avidity score, determined by SPR, of week 15 plasma IgG specific for 1086.c
gp120 or V1V2 or for the consensus clade C V3 (gp70). Each symbol represents a single animal. Note that only 11 of 12 animals were included in the
testing for 1086.c V1V2 avidity due to limited plasma volumes. (B) Tier 1b clade C I6644.v2.c33 neutralization titers of vaccinated infants at week 14 and
week 15. (C and D) Longitudinal data for ADCC endpoint titers and maximum granzyme B activity, with each line representing an individual animal.
Dashed lines indicate the limit of detection. (E) The percentage of monocyte-independent, NK cell-mediated ADCC activity at week 15. (F) ADCP scores for
vaccinated animals prior to vaccination at week 0 and week 14. (G) Plasma IgG binding to cells infected with HIV 1086.c is shown over time for individual
vaccinated animals. Each time point shows data for all 12 of the vaccinated animals if not indicated otherwise.
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chosen to be 10-fold higher than the dose (1:10,000) successfully used in an intrarectal
(i.r.) challenge study in adult rhesus macaques (28), because of the lower risk estimate
for oral versus i.r. infection determined by human HIV epidemiologic studies (38) and
SHIV1157 infections in adult RM (39). Seven of 12 control vaccinated infants became
infected at the 1:1,000 SHIV dose, and 4 of the remaining 5 animals became infected at
1:100. RM10 remained uninfected after 29 challenges and became infected only after
oral challenge with undiluted viral stock (Fig. 6A; Table 1). The median challenge num-
ber required to become infected for control vaccinated infants was 7.5. In comparison,
vaccinated animals required a median number of 11 challenges to achieve infection
(Fig. 6B). Half of the vaccinated animals (n = 6) were infected at the 1:1,000 dose and
three additional animals at the 1:100 dose. The remaining 3 animals were infected by
1:10 (n = 2) and 1:2 (n = 1) challenge virus dilutions (Fig. 6A). Although vaccinated ani-
mals required a slightly higher average number of challenges to achieve infection (11
exposures) compared to controls (7.5 exposures), there was no difference in the proba-
bility of infection at any challenge dose between the two groups (P = 0.89) (Fig. 6C).
When we compared the probabilities of infection between control and vaccinated ani-
mals that became infected at the 1:1,000 challenge virus dose, at the 1:1,000 or 1:100
dose, or at the 1:1,000, 1:100, or 1:10 dose, we also did not detect differences in infection
risks. The distributions of peak viremia also did not differ between vaccinated animals
(median, 1.85 � 107 viral RNA copies/mL) and control animals (median, 7.5 � 106 viral
RNA copies/mL; Wilcoxon rank sum test with exact P value of 0.24) (Fig. 6D). Similarly,
there was no difference found when we compared area-under-the curve viremia from
week 0 to week 10 postinfection between the two groups (P = 0.1978) (Fig. 6E).

A B

C

FIG 4 Vaccine-induced 1157ipd3N4 and SHIV1157(QNE)Y175H Env-specific antibody responses. (A) Plasma concentration of
1157ipd3N4 gp120-specific IgG over time in the 12 vaccinated infant rhesus macaques. (B) Avidity scores of plasma IgG
specific for 1157ipd3N4 gp120 (n = 12) or gp70-V1V2 SHIV1157(QNE)Y375H (n = 10). Each symbol represents an individual
animal; horizontal lines represent the medians. Note that only 10 animals could be tested for the avidity of antibodies to
gp70-V1V2 SHIV1157(QNE)Y375H due to the limited plasma volumes available from infant rhesus macaques. (C) ADCC
endpoint titers for plasma antibodies specific to 1157ipd3N4 gp120 in the 12 vaccinated animals.
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Immune correlates of challenge outcome. To rule out that the vaccine had caused
nonspecific immune activation that could promote increased susceptibility to infection
(40, 41), we tested for activation of peripheral blood CD41 T cells, the main target cells
for HIV. At the time of challenge initiation (week 15), we noted no difference in the fre-
quency distributions of CCR51 (CD1951), Ki-671, CD691, or CD2791 (PD1) CD41 T cells
in blood of vaccinated compared to control animals (Fig. 7). Although vaccinated ani-
mals had greater median frequencies of PD-1-positive and TNF-a-producing CD41 T
cells than the control group (Fig. 7), there was no correlation with this response and
the number of exposures required to achieve infection (Table 2).

Despite the lack of protection against infection, we assessed whether vaccine-
induced antibody responses at week 15 were associated with the number of chal-
lenges required to achieve infection (Table 2) or with peak viremia (Table 3). Although
plasma IgG concentrations specific for 1086.c or 1157ipd3N4 Env were not associated
with the number of exposures required to achieve infection (Table 2), there was a neg-
ative correlation between 1086.c Env-specific plasma IgG levels and peak viremia (r =
20.657, unadjusted P = 0.0238, and false-discovery-rate [FDR]-adjusted P = 0.1426).
There was also a trend toward a negative association of salivary 1086.c Env-specific IgG
(r = 20.517, unadjusted P = 0.0888, and FDR-adjusted P = 0.3561) and SHIV1157ipd3N4
Env-plasma IgG concentrations (r = 20.0504, unadjusted P = 0.0989, and FDR adjusted
P = 0.3561) with peak viremia at week 15 (Table 3). We did not detect associations
between plasma IgG avidity and challenge outcome. Consistent with their low titers at
week 15, tier 1 neutralizing antibodies were not associated with the number of exposures
required for infection or with peak viremia (Tables 2 and 3).

A more detailed assessment of Fc-mediated effector functions of Env-specific
plasma IgG revealed that vaccine virus-specific ADCC activity was associated with

A: PBMC

B: Lymph Nodes

FIG 5 SIV Gag-specific T cell responses in PBMCs (n = 12) and peripheral lymph nodes (n = 12) at week 14. Each bar in panels A and B
represents the sum of single cytokine responses of SIV Gag-specific CD41 (left graphs) or CD81 T cells (right graphs) for each vaccinated
animal at week 14 in PBMCs (A) or lymph nodes (B). Cytokines measured include gamma interferon (IFN-g), IL-2, IL-17, and TNF-a.
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fewer challenges required for infection (r = 20.761 and unadjusted P = 0.0054), but
this inverse correlation did not reach statistical significance after adjustment for multi-
ple-parameter analysis (adjusted P = 0.0984) (Table 2). This trend was most apparent
when vaccinated infant RM were stratified by median ADCC titer (2.99 � 105). The
results suggested that animals with ADCC titers below the median required more SHIV
exposures to become infected than animals with ADCC titers above the median
(Fig. 8A). However, the probability to infection was not different between control ani-
mals, vaccinated animals with ADCC titers below the median, and vaccinated animals
with ADCC titers above the median (log rank test with exact P of 0.06). Consistent with
comparable median ADCC titers for 1086.c and 1157ipd3N4 Env, 1157ipd3N4 Env-spe-
cific ADCC titers trended toward a negative correlation with the number of challenges
required for infection, although this trend was not substantiated after adjusting for
FDR (Table 2; r = 20.568, unadjusted P = 0.0580, and FDR-adjusted P = 0.4548).
Although ADCC activity, as assessed by maximum granzyme B production, was not cor-
related with the number of exposures required to achieve infection, the higher the per-
centage of NK cell-mediated ADCC activity, the lower was peak viremia (r = 20.734,

FIG 6 Challenge outcome. (A) Longitudinal plasma viral load measurements as assessed by RT-PCR from control (n = 12) and
vaccinated (n = 12) cohorts of infant RM are displayed in copies per milliliter plasma. Shaded areas represent the challenge doses:
light gray, 1:000, weeks 0 to 13; medium gray, 1:100, weeks 14 to 21; dark gray, 1:10, weeks 22 to 28; darkest gray, 1:2 or
undiluted. (B) The number of challenges required for infection is plotted for control (n = 12) and vaccinated (n = 12) animals.
Horizontal lines represent the medians. (C) Kaplan-Meier survival curves for any dose of viral stock dilutions are shown for control
and vaccinated infants. (D and E) Peak viremia (D) and area-under-the curve (AUC) viremia from weeks 0 to 10 postinfection (PI)
(E) in control (n = 12) and vaccinated (n = 12) animals. Control and vaccinated animals are indicated by orange or blue lines/
symbols, respectively, with each symbol representing an individual animal; horizontal lines indicate the medians.

No Protection by Antibodies with Fc Effector Function

January/February 2022 Volume 7 Issue 1 e00839-21 msphere.asm.org 9

https://msphere.asm.org


unadjusted P = 0.0087, and FDR-adjusted P = 0.1163) (Table 3; Fig. 8B). In contrast,
ADCP function at the time of challenge initiation appeared to be positively correlated
with peak viremia (r = 0.706, unadjusted P = 0.0129, and FDR-adjusted P = 0.1163)
(Table 3).

Based on these results, and to further substantiate a potential role for Env-specific
antibody responses in challenge outcome, we tested whether recall 1086.c Env-specific
antibody responses at weeks 1 and 4 postinfection were associated with challenge out-
come. Animals that became infected after more numbers of challenges had higher
1086.c Env-specific plasma IgG concentrations at 1 week postinfection (Table 4).
Higher 1086.c Env-specific ADCC endpoint titers at 1 week postinfection, as observed
at week 15 prior to challenge, were associated fewer challenges required to achieve
infection (Table 4; Fig. 8C). Nonetheless, ADCC titers were negatively associated with
peak viremia, and this was likely related to the finding that higher ADCC activity at
week 1 postinfection was correlated with lower peak viremia (Table 4; Fig. 8D and E).
However, in contrast to the ADCC activity prior to challenge, at week 4 postinfection, a
higher contribution of NK cell-mediated ADCC function to ADCC activity was observed
in vaccinated animals that required fewer numbers of challenges to achieve infection
(Table 4; Fig. 8F). These findings emphasize the importance of the balance between
magnitude and quality of immune responses in challenge outcome.

DISCUSSION

According to the UNAIDS 2021 estimates, in 2020, every day more than 400 children
became infected with HIV (1). Therefore, despite increasing access to ART, vaccine devel-
opment remains an urgent task to prevent new pediatric HIV infections. The current study
tested the efficacy of an MVA-Env plus Env protein with 3M-052-SE adjuvant vaccine regi-
men combined with an ChAdOx.1.tconsSIVma239-Gag, Pol prime, MVA.tconsSIVma239-
Gag, Pol boost regimen that had been optimized to maximize Env-specific antibody
responses with Fc-mediated effector function (33–35, 42) in infant RM. Several previous
HIV vaccine studies in NHPs had found a correlation between reduced infection or control
of viral replication and vaccine-induced antibodies mediating ADCC (28, 43–45) and/or
ADCP and antibody-dependent neutrophil phagocytosis (25–27). However, despite the
induction of robust Env-specific antibodies with Fc-mediated effector functions, infant RM
receiving the above-described vaccine regimen were not protected against oral SHIV
infection. There was also no evidence of virus control, a clinically important secondary
readout of vaccine efficacy pertaining to less severe disease outcomes and reduced HIV
transmission risk (46).

The reasons for lack of efficacy are likely multifold. We used a challenge virus with

FIG 7 CD41 T cell activation. PBMCs from week 15 after vaccination were gated on CD31 CD41 T
cells and assessed for surface expression of CD195 (CCR5), CD69, and CD279 (PD1) and intracellular
expression of Ki-67 and TNF-a. TNF-a-positive T cell frequencies between control (n = 12) and
vaccinated (n = 12) animals were compared by Mann-Whitney test.
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an Env that was heterologous to the vaccine immunogen and started challenges
shortly (3 weeks) after the last vaccine immunization to closely mimic consistent, real-
world exposure of infants breastfed by HIV-infected women. It is possible that some re-
sidual activation in response to immunization was still lingering. We (40, 41) and others
(47–50) had previously reported that T cell activation can contribute to an enhanced
risk of infection with HIV, SIV, or SHIV. Although we observed higher frequencies of
TNF-a-positive peripheral blood CD41 T cells at the time of the first challenge in vacci-
nated compared to control animals, T cell activation was not correlated with the num-
ber of SHIV challenges required for infection.

In our studies leading up to the current vaccine study (33–35, 41, 42), we had
focused on the optimization of Fc-mediated Env-specific IgG responses. Our vaccine
regimen was not designed to induce tier 2 neutralizing antibodies that are thought to
be essential in the protection against SHIV infection in RM (51). We had further rea-
soned that the inclusion of chimpanzee adenovirus (ChAd)- and MVA-vectored vac-
cines expressing SIV Gag and Pol would induce antiviral T cell responses capable of
controlling virus replication at the entry site. However, SIV Gag-specific T cell responses
elicited by the ChAd- and MVA-vectored vaccines were of relatively low magnitude,
and neither peripheral blood mononuclear cell (PBMC) nor lymph node CD41 and
CD81 T cell responses at week 14 correlated with the number of challenges to achieve
infection or with peak viremia.

TABLE 2 Correlation between prechallenge immune parameters and number of challenges
required for infection

Parameter n
Spearman
r value

Correlation
P valuec

FDR
p-value Figure

T cell activationa

CCR51 CD41 24 20.065 0.7631 0.7648 Fig. 7
Ki-671 CD41 24 20.161 0.4499 0.6748 Fig. 7
CD691 CD41 24 0.379 0.0688 0.4131 Fig. 7
PD11 CD41 24 20.064 0.7648 0.7648 Fig. 7
TNF-a1 CD41 24 20.182 0.3913 0.6748 Fig. 7

Env-specific B cellsb 12 20.336 0.2845 0.6748
Env-specific IgGb

1086.c 12 20.519 0.0864 0.4548 Fig. 2A
1157ipd3N4 12 20.470 0.1246 0.4548 Fig. 4A

Plasma IgMb 11 20.288 0.3885 0.6347
Salivary IgGb 12 20.456 0.1373 0.4548 Fig. 2C
Salivary IgAb 12 20.189 0.5516 0.6818
Avidity indexb

1086.c 12 20.368 0.2365 0.5122 Fig. 3A
1157ipd3N4 12 20.165 0.6064 0.6818 Fig. 4B
SHIV1157(QNE)Y175H 10 20.372 0.2880 0.5190 Fig. 4B
1086.C V1V2 11 20.119 0.7282 0.7706 Fig. 3A
gp70 ConsC V3 12 20.428 0.1655 0.4548 Fig. 3A

Tier 1 NAbsb,d 12 0.023 0.9448 0.9448
ADCC titerb

1086.c 12 20.761e 0.0054 0.0984 Fig. 3C
1157ipd3N4 12 20.568 0.0580 0.4548 Fig. 4C

ADCC activityb

1086.c 12 20.354 0.2561 0.5122 Fig. 3D
1157ipd3N4 12 20.418 0.1769 0.4548

NK cell-mediated ADCC activityb

1086.c 12 20.176 0.5829 0.6818 Fig. 3E
ADCP scoreb 12 20.193 0.5455 0.6818 Fig. 3F
Infected cell bindingb 12 0.242 0.4446 0.6677 Fig. 3G
aExact p–value to test whether the correlation appears to be significantly different from 0.
bFDR adjustment for multiple comparisons for the statistical analyses of cellular correlates of protection.
cFDR adjustment for multiple comparisons for the statistical analyses of antibody correlates of protection.
dID50 neutralizing antibody titers at week 15.
eBold values indicate Spearman rank test with r. 0.6 and unadjusted p, 0.05.

No Protection by Antibodies with Fc Effector Function

January/February 2022 Volume 7 Issue 1 e00839-21 msphere.asm.org 11

https://msphere.asm.org


Our challenge outcome results are consistent with those of other infant and adult
NHP studies that failed to demonstrate efficacy against SIV or SHIV infection by anti-
bodies with Fc-mediated effector function only (51–53), and human HIV vaccine trials
following and building on the results of the RV144 trial did not observe a reduced HIV
infection risk. In the RV144 trial, protective ADCC function was primarily associated
with V1V2- and C1-specific antibodies (54, 55). Our vaccine regimen, however, appears
to be biased toward the induction of V3 over V1V2-specific and C5- versus C1-specific
epitopes (35). Furthermore, plasma IgG responses specific to the V1V2 region of the
vaccine 1086.c Env and of the challenge virus SHIV1157(QNE)Y173H were of lower
avidity than the relevant gp120-specific IgG. Limited plasma volumes prevented us
from assessing ADCC and ADCP activity of epitope-specific antibodies in addition to
gp120-specific antibodies in the current study. In future studies, more targeted, epi-
tope-specific analyses—including impact of glycosylation and epitope conformation—
may prove beneficial in the interpretation of vaccine outcomes (55, 56).

It is also important to note that the detailed analysis of RV144 results found that
trial participants with medium levels of ADCC activity had reduced infection risk com-
pared to that of participants with low levels of ADCC activity, while there was no such
difference found when comparing those with high and low vaccine-induced ADCC
responses (see supplement to reference 54). In the current study, 1086.c-specific
plasma antibodies with ADCC activity could be detected at a median endpoint titer of
1:105 at the time of challenge initiation. Paradoxically, although individual animals with
high ADCC titers (above the group median) were as likely to acquire infection as their
control counterparts, 1086.c ADCC titers below the median appeared to be associated
with more challenges to achieve infection, although this difference did not reach statis-
tical significance. One potential explanation for this observation is an in vivo prozone, a
phenomenon when high antibody in the presence of limiting antigen results in smaller

TABLE 3 Correlation between vaccine-induced antibody responses at week 15 and peak
viremia

Parameter n
Spearman
r value

Correlation
p valueb

FDRa

p-value Figure
Env-specific IgGa

1086.c 12 20.657c 0.0238 0.1426 Fig. 2A
1157ipd3N4 12 20.504 0.0989 0.3561 Fig. 4A

Plasma IgMa 11 20.282 0.4023 0.7761
Salivary IgGa 12 20.517 0.0888 0.3561 Fig. 2C
Salivary IgAa 12 20.112 0.7329 0.7761
Avidity indexa

1086.c 12 20.168 0.6039 0.7761 Fig. 3A
1157ipd3N4 12 0.196 0.5431 0.7761 Fig. 4B
SHIV1157(QNE)Y175H 10 20.152 0.6821 0.7761 Fig. 4B
1086.C V1V2 11 20.064 0.8603 0.8603 Fig. 3A
gp70 ConsC V3 12 20.245 0.4434 0.7761 Fig. 3A

Tier 1 NAbsd 12 20.112 0.7277 0.7761
ADCC titera

1086.c 12 20.238 0.4572 0.7761 Fig. 3C
1157ipd3N4 12 20.196 0.5431 0.7761 Fig. 4C

ADCC activitya

1086.c 12 20.375 0.2280 0.6839 Fig. 3D
1157ipd3N4 12 20.217 0.4990 0.7761

NK cell-mediated ADCCa

1086.c 12 20.734 0.0087 0.1163 Fig. 8B
ADCP scorea 12 0.706 0.0129 0.1163 Fig. 3F
Infected cell bindinga 12 20.147 0.6509 0.7761 Fig. 3G

aFDR adjustment for multiple comparisons for the sets of tests specified in Materials and Methods for the
statistical analysis of antibody correlates of protection.

bExact p-value to test whether the correlation appears to be significantly different from 0.
cBold values indicate Spearman rank correlations with r.20.6 and unadjusted p, 0.05.
dID50 neutralizing antibody titers at week 15.
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immune complexes that cluster fewer Fc domain receptors on the surface of target
cells and limit killing activity (57, 58). A prozone effect was also described in an early
HIV infection study (59) in which plasma IgG concentrations above 10 mg/mL inhibited
NK cell lysis. The importance of NK cells in ADCC-mediated protection by Env-specific

A B

C D

Pre-Challenge

Post-Challenge

E F

FIG 8 Correlation between 1086.c Env-specific antibody responses and challenge outcome. (A) Kaplan-Meier plot to demonstrate
the relationship between ADCC endpoint titers and number of challenges required for infection when vaccinated animals are
categorized as having a low (n = 6) or high (n = 6) ADCC titer based on the median ADCC endpoint titer of 105 in comparison to
control animals (n = 12). Mantel-Cox log rank test was applied to determine differences in the risk of infection between groups.
(B) Graph of the Spearman rank correlation between ADCC endpoint titers and number of challenges required for infection of
each vaccinated animal (n = 12). Animals with ADCC titers below or above the median ADCC endpoint titer are indicated by
empty or filled blue circles, respectively. Panels C to F illustrate correlation between Env-specific antibody responses postinfection
and challenge outcome. Note that limited plasma volumes did not allow us to assess postinfection antibody responses in all 12
vaccinated animals. Panels C and D show the negative correlation of endpoint 1086.c ADCC titers at week 1 postinfection with
the number of challenges required for infection (C) and peak viremia (D) for 9 vaccinated animals. Panel E illustrates that higher
ADCC activity at week 1 postinfection was associated with reduced peak viremia (n = 9). (F) In animals that required fewer
challenge exposures to infection, the percentage of NK cell-mediated ADCC activity at week 4 postinfection was higher than in
animals that required a greater number of exposures to infection (n = 8).
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antibodies was underlined by our findings that NK cell-mediated ADCC activity prior to
challenge at week 15 was associated with reduced peak viremia. These data, and data
from passive immunization of mice (60), suggest that there may be an optimal level,
with lower and upper limits, at which nonneutralizing antibodies are most effective.
However, what these levels are in the context of different exposures and how they
potentially impact challenge outcome are not yet known.

Similarly, it is difficult to discern from the current literature whether there is an opti-
mal ADCP score. Despite several studies suggesting a correlation between ADCP func-
tion and reduced HIV risk in human adults (61, 62) or SHIV infection in adult RM (25),
ADCP activity elicited by the vaccine tested in the current study was not correlated
with protection against oral SHIV1157(QNE)Y375H infection in infant RM. While the
simple comparison of various antibody functions across different vaccine regimens,
age groups, and challenge regimens is likely flawed, and different assay conditions
may further impact data, the results of our study imply that the magnitude of ADCC or
ADCP activity alone is not a reliable predictor of vaccine efficacy. More research is
needed to assess the impact of antibody subtype, effector cell and specific Fc receptors
mediating the specific functions on vaccine efficacy in preclinical NHP studies (63), and
how these findings translate to humans (64). Such findings would likely result in
improved in vitro assays to measure antibody function and thereby enhance the pre-
dictive value of these assays for vaccine efficacy assessment. Highly relevant for pediat-
ric studies, age-dependent differences in immune function of effector cells are not con-
sidered. There are numerous studies documenting that NK cells and monocytes exhibit
reduced functional capacity, including ADCC (65) and phagocytosis, in infants

TABLE 4 Correlation between 1086.c Env-specific recall antibody responses and challenge outcome

Challenge outcome/parameter n Spearman r value Correlation p valuea FDRb p-value Figure
No. of exposures to infection
Env-specific IgG
Wk 1 postinfection 10 20.677c 0.0366 0.1588 Fig. S1 in the supplemental material
Wk 4 postinfection 9 20.544 0.1356 0.4484 Fig. S1

ADCC titer
Wk 1 postinfection 9 20.706 0.0397 0.1588 Fig. 8C
Wk 4 postinfection 8 20.180 0.6984 0.6984

ADCC activity
Wk 1 postinfection 9 20.412 0.2702 0.4484
Wk 4 postinfection 8 0.270 0.5579 0.6199

NK cell-mediated ADCC
Wk 1 postinfection 9 20.395 0.2912 0.4484
Wk 4 postinfection 8 20.766 0.0314 0.1588 Fig. 8F

ADCP score
Wk 1 postinfection 9 20.378 0.3129 0.4484
Wk 4 postinfection 8 20.515 0.1982 0.4484

Peak viremia
Env-specific IgG
Wk 1 postinfection 10 20.418 0.2325 0.4484 Fig. S1
Wk 4 postinfection 9 20.433 0.2499 0.4484 Fig. S1

ADCC titer
Wk 1 postinfection 9 20.767 0.0214 0.1588 Fig. 8D
Wk 4 postinfection 8 20.571 0.2000 0.4484

ADCC activity
Wk 1 postinfection 9 20.800 0.0138 0.1588 Fig. 8E
Wk 4 postinfection 8 20.321 0.4976 0.5892

NK cell-mediated ADCC
Wk 1 postinfection 9 20.367 0.3362 0.4484
Wk 4 postinfection 8 20.405 0.3268 0.4484

ADCP score
Wk 1 postinfection 9 20.200 0.6134 0.6457
Wk 4 postinfection 8 0.286 0.5008 0.5892

aExact p-value to test whether the correlation appears to be significantly different from 0.
bFDR adjustment for multiple comparisons for the sets of tests specified in Materials and Methods for the statistical analysis of antibody correlates of protection.
cBold values indicate Spearman rank correlations with r. -0.6 and unadjusted p, 0.05.
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compared to adults (see reviews in references 66 to 70). Few studies have examined
the expression of FcRgI, FcRgII, and FcRgIII on infant NK cells, monocytes, and neutro-
phils (71, 72). Therefore, in future studies, we will expand the analysis of vaccine-
induced B and T cell responses and also determine whether and how pediatric HIV vac-
cine regimens impact innate immune cells and their functions.

In summary, while the prechallenge immunogenicity data demonstrated high mag-
nitude effector antibody functions previously tied to some HIV vaccine efficacy, our
results imply that Env-specific ADCC and ADCP responses induced by this candidate
vaccine regimen were not sufficient to prevent infection with oral tier 2 SHIV1157
(QNE)Y375H in infant RM. Therefore, future studies of interventions to protect infants
against HIV acquisition through breastfeeding should focus on improving the breadth
of the antibody response, namely, the induction of bNAbs or passive administration of
combinations of long-acting HIV bNAbs, as well as overcoming the relative paucity of
cell-mediated immunity induced by current vaccine platforms in early life.

MATERIALS ANDMETHODS
Animals and sample collection. Twenty-four infant rhesus macaques (RM) were nursery reared and

housed in pairs at the California National Primate Research Center (Davis, CA). All animal procedures
were approved by the UC Davis Institutional Animal Care and Use Committee. The study strictly adhered
to the guidelines outlined in the Guide for the Care and Use of Laboratory Animals (73) by the National
Resource Council. Peripheral blood was collected by venipuncture into EDTA-treated vacutainers and
processed as described previously (74). Peripheral lymph node biopsy specimens were collected at week
14 prior to initiation of oral challenges at week 15 as described previously (33). All experimental manipu-
lations were performed under ketamine anesthesia (10 mg/kg of body weight) administered by the
intramuscular (i.m.) route.

Vaccines. The infants in the present study were randomly divided into 2 groups of 12 (Table 1;
Fig. 1). At week 0, infant RM assigned to the vaccine arm were primed i.m. with 2 � 108 PFU of MVA-HIV
1086.c Env construct (in a volume of 0.25 mL divided over the left and right biceps) (35) and 15 mg of
1086D7 gp120 K160N protein mixed with 3M-052 adjuvant in stable emulsion (3M-052-SE) (34, 35) at a
total dose volume of 0.5 mL, divided over the left and right quadriceps. The HIV Env 1086.c gp120-
expressing MVA construct was produced as detailed elsewhere (75). In addition, infant vaccinees
received 5 � 1010 viral particles of chimpanzee adenovirus (ChAdOx1.tSIVconsv239)-SIV Gag/Pol
(0.25 mL i.m. divided over the left and right gluteus) at week 0. Infants in the vaccine cohort received
two successive i.m. booster immunizations with 1086.c gp120 protein in 3M-052-SE and MVA-HIV Env
(both were the same dose as the priming immunization) and 2 � 108 PFU of MVA.tSIVconsv239 (Gag/
Pol-expressing vector) in 0.25 mL, divided over the left and right biceps) at weeks 6 and 12 (35). The
ChAdOx1.tSIVconsv239 and MVA.tSIVconsv239 vectors were kindly provided by Tomáš Hanke (Oxford
University, Oxford, UK) to promote the induction of SIV-specific T cell responses. Control infants received
an empty MVA vector at weeks 0, 6, and 12 (Fig. 1).

SHIV-1157(QNE)Y173H challenge of vaccinated and control macaques. At week 15, 3 weeks after
the last immunization, infant macaques were orally exposed once weekly to tier 2 SHIV-1157(QNE)
Y173H, a derivative of the CCR5-tropic clade C SHIV-1157ipd3N4 (28), which was kindly provided by
Sampa Santra (Harvard University, Boston, MA). The virus stock corresponded to 3.7 � 109 copies/mL
and had a 50% tissue culture infective dose (TCID50) of 4.88 � 108/mL in TZM-bl cells (28, 76). SHIV-1157
(QNE)Y173H (referred to here as SHIV) was selected for its high sequence homology to the 1086.c V1V2
region (28). Virus was administered as a 1:1,000 dilution of virus stock in 1 mL of sucrose-containing
RPMI 1640 medium in a needleless syringe (77). Infants were considered to be systemically infected fol-
lowing two consecutive PCR-positive values (see below). After 13 challenges of 1:1,000, uninfected
infants (n = 11) received an increased dose of 1:100. Following 7 challenges with 1:100-diluted virus, the
viral challenge was increased to a 1:10 dilution in the remaining uninfected animals (n = 4). Two infants
(RM19 and RM10) remained negative and became infected after challenge with a 1:2 dilution of virus
stock or undiluted virus, respectively (Table 1). Approximately 12 weeks post-SHIV infection, animals
were euthanized.

SHIV RNA quantification.Weekly quantitative analysis of SHIV RNA in plasma began on week 16 as
previously described (74). Briefly, RNA was manually extracted from limited plasma volumes and assayed
by reverse transcription-PCR (RT-PCR) with a limit of detection of 15 copies/mL. Data are reported as the
number of SHIV RNA copy equivalents per milliliter of EDTA plasma.

Measurement of plasma HIV Env-specific IgG by ELISA. HIV Env-specific antibody concentrations
in plasma were determined by enzyme-linked immunosorbent assay (ELISA) (33). Microtiter plates were
coated with 1086D7 gp120K160N (3 mg/mL) overnight at 4°C and blocked with phosphate-buffered sa-
line (PBS) plus 4% whey, 15% normal goat serum, and 0.5% Tween 20. Serially diluted plasma was added
to the plate following extensive washing. IgG antibodies were detected with peroxidase-labeled anti-
monkey IgG (Southern Biotech), followed by tetramethylbenzidine (TMB; KPL) and stop solution.
Absorbance was read at 450 nm immediately after addition of the stop solution. The rhesusized CD4
binding site monoclonal antibody B12R1 was used as a standard (78). The concentration of HIV Env-spe-
cific IgG was calculated using a five-parameter fit curve relative to the standard using SoftMax Pro 6.3
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software (Molecular Devices). To account for nonspecific binding, the positivity cutoff was selected as
the concentration corresponding to 3 times the optical density (OD) of blank wells.

Measurement of Env-specific antibodies by binding antibody multiplex assay (BAMA). Salivary
IgG and IgA and plasma IgA antibodies to gp120 were measured using a customized multiplex assay with
1086.cD7 gp120-conjugated fluorescent magnetic beads as previously described (33). Prior to performing
IgA assays, specimens were depleted of IgG using protein G Sepharose (GE Healthcare) as described previ-
ously (79). Concentrations of gp120-specific antibodies in saliva were normalized relative to the total IgA or
IgG concentrations, which were measured by ELISA. Results for saliva are presented as specific activity
(nanograms of anti-gp120 IgA or IgG antibody per microgram of total IgA or IgG, respectively).

Antibody avidity. The avidity of IgG antibodies to 1086.cD7 gp120, 1086.C V1V2, gp70 consensus C
V3 (33), 1157ipd3N4 gp120, and 1157(QNE)Y173H V1V2 was determined using purified total plasma IgG
and surface plasmon resonance (SPR) using a Biacore 4000 instrument as described previously (33). The
relative avidity score equals the binding response divided by the dissociation rate constant.

ADCC. Antibody-dependent cellular cytotoxicity (ADCC) activity was measured as previously reported
(42). Briefly, CCR51 CEM.NKR T cells (AIDS Reagent Program) were coated with 1086.c or SHIV-1157ipd3N4
gp120 protein. ADCC activity was determined by the GranToxiLux (GTL) assay as described previously (33,
42, 80). Fourfold serial plasma dilutions beginning at 1:100 were incubated with target cells and human
PBMCs from a cryopreserved leukapheresis sample of an HIV-seronegative donor with the 158F/V genotype
for FcgRIIIa after thawing and overnight rest (80–82). ADCC function is reported as endpoint titers deter-
mined by interpolation of plasma dilutions that intercepted the positive cutoff and as the maximum pro-
portion of target cells positive for active granzyme B (maximum activity). To determine the contribution of
NK cells to ADCC activity, we applied area scaling analysis as described previously (37).

Infected cell antibody binding assay (ICABA). Plasma antibody binding to HIV-1 Env expressed on
surfaces of infected cells was measured using an infected cell binding assay as previously described (28,
83). Briefly, CEM.NKRCCR5 cells were mock infected or infected with a replication-competent infectious
molecular clone virus encoding 1086.c Env (84) for 48 to 72 h. Cells were then cultured in the presence
of diluted plasma samples from study infants. Cells were subsequently stained with a viability marker,
anti-CD4 antibody (clone OKT4; eBioscience), fixed, and permeabilized prior to staining with a fluores-
cein isothiocyanate (FITC)-conjugated goat anti-rhesus IgG (H1L) polyclonal antibody (Southern
Biotech). Data represent the frequency of cells positive for IgG binding to Env for postvaccination sam-
ples compared to the prevaccination sample. Values were normalized by subtraction of the frequency of
positive cells observed for cells stained with secondary antibody alone and mock-infected cells.

ADCP. Antibody-dependent cellular phagocytosis (ADCP) assay was performed as previously
described (85, 86). HIV Env 1086.c K160N gp120 protein was produced in-house by transfection of 293T
cells. For ADCP, the HIV Env 1086.c K160N gp120 protein was conjugated to biotin using a fast type A bi-
otin conjugation kit (Abcam) and then captured on avidin-labeled fluorescent beads (NeutrAvidin;
Invitrogen). To form immune complexes with Env-expressing beads, plasma (1:50 dilution), positive anti-
body controls (HIVIG, RIVIG, and VRC01), or irrelevant antibody control (influenza virus-specific monoclo-
nal antibody CH65) was incubated with antigen-conjugated beads at 37°C for 2 h. All monoclonal anti-
body controls were used at a concentration of 25 mg/mL. Immune complexes were then subjected to
spinoculation at 1,200 � g in the presence of a human-derived monocyte line, THP-1 (ATCC TIB-201), for
1 h at 4°C. Following spinoculation, bead-conjugated antigens and cells were incubated at 37°C to allow
for phagocytosis to occur. After 1 h of incubation, THP-1 cells were fixed with 2% paraformaldehyde
(Sigma) and fluorescence of the cells was assessed by flow cytometry (BD; Fortessa). A “no antibody”
control consisting of PBS supplemented with 0.1% bovine serum albumin (1� PBS plus 0.1% BSA) was
used to determine the background phagocytosis activity. Phagocytosis scores were calculated by multi-
plying the mean fluorescence intensity (MFI) and frequency of bead-positive cells and dividing by the
MFI and frequency of bead-positive cells in the PBS/BSA control. All plasma samples were tested in two
independent assays, and the average phagocytic scores from these 2 independent assays was reported.

Neutralizing antibody characterization. Neutralizing antibodies were tested as previously reported
(87). Briefly, serum was heat inactivated for 1 h at 56°C, diluted in cell culture medium, and preincubated
with HIV-1 pseudotyped virus (88) for 1 h. Following preincubation, TZM-bl cells were added and incu-
bated for 48 h. Cells were subsequently lysed and luciferase activity was determined using a luminome-
ter and BriteLite Plus reagent (PerkinElmer). Neutralization titers were defined as the serum dilution
which reduced relative light units by 50% relative to control wells after background subtraction.

Flow cytometric analysis. (i) T cell activation. PBMCs were isolated from blood as previously
described (74). A total of 106 PBMCs were stained with surface antibodies listed in Table 5 at room tem-
perature for 20 min in the dark. Cells were treated with Cytofix/Cytoperm (BD Biosciences) per the man-
ufacturer’s protocol and subsequently stained with intracellular marker antibodies (Table 5) in the same
manner. Stained cells were fixed with 1% paraformaldehyde (Electron Microscopy Services). A total of
300,000 events were collected using a BD LSRFortessa and analyzed using FlowJo v10.6.1.

(ii) SIV Gag-specific T cell responses. SIV Gag-specific T cell responses were determined as
described previously (89). Briefly, 2 � 106 cells were cultured in RPMI 1640 medium supplemented with
glutamine, 10% heat-inactivated fetal bovine serum (FBS), and penicillin/streptomycin and stimulated
with a vehicle (dimethyl sulfoxide [DMSO]), 0.5� cell stimulation cocktail (eBioscience), or 5 mg of SIV
p27Gag peptide pool (NIH AIDS Reagent Program) for 6 h, with 1� brefeldin A present after the first
hour. Cells were stained with antibodies (Table 5) and analyzed as described above.

Statistical analyses. Statistical tests were performed using R version 3.6.2.
(i) Probability of infection. Kaplan-Meier curves and log rank tests with exact P values were used to

assess differences between the two groups in the probability of infection at any challenge dose. We
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presented curves and tested for differences in the probability of infection at any dose. One animal
missed seven weekly challenges before resuming challenges on the 1:100 dose and becoming infected
on its first 1:100 dose challenge. Thus, the animal was treated as censored at its seventh challenge, (a
1:1,000 dose). We estimated the per-challenge probability of infection at each dose administered
(1:1,000, 1:100, 1:10, 1:2, and 1:1) as the number of animals infected by a challenge at the dose/total
number of challenges (across and within all animals) administered up to and including the week of
infection at the dose. For each per-challenge probability of infection, we constructed an approximate
95% confidence interval (Wilson score interval without continuity correction) by assuming that all chal-
lenges across and within animals are independent.

(ii) Antibody correlates of protection.We assessed the association of Env-specific plasma IgG, sali-
vary IgG, salivary IgA, antibody avidity, neutralizing antibodies, ADCC, infected cell binding, and ADCP at
week 15 with the number of challenges required to achieve SHIV infection in vaccinated animals only
(Table 2). The same antibody response parameters were assessed in association with peak viremia
(Table 3). Spearman’s rank correlation coefficients were estimated to assess these associations. All corre-
lations were tested with exact P values to assess whether any were significantly different from 0. To
adjust for multiple comparisons, the Benjamini-Hochberg (BH) procedure was used to control the false-
discovery rate (FDR). An adjustment to control the FDR at a value of 0.05 was performed for these end-
points for a total 18 parameters per infection outcome.

Furthermore, to determine the impact of memory Env-specific plasma IgG, ADCP, and ADCC
responses at week 1 and week 4 postinfection on challenge outcome, we tested whether these vaccine-
induced recall antibody responses were associated with the number of challenges required to achieve
SHIV infection or with peak viremia. All correlations were tested with exact P values to assess whether
any were significantly different from 0, and the BH procedure was used to adjust for multiple compari-
sons. An adjustment to control the FDR at a value of 0.05 was performed for these endpoints for a total
20 parameters (Table 4).

(iii) Cellular correlates of protection. Wilcoxon rank sum tests with exact P values were used to
compare the CCR51 (CD1951), Ki-671, CD691, and CD2791 (PD1) CD41 T cells at week 15 between vacci-
nated and control animals. An adjustment to control the FDR at an a value of 0.05 was performed for
these 5 endpoints using the BH procedure.

Spearman’s rank correlation coefficients were estimated for the cohort as a whole as well as for vac-
cinated animals only. All correlations were tested with exact P values to assess whether any were signifi-
cantly different from 0. The entire cohort was used to assess whether there was an association between
CD41 T cell activation parameters at week 15 and the number of challenges required for SHIV infection.
Vaccinated animals were used to assess whether there appeared to be an association between Env-spe-
cific B cells and the number of challenges required for SHIV infection. To adjust for multiple

TABLE 5 FACS reagent informationa

Panel/marker Type Fluorochrome Clone Vendor
Activation
Viability dye Surface Aqua NA Invitrogen
CD3 Surface BV421 SP34-2 BD Biosciences
CD4 Surface PerCP-Cy5.5 L200 BD Biosciences
CD8 Surface Alexa Fluor 700 RPA-T8 BD Biosciences
CD14 Surface BV786 M5E2 BD Biosciences
CD16 Surface PE-CF594 3G8 BD Biosciences
CD20 Surface APC-H7 2H7 BD Biosciences
CD69 Surface PE-Cy7 FN50 BD Biosciences
CD195 Surface PE 3A9 BD Biosciences
HLA-DR Surface BV711 G46-6 BD Biosciences
PD-1 Surface APC eBioJ105 eBioscience
Ki-67 Intracellular FITC B56 BD Biosciences
TNF-a Intracellular BV650 Mab11 BD Biosciences

Antigen-specific T cells
Viability dye Surface Aqua NA Invitrogen
CD3 Surface APC-Cy7 SP34-2 BD Biosciences
CD4 Surface PE-CF594 L200 BD Biosciences
CD8 Surface BV786 RPA-T8 BD Biosciences
CD45RA Surface V450 5H9 BD Biosciences
CCR7 Surface PE-Cy7 3D12 BD Biosciences
IL-2 Intracellular PerCP-Cy5.5 MQ1-17H12 BD Biosciences
IL-17 Intracellular PE eBio64CAP17 BD Biosciences
IFN-g Intracellular Alexa Fluor 700 B27 BD Biosciences
TNF-a Intracellular APC Mab11 BD Biosciences

aAbbreviations: FACS, fluorescence-activated cell sorting; NA, not applicable; PerCP, peridinin chlorophyll
protein; PE, phycoerythrin; APC, allophycocyanin.
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comparisons, the BH procedure was used to control the FDR. An adjustment to control the FDR at an a

value of 0.05 was performed for these prespecified correlation endpoints for a total 6 parameters
(Table 2).
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