Organocatalyzed Trifluoromethylation of Ketones and Sulfonyl Fluorides by Fluoroform under a Superbase System

Satoshi Okusu, Kazuki Hirano, Etsuko Tokunaga, and Norio Shibata*^[a]

Fluoroform (HCF₃, HFC-23) is a side product in the manufacture of polytetrafluoroethylene (Teflon). Despite its attractive properties, taming HCF₃ for trifluoromethylation is quite problematic owing to its low acidity and the lability of the naked trifluoromethyl carbanion generated from HCF₃. Herein we report the organic-superbase-catalyzed trifluoromethylation of ketones and arylsulfonyl fluorides by HCF₃. The reactions were carried out by using a newly developed "superbase organocatalyst system" consisting of catalytic amounts of P₄-tBu and N(SiMe₃)₃. A series of aryl and alkyl ketones were converted into the corresponding α -trifluoromethyl carbinols in good yields under the organocatalysis conditions in THF. The superbase organocatalytic system can also be applied to the trifluoromethylation of arylsulfonyl fluorides for biologically important aryl triflones in THF or DMF in good yields. Protonated P₄-tBu, $H[P_4-tBu]^+$, is suggested to be crucial for the catalytic process. This new catalytic methodology using HCF₃ is expected to expand the range of synthetic applications of trifluoromethylation.

Organofluorine compounds have gained much attention in the research and development of pharmaceuticals, agrochemicals, and advanced materials.^[1] In particular, trifluoromethyl-containing organic molecules have become primary synthesis targets in recent years given their impressive successful history in bringing new drugs to the market.^[1c,e,2] Methods for the introduction of CF₃ groups into target substrates (i.e., trifluoromethylation), have therefore been actively researched worldwide.^[3] A popular and convenient method for trifluoromethylation is the use of (trifluoromethyl)trimethylsilane (CF₃SiMe₃, the Ruppert–Prakash reagent).^[4] The Ruppert–Prakash reagent is used in a variety of nucleophilic trifluoromethylations, and its use has been expanded to the radical or oxidative trifluoromethylation reaction. Despite its wide utility, the Ruppert–Prakash

[a]	S. Okusu, K. Hirano, E. Tokunaga, Prof. Dr. N. Shibata
	Department of Nanopharmaceutical Sciences and Department of Frontier
	Materials, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-
	8555 (Japan)
	E-mail: nozshiba@nitech.ac.jp

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/open.201500160.

reagent is less ideal due to the expense of its preparation and the fact that it is mostly prepared from ozone-depleting bromotrifluoromethane.^[5] Therefore, inexpensive and environmentally friendly alternatives to the Ruppert–Prakash reagent have long been required.

Fluoroform (HCF₃, HFC-23) is a side product in the manufacture of polytetrafluoroethylene (Teflon). In view of its attractive properties (ozone friendly, nontoxic, and inexpensive), it is not surprising that there have been many attempts to use HCF₃ for trifluoromethylation reactions.^[6] However, taming HCF₃ is quite problematic due to its low acidity ($pK_a = 27$ in H_2O) and the lability of the naked trifluoromethyl carbanion generated from HCF₃.^[7] During the last five years, the chemistry of HCF₃ has made significant progress with the use of organometallics as represented by Cu (Grushin), K (Prakash), and others.^[8] In late 2012, we reported that a sterically demanding organic superbase, 1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris(dimethylamino)phosphoranylidenamino]-2^{\lambda},5,4^{\lambda},5-catenadi(phosphazene) (P₄-tBu) effectively generates a trifluoromethyl carbanion from HCF₃ without decomposition to difluorocarbene that undergoes successful addition to aromatic aldehydes, ketones, and disulfides.^[9] Our method does not require organometallics, and the corresponding trifluoromethylation products are obtained in good to high yields. However, this reaction needs a stoichiometric amount of P₄-tBu. The development of efficient organocatalytic processes for HCF₃ trifluoromethylation is considered to be one of the greatest challenges in fluorine chemistry. The seminal work by Langlois and co-workers^[6e] on trifluoromethylation with HCF₃ clearly illustrates the validity of this approach. Herein we disclose a catalytic version of this HCF₃ trifluoromethylation. The key to this catalytic reaction is the combination of organic superbases. A wide variety of diaryl, aryl-alkyl, and dialkyl ketones 1 are nicely trifluoromethylated by HCF₃ under a newly developed "superbase-organocatalysis" of P₄-tBu/N(SiMe₃)₃ in THF to provide a wide range of trifluoromethylated carbinols 2. This superbase organocatalytic system consisting of P₄-tBu and N(SiMe₃)₃ also realized a catalytic trifluoromethylation of arylsulfonyl fluorides 3 with HCF₃ in THF or DMF to furnish biologically important fluorinated compounds of aryltriflones 4 in good yields (Scheme 1). Protonated P_4 -*t*Bu (H[P_4 -*t*Bu]⁺) is suggested to be crucial for the catalytic process.

We initiated our investigations with the reaction of benzophenone (**1a**) and HCF₃ (Table 1). First, trifluoromethylation of **1a** in THF took place under our previous stoichiometric conditions,^[9] but with a catalytic amount of P₄-tBu (30 mol%); owing to the superbase character of P₄-tBu, this trifluoromethylation

ChemistryOpen 2015, 4, 581 – 585

^{© 2015} The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

 $\label{eq:Scheme 1. Catalytic trifluoromethylation of ketones 1 and sulfonyl fluorides 3 by HCF_3 under the organocatalytic superbase system, P_4-tBu/N(SiMe_3)_3.$

Table 1. Optimization of catalyst, additive, and concentration for the tri- fluoromethylation of benzophenone (1 a).						
	0 HCF ₃ cat additive THF, R	(excess) T alyst THF, (1.5 equiv) T, 6–11 h	BAF RT, 1 h	HO CF ₃		
Run	Catalyst (mol%)	Additive	THF [м]	Yield [%] ^[a]		
1	P₄- <i>t</i> Bu (30)	-	0.4	20		
2	P₄- <i>t</i> Bu (30)	$Me_3SiC \equiv CMe$	0.4	21		
3	P₄- <i>t</i> Bu (30)	Me ₃ SiNMe ₂	0.4	14		
4	P₄- <i>t</i> Bu (30)	N(SiMe ₃) ₃	0.4	71		
5	P ₄ -tBu (20)	N(SiMe ₃) ₃	0.4	34		
6	P ₄ - <i>t</i> Bu (20)	N(SiMe ₃) ₃	0.8	84		
7	P₄- <i>t</i> Bu (10)	N(SiMe ₃) ₃	0.8	24		
8	P ₄ -tBu (10)	N(SiMe ₃) ₃	2.0	34		
9 ^[b]	P ₄ - <i>t</i> Bu (20)	N(SiMe ₃) ₃	0.8	79		
10	P ₂ -Et (30)	N(SiMe₃)₃	0.8	NR		
11	CsF (30)	N(SiMe ₃) ₃	0.8	NR		
12	KHMDS (30)	N(SiMe ₃) ₃	0.8	NR		
13	<i>t</i> BuOK (30)	N(SiMe ₃) ₃	0.8	NR		
[a] Yield of isolated product; NR: no reaction. [b] 5.0 equiv of HCF_3 was used.						

was difficult to achieve via catalytic reaction, and product 2a resulting from the amount of P₄-tBu used was obtained in 20% yield (run 1). To effect catalytic turnover, the removal of a proton from the protonated superbase $H[P_4-tBu]^+$, or re-activation of $H[P_4-tBu]^+$ tBu]⁺ in some manner, is crucial. Kondo and co-workers reported a deprotonating functionalization of heteroaromatic molecules with carbonyl compounds using an organic superbase catalyst.^[10] After screensilylated additives, trimethylsilylpropyne ina $(Me_3SiC \equiv CMe)$ was found to be the key to the catalytic cycle. We therefore examined our trifluoromethylation reaction using Me₃SiC \equiv CMe (1.5 equiv) as an additive. However, no improvement was observed, and 2a was obtained in 21% yield (run 2).^[11] We further investigated various silvlated additives to activate the catalyst. Whereas N-(trimethylsilyl)dimethylamine (Me₂NSiMe₃) was not useful (14% yield, run 3), tris(trimethylsilyl)amine (N(SiMe₃)₃) was found to effectively activate the catalyst, providing 2a in 71% yield (run 4). Upon decreasing the amount of catalyst to 20 mol%, the yield decreased to 34% (run 5), but a higher concentration of the reaction produced a good result, with 84% yield (run 6). In an attempt with P₄-*t*Bu at 10 mol%, the yields of **2a** decreased considerably, regardless of their concentration (runs 7 and 8). The amount of HCF₃ could be decreased to 5.0 equiv without a major loss of chemical yield, furnishing **2a** at 79% (run 9). In all cases, silylated trifluoromethylated carbinol was detected in the reaction before treatment with tetra-*n*-butylammonium fluoride (TBAF). The inclusion of another phosphazene base, 1-ethyl-2,2,4,4,4-pentakis(dimethylamino)- $2^{\lambda}5,4^{\lambda}5$ -catenadi(phosphazene) (P₂-Et) or other bases such as CsF, *t*BuOK, or KHMDS in the presence of N(SiMe₃)₃ under similar reaction conditions did not lead to an effective transformation (runs 10–13). Run 11 is of interest because CsF was previously reported to be an active base toward HCF₃ with N(SiMe₃)₃, but only in DMF.^[6e, 12]

With suitable conditions in hand, the scope of trifluoromethylation of ketones 1 using HCF₃ was explored with a variety of substrates selected in order to establish the generality of the process (Scheme 2). Aromatic rings substituted with either electron-donating or -withdrawing substituents, such as methoxy and chloro, were tolerated independent of the substituted positions on the benzene ring (**2b** and **2c**-**f**). A heteroaromatic di(2-pyridyl) ketone was compatible with the same reaction conditions to provide **2g** in 72% yield. The corresponding trifluoromethylated carbinols (**2h** and **2i**) from cyclic ketones were obtained in good isolated yields. Furthermore, the alkylsubstituted ketones produced the desired products **2j** and **2k** in 71–76% yield.

Figure 1 shows a proposed catalytic cycle for the trifluoromethylation of **1** with HCF₃. As mentioned in our previous report,^[9] the CF₃ adducts RCCF₃(O⁻)R' are initially formed as ion pairs with H[P₄-tBu]⁺. Next, delivery of the trimethylsilyl group of N(SiMe₃)₃ to the alkoxides RCCF₃(O⁻)R' proceeds, providing

Scheme 2. Trifluoromethylation of ketones 1 by HCF_3 . Yield values shown are for isolated product. [a] P_4 -tBu used at 30 mol%.

Figure 1. Proposed catalytic process for the trifluoromethylation of 1 with HCF_3 under the $P_{\rm q}\text{-}tBu/N(SiMe_3)_3$ system.

trimethylsilyl ethers accompanied with the same amount of $[N(SiMe_3)_2]^-$. The $[N(SiMe_3)_2]^-$ species might extract a proton from $H[P_4-tBu]^+$ to activate P_4-tBu for a catalytic process (route a). However, activation of P₄-tBu by deprotonation of $H[P_4-tBu]^+$ with $[N(SiMe_3)_2]^-$ should be difficult, given their basicity (P₄-tBu pK_{BH}: 28.0 (THF), 30.3 (DMSO); HN(SiMe₃)₂ pK_a= 25.8 (THF), 26 (DMSO)).^[13] Another possibility is that [N(SiMe₃)₂]⁻ directly deprotonates HCF₃, allowing a shunt catalytic cycle to provide the ion pairs of RCCF3(O⁻)R' and H[P₄tBu]⁺ (route b). The alkoxides RCCF₃(O⁻)R' should attack the silyl group of N(SiMe₃)₃ to furnish products of trimethylsilyl ethers accompanied by the same amount of $[N(SiMe_3)_2]^-$ as an ion pair with $H[P_4-tBu]^+$. Hence, $H[P_4-tBu]^+$ should play an important role in this catalytic cycle. The H[P₄-tBu]⁺ species forms a stabilized ion pair with the alkoxides RCCF₃(O⁻)R'. This stabilization should be a driving force for the catalytic cycle mediated by [N(SiMe₃)₂]⁻, because no reaction was observed with the use of CsF instead of P_4 -tBu (Table 1, run 11).

We next extended the organocatalyzed trifluoromethylation reaction using HCF3 for the synthesis of aryl triflones, i.e., trifluoromethyl aryl sulfones.^[14] Aryl triflones are recognized as important structural units in bioactive molecules, chiral catalysts, and functional materials^[15] because of the unique properties of the SO₂CF₃ moieties, such as high electronegativity ($\sigma_{\rm m}$ = 0.96) with moderate lipophilicity (π = 0.55).^[16] To generate an optimal catalytic process, a new working hypothesis for the transformation should first be considered, as shown in Figure 2. The key to this transformation is the use of aryl fluorides 3. Specifically, after the initial formation of aryl triflones 4 from **3** and HCF₃ with P_4 -tBu, $H[P_4$ -tBu]⁺ is formed as an ion pair with the fluoride ion, F⁻, which spontaneously attacks the silicon atom of N(SiMe₃)₃ to form F-SiMe₃ and [N(SiMe₃)₂]⁻. Regeneration of P₄-tBu by [N(SiMe₃)₂]⁻ should be difficult (route a); thus $[N(SiMe_3)_2]^-$ should remove the proton of HCF₃ with the help of $H[P_4-tBu]^+$ to regenerate the ion pair of $H[P_4-tBu]^+$ tBu]⁺ and F⁻. H[P₄-tBu]⁺ acts directly as a true catalyst on the reaction cycle (route b), as predicted for the trifluoromethylation of ketones in Figure 1.

4-Biphenylsulfonyl fluoride (**3a**) was selected as a model substrate for the trifluoromethylation, and the effect of bases and their amounts, additives, solvents, and temperature on the product formation of **4a** was examined (Table 2). The use of

Figure 2. Proposed catalytic process for the trifluoromethylation of 3 with HCF₃ to aryl triflones 4 under the P_{a} -tBu/N(SiMe₃)₃ system.

Table 2. Optimization of catalysts, additives, solvents, and temperature

for the trifluoromethylation of 4-biphenylsulfonyl fluoride (3 a) with HCF_3 .							
SO ₂ F HCF ₃ (excess) catalyst additive (1.5 equiv) solvent, <i>T</i> , 5–18 h 4a							
Run	Catalyst (mol%)	Additive	Solvent	<i>T</i> [°C]	Yield [%] ^[a]		
1	P ₄ - <i>t</i> Bu (30)	N(SiMe ₃) ₃	THF	RT	61		
2	P ₄ -tBu (30)	N(SiMe ₃) ₃	DMF	RT	60		
3	P ₄ -tBu (30)	$Me_3SiC \equiv CMe$	DMF	RT	45		
4	P ₄ -tBu (30)	Me ₃ SiNMe ₂	DMF	RT	23		
5	P ₄ -tBu (30)	N(SiMe ₃) ₃	THF	0	72		
6	P ₄ - <i>t</i> Bu (30)	N(SiMe ₃) ₃	DMF	0	84		
7	P ₄ -tBu (30)	N(SiMe ₃) ₃	DMF	-20	9		
8 ^[b]	P ₄ - <i>t</i> Bu (30)	N(SiMe ₃) ₃	DMF	0	70		
9	P ₄ - <i>t</i> Bu (20)	N(SiMe ₃) ₃	DMF	0	17		
10	P ₄ - <i>t</i> Bu (10)	N(SiMe ₃) ₃	DMF	0	14		
11	P ₄ -tBu (10)	N(SiMe ₃) ₃	DMF	RT	7		
12	P ₁ - <i>t</i> Bu (30)	N(SiMe ₃) ₃	DMF	RT	NR		
13	CsF (30)	N(SiMe ₃) ₃	DMF	RT	NR		
14	KHMDS (30)	N(SiMe ₃) ₃	DMF	RT	NR		
15	tBuOK (30)	N(SiMe ₃) ₃	DMF	RT	NR		
[a] Yield of isolated product; NR: no reaction. [b] 5.0 equiv of HCF_3 was used.							

the same superbase and additive, P_{4} -tBu (30 mol%) and N(SiMe₃)₃ (1.5 equiv), with excess HCF₃ gave good yields in the trifluoromethylation of **3a** in THF (61%, run 1) or DMF (60%, run 2) at RT, and higher yields were obtained in THF (72%) and in DMF (84%) at 0°C (runs 5 and 6). The product was obtained in 70% yield under the best conditions, but with 5 equiv of HCF₃ (run 8). Other bases, including a strong alkoxide of tBuOK, were not effective (runs 12–15). The results (runs 13–15) again suggested that H[P₄-tBu]⁺ is crucial to the catalytic cycle proposed in route b (Figure 2).

The scope of trifluoromethylation of sulfonyl fluoride **3** with HCF₃ under the best conditions is given in Table 3. Good to high yields of aryl triflones **4** were obtained under these conditions almost independent of the electronic nature of substitution on the benzene ring (chloro, bromo, iodo, isopropyl, *tert*-butyl) as well as their positions (*ortho, meta, para*) (entries 2–8). The sterically demanding naphthyl-substituted alkynes **3i**

www.chemistryopen.org

Table 3. Trifluoromethylation of sulfonyl fluorides 3 with HCF_3 .								
$\begin{array}{c} HCF_{3} \ (excess) \\ P_{4}\text{-}tBu \ (30 \ mol\%) \\ Ar \\ \begin{array}{c} \\ SO_{2}F \\ \hline \\ 3 \end{array} \\ \begin{array}{c} N(SiMe_{3})_{3} \ (1.5 \ equiv) \\ DMF, \ 0 \ ^{\circ}C, \ 5-17 \ h \end{array} \\ \begin{array}{c} Ar \\ \begin{array}{c} \\ SO_{2}CF_{3} \\ \hline \\ 4 \end{array} \end{array}$								
Run	Ar	Product 4	Yield [%] ^[a]					
1	4-PhC ₆ H₄	4a	84 (72) ^[b]					
2 ^[c]	4-CIC ₆ H ₄	4 b	57					
3	$2-BrC_6H_4$	4 c	62					
4 ^[d]	$3-BrC_6H_4$	4 d	50					
5 ^[e]	$4-BrC_6H_4$	4e	79					
6 ^[e]	$4-IC_6H_4$	4 f	79					
7 ^[c,e]	4- <i>i</i> PrC ₆ H ₄	4 g	54					
8	4-tBuC ₆ H₄	4 h	78					
9 ^[e,f]	1-naphthyl	4i	78					
10 ^[g]	2-naphthyl	4j	60					
[a] Viold of isolated product. [b] Viold for the reaction having been per-								

[a] Yield of isolated product. [b] Yield for the reaction having been performed in THF. [c] The reaction was carried out at -10 °C. [d] The reaction was carried out at 5 °C. [e] 20 mol% of P₄-tBu was used. [f] The reaction was carried out at room temperature. [g] 40 mol% of P₄-tBu was used.

and **3j** also afforded the corresponding products **4i** and **4j** in 60–78% yield (entries 9 and 10).

In conclusion, we have developed an organic-superbase-catalyzed trifluoromethylation of ketones and arylsulfonyl fluorides using fluoroform (HCF₃), a catalytic amount of P₄-*t*Bu, and N(SiMe₃)₃. Wide substrate generalities were observed in good yields for both ketones and arylsulfonyl fluorides. The most innovative aspect of the work is the use of H[P₄-*t*Bu]⁺ as the cation for stabilization of the presumed intermediate ion pair. Conclusive mechanistic/stability studies of this ion pair would be potentially useful for the application of other types of transformation. The role of protonated P₄-*t*Bu (H[P₄-*t*Bu]⁺) should be investigated in detail with the help of molecular calculations. Extending trifluoromethylation with HCF₃ to other substrates and asymmetric trifluoromethylation reactions under superbase catalysis are two subsequent challenges that we are currently exploring.

Experimental Section

Synthesis of 2: A Schlenk tube containing ketones 1 (0.20 mmol) and tris(trimethylsilyl)amine (70.1 mg, 0.30 mmol, 1.5 equiv) in THF was charged with HCF₃ by cooling in liquid nitrogen under vacuum. This tube was warmed to room temperature, and P₄-tBu (50.0 $\mu L,~0.8\,\varkappa$ in hexane, 0.040 mmol, 20 mol%) was added. HCF_{3} was then bubbled for 1 min at the same temperature. After stirring the reaction mixture at the same temperature for 2-19 h and monitoring by TLC analysis, it was quenched with saturated aqueous NH₄Cl (5 mL). The aqueous layer was extracted with CH₂Cl₂/(20 mL), and the combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The trimethylsilyl ether was treated with *n*Bu₄NF (62.6 mg, 0.24 mmol, 1.2 equiv) in THF (2.0 mL) at room temperature for 1 h. The resulting mixture was concentrated under reduced pressure and purified by column chromatography on silica gel to give α -trifluoromethyl alcohol 2.

Synthesis of 4: A Schlenk tube containing sulfonyl fluorides **3** (0.10 mmol) and tris(trimethylsilyl)amine (35.0 mg, 0.15 mmol, 1.5 equiv) in DMF was charged with HCF₃ by cooling in liquid nitrogen under vacuum. This tube was warmed to 0°C, and P₄-tBu (37.5 μ L, 0.8 μ in hexane, 0.030 mmol, 30 mol%) was added. HCF₃ was then bubbled for 1 min at the same temperature. After stirring the reaction mixture at the same temperature for 5–17 h and monitoring by TLC analysis, it was quenched with saturated aqueous NH₄Cl (5 mL). The aqueous layer was extracted with Et₂O,(20 mL), and the combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give triflones **4**.

Acknowledgements

This research was supported financially in part by the Platform for Drug Discovery, Informatics, and Structural Life Science from MEXT Japan, the Advanced Catalytic Transformation (ACT-C) from the Japan Science and Technology (JST) Agency, and the Pesticide Science Society of Japan.

Keywords: fluoroform \cdot organocatalysis \cdot phosphazene base \cdot triflone \cdot trifluoromethylation

- [1] a) H.-J. Böhm, D. Banner, S. Bendels, M. Kansy, B. Kuhn, K. Müller, U. Obst-Sander, M. Stahl, ChemBioChem 2004, 5, 637-647; b) K. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881-1886; c) S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320-330; d) W. K. Hagmann, J. Med. Chem. 2008, 51, 4359-4369; e) P. Jeschke, ChemBioChem 2004, 5, 570-589; f) M. Cametti, B. Crousse, P. Metrangolo, R. Milani, G. Resnati, Chem. Soc. Rev. 2012, 41, 31-42; g) R. Filler, Y. Kobayashi, Biomedicinal Aspects of Fluorine Chemistry, Elsevier Biomedical Press and Kodansya Ltd., Amsterdam, 1982; h) J. T. Welch, S. Eswarakrishman, Fluorine in Bioorganic Chemistry, Wiley, New York, 1991; i) R. Filler, Y. Kobayashi, L. M. Yagupolskii, Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications, Elsevier, Amsterdam, 1993; j) V. P. Kuhar, V. A. Soloshonok, Fluorine-Containing Amino Acids: Synthesis and Properties, Wiley, Chichester, 1995; k) I. Ojima, J. R. Mac-Carthy, J. T. Welch, Biomedical Frontiers of Fluorine Chemistry, American Chemical Society, New York, 1996.
- J. Wang, M. Sánchez-Roselló, J. L. Aceña, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, *Chem. Rev.* 2014, 114, 2432–2506.
- [3] a) G. K. S. Prakash, A. K. Yudin, Chem. Rev. 1997, 97, 757-786; b) T. Liang, C. N. Neumann, T. Ritter, Angew. Chem. Int. Ed. 2013, 52, 8214-8264; Angew. Chem. 2013, 125, 8372-8423; c) C. Alonso, E. M. de Marigorta, G. Rubiales, F. Palacios, Chem. Rev. 2015, 115, 1847-1935.
- [4] For selected reviews, see: a) N. Shibata, S. Mizuta, H. Kawai, *Tetrahedron:* Asymmetry 2008, 19, 2633–2644; b) J.-A. Ma, D. Cahard, Chem. Rev. 2008, 108, PR1–PR43; c) X. Liu, C. Xu, M. Wang, Q. Liu, Chem. Rev. 2015, 115, 683–730.
- [5] P. Ramaiah, R. Krishnamurti, G. K. S. Prakash, Org. Synth. 1995, 72, 232.
- [6] a) T. Shono, M. Ishifune, T. Okada, S. Kashimura, J. Org. Chem. 1991, 56, 2–4; b) B. Folléas, I. Marek, J.-F. Normant, L. S. Jalmes, *Tetrahedron Lett.* 1998, 39, 2973–2976; c) R. Barhdadi, M. Troupel, J. Périchon, Chem. Commun. 1998, 1251–1252; d) J. Russell, N. Roques, *Tetrahedron* 1998, 54, 13771–13782; e) S. Large, N. Roques, B. R. Langlois, J. Org. Chem. 2000, 65, 8848–8856; f) T. Billard, S. Bruns, B. R. Langlois, Org. Lett. 2000, 2, 2101–2103.
- [7] a) E. A. Symons, M. J. Clermont, J. Am. Chem. Soc. 1981, 103, 3127–3130; b) P. Tarrant The Preparation and Reactions of Fluoromethylenes in Chemistry Reviews, Marcel Dekker Inc., New York, 1977; c) B. R. Langlois, T. Billard, Synthesis 2003, 0185–0194.
- [8] a) A. Zanardi, M. A. Novikov, E. Martin, J. Benet-Buchholz, V. V. Grushin, J. Am. Chem. Soc. 2011, 133, 20901–20913; b) P. Novák, A. Lishchynskyi,

Open Access ChemistryOPEN

V. V. Grushin, Angew. Chem. Int. Ed. 2012, 51, 7767-7770; Angew. Chem. 2012, 124, 7887 – 7890; c) P. Novák, A. Lishchynskyi, V. V. Grushin, J. Am. Chem. Soc. 2012, 134, 16167-16170; d) A. Lishchynskyi, M. A. Novikov, E. Martin, E. C. Escudero-Adán, P. Novák, V. V. Grushin, J. Org. Chem. 2013, 78, 11126-11146; e) Z. Mazloomi, A. Bansode, P. Benavente, A. Lishchynskyi, A. Urakawa, V. V. Grushin, Org. Process Res. Dev. 2014, 18, 1020-1026; f) A. Lishchynskyi, G. Berthon, V. V. Grushin, Chem. Commun. 2014, 50, 10237-10240; g) A. I. Konovalov, A. Lishchynskyi, V. V. Grushin, J. Am. Chem. Soc. 2014, 136, 13410-13425; h) G. K. S. Prakash, P. V. Jog, P. T. D. Batamack, G. A. Olah, Science 2012, 338, 1324-1327; i) G. K. S. Prakash, F. Wang, Z. Zhang, R. Haiges, M. Rahm, K. O. Christe, T. Mathew, G. A. Olah, Angew. Chem. Int. Ed. 2014, 53, 11575 -11578; Angew. Chem. 2014, 126, 11759-11762; j) B. Folléas, I. Marek, J.-F. Normanta, L. Saint-Jalmes, Tetrahedron 2000, 56, 275-283; k) Y. Zhang, M. Fujiu, H. Serizawa, K. Mikami, J. Fluorine Chem. 2013, 156, 367-371.

- [9] a) N. Shibata, T. Kagawa (Nagoya Institute of Technology), Japanese Pat. No. JP2014091691, **2014**; b) H. Kawai, Z. Yuan, E. Tokunaga, N. Shibata, *Org. Biomol. Chem.* **2013**, *11*, 1446–1450.
- [10] a) T. Imahori, Y. Kondo, J. Am. Chem. Soc. 2003, 125, 8082–8083; b) T. Imahori, C. Hori, Y. Kondo, Adv. Synth. Catal. 2004, 346, 1090–1092; c) K. Kobayashi, M. Ueno, Y. Kondo, Chem. Commun. 2006, 3128–3130; d) M. Ueno, A. E. H. Wheatley, Y. Kondo, Chem. Commun. 2006, 3549–3550; e) K. Suzawa, M. Ueno, A. E. H. Wheatley, Y. Kondo, Chem. Commun. 2006, 4850–4852; f) M. Ueno, M. Yonemoto, M. Hashimoto, A. E. H. Wheatley, H. Naka, Y. Kondo, Chem. Commun. 2007, 2264–2266; g) K. Kobayashi, M. Ueno, H. Naka, Y. Kondo, Chem. Commun. 2008, 3780–3782; h) K. Kobayashi, M. Ueno, H. Naka, Y. Kondo, Chem. Commun. 2008, 3780–3782; h) K. Kobayashi, M. Ueno, H. Naka, Y. Kondo, Chem. Cumun. 2008, 3780–3782; h) K. Kobayashi, M. Ueno, H. Naka, Y. Kondo, Chem. Cumun. 2008, 3780–3782; h) K. Kobayashi, M. Ueno, H. Naka, Y. Kondo, Chem. Cumun. 2008, 3780–3782; h) K. Kobayashi, M. Ueno, H. Naka, Y. Kondo, Chem. Cumun. 2008, 3780–3782; h) K. Kobayashi, M. Ueno, H. Naka, Y. Kondo, Chem. Cumun. 2008, 3780–3782; h) K. Kobayashi, M. Ueno, H. Naka, Y. Kondo, Chem. Cumun. 2008, 3780–3782; h) K. Kobayashi, M. Ueno, H. Naka, Y. Kondo, Chem. Cumun. 2008, 3780–3782; h) K. Kobayashi, M. Ueno, H. Naka, Y. Kondo, Chem. Cumun. 2008, 3780–3782; h) K. Kobayashi, M. Ueno, H. Naka, Y. Kondo, Chem. 2011, 9, 78–80; j) M. Ueno, C. Hori, K. Suzawa, M. Ebisawa, Y. Kondo, Eur. J. Org. Chem. 2005, 1965–1968; k) H. Naka, D. Koseki, Y. Kondo, Adv. Synth. Catal. 2008, 350, 1901–1906.
- [11] Mikami and co-workers reported the catalytic reaction using $Me_3SiC \equiv CMe$ (ref. [8k]); however, in our hands the catalytic reaction with this additive was unsucessful.
- [12] DMF is crucial for the trifluoromethylation reported by Langlois and colleagues (ref. [6e]), owing to stabilization of the otherwise unstable

naked CF_3 carbanion by DMF to afford a hemiaminaloate adduct, $[\mathsf{Me}_2\mathsf{NCH}(\mathsf{O})\mathsf{CF}_3]^-.$

- [13] a) R. Schwesinger, H. Schlemper, Angew. Chem. Int. Ed. Engl. 1987, 26, 1167–1169; Angew. Chem. 1987, 99, 1212–1214; b) I. A. Koppel, R. Schwesinger, T. Breuer, P. Burk, K. Herodes, I. Koppel, I. Leito, M. Mishima, J. Phys. Chem. A 2001, 105, 9575–9586; c) R. R. Fraser, T. S. Mansour, S. Savard, J. Org. Chem. 1985, 50, 3232–3234; d) G. Lessene, M. Bordeau, C. Biran, D. de Montauzon, J. Gerval, J. Electroanal. Chem. 2000, 490, 79–84.
- [14] X.-H. Xu, K. Matsuzaki, N. Shibata, Chem. Rev. 2015, 115, 731-764.
- [15] For selected examples, see: a) C.-M. Park, M. Bruncko, J. Adickes, J. Bauch, H. Ding, A. Kunzer, K. C. Marsh, P. Nimmer, A. R. Shoemaker, X. Song, S. K. Tahir, C. Tse, X. Wang, M. D. Wendt, X. Yang, H. Zhang, S. W. Fesik, S. H. Rosenberg, S. W. Elmore, J. Med. Chem. 2008, 51, 6902-6915; b) B. E. Sleebs, P. E. Czabotar, W. J. Fairbrother, W. D. Fairlie, J. A. Flygare, D. C. S. Huang, W. J. A. Kersten, M. F. T. Koehler, G. Lessene, K. Lowes, J. P. Parisot, B. J. Smith, M. L. Smith, A. J. Souers, I. P. Street, H. Yang, J. B. Baell, J. Med. Chem. 2011, 54, 1914-1926; c) R. Kargbo, Y. Takahashi, S. Bhor, G. R. Cook, G. C. Lloyd-Jones, I. R. Shepperson, J. Am. Chem. Soc. 2007, 129, 3846-3847; d) K. Barta, G. Franciò, W. Leitner, G. C. Lloyd-Jones, I. R. Shepperson, Adv. Synth. Catal. 2008, 350, 2013-2023; e) L. Porrès, O. Mongin, C. Katan, M. Charlot, T. Pons, J. Mertz, M. Blanchard-Desce, Org. Lett. 2004, 6, 47-50; f) C. Le Droumaguet, O. Mongin, M. H. V. Werts, M. Blanchard-Desce, Chem. Commun. 2005, 2802-2804; g) O. Mongin, L. Porrès, M. Charlot, C. Katan, M. Blanchard-Desce, Chem. Eur. J. 2007, 13, 1481-1498.
- [16] a) V. A. Petrov, Fluorinated Heterocyclic Compounds: Synthesis Chemistry, and Applications, Wiley, Hoboken, 2009; b) W. A. Sheppard, J. Am. Chem. Soc. 1963, 85, 1314–1318; c) C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165–195; d) R. Goumont, E. Kizilian, E. Buncel, F. Terrier, Org. Biomol. Chem. 2003, 1, 1741–1748; e) F. Terrier, E. Magnier, E. Kizilian, C. Wakselman, E. Buncel, J. Am. Chem. Soc. 2005, 127, 5563–5571; f) N. El Guesmi, T. Boubaker, R. Goumont, F. Terrier, Org. Biomol. Chem. 2008, 6, 4041–4052.

Received: June 10, 2015 Published online on August 6, 2015