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Abstract: Imaging technologies are being deployed on cabled observatory networks worldwide.
They allow for the monitoring of the biological activity of deep-sea organisms on temporal scales
that were never attained before. In this paper, we customized Convolutional Neural Network image
processing to track behavioral activities in an iconic conservation deep-sea species—the bubblegum
coral Paragorgia arborea—in response to ambient oceanographic conditions at the Lofoten-Vesterålen
observatory. Images and concomitant oceanographic data were taken hourly from February to
June 2018. We considered coral activity in terms of bloated, semi-bloated and non-bloated surfaces,
as proxy for polyp filtering, retraction and transient activity, respectively. A test accuracy of 90.47%
was obtained. Chronobiology-oriented statistics and advanced Artificial Neural Network (ANN)
multivariate regression modeling proved that a daily coral filtering rhythm occurs within one major
dusk phase, being independent from tides. Polyp activity, in particular extrusion, increased from
March to June, and was able to cope with an increase in chlorophyll concentration, indicating the
existence of seasonality. Our study shows that it is possible to establish a model for the development
of automated pipelines that are able to extract biological information from times series of images.
These are helpful to obtain multidisciplinary information from cabled observatory infrastructures.

Keywords: neural network; deep-sea; cold water coral (CWC); automated video imaging; filtering
rhythms; tides; multivariate statistics

1. Introduction

Capturing deep ocean environmental features, habitat heterogeneity and associated biological
components is increasingly required, especially in the light of growing impacts by human activities [1].
Despite the important role of the oceans within the earth system, marine ecosystems are significantly
under-surveyed in time and space [2]. Our knowledge of species behavior, interspecific relationships
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and resulting community composition and biodiversity is incomplete in the deep-sea, due to difficulties
in sampling [3]. High costs and logistic constrains in vessel-assisted surveys (e.g., by trawling and
Remotely Operated Vehicle-ROV) prevent data acquisition at a high-frequency over continuous and
prolonged time intervals [4].

Quantifying species behaviors and their variability at different spatiotemporal scales and how that
variability affects the functioning of ecosystems and their productivity (e.g., the rate of transference
of carbon matter and energy), requires the development of advanced customized hardware and
software monitoring technologies [1,5,6]. One focal point for the establishment of those technologically
advanced monitoring strategies is to increase our capability to track the organisms’ responses to
changing oceanographic conditions in a remote, high-frequency and prolonged fashion [1].

Massive rhythmic movements by millions of individuals occur throughout the water column
and on the seabed, as a result of the response of species to physical and biogeochemical cycles
in light intensity and photophase duration as well as tidal currents. Those cycles are produced
by the Earth–Moon reciprocal movement in relation to the Sun [7–16]. Many species have evolved
time-keeping mechanisms (i.e., biological clocks) to cope and anticipate those predictable environmental
changes [9,10]. For motile megafauna, crawling, walking and swimming rhythms can be characterized
in terms of fluctuations in hauled or video-counted animals [6,10,16,17]. Differently, for sessile species
such as Cold-Water Corals (CWCs), similar data for comparison are poorer. Hauling is potentially
destructive, although some species survive the sampling procedure (increasing that survival chances
with ROV operations). When colonies are transferred to laboratories, their activity can be tracked under
the simulation of some environmental cycles such as currents, e.g., [18]. Alternatively, imaging should
be adjusted in situ to portray polyps’ extrusion and retraction patterns, a technological solution being
valuable to couple activity patterns to oceanographic control (e.g., hydrodynamism), substrate changes
and time-related modifications of the faunal assemblages within CWC reefs [19–21].

Fortunately, imaging technologies are on the verge to be deployed on an increasing number of
cabled observatory networks worldwide [4]. Artificial Intelligence (AI) routines such as machine
learning can be used to survey the biological status of CWC from large image data sets [22];
for example, in situ high-frequency imaging from cabled observatory platforms such as the
Lofoten-Vesterålen Observatory (LoVe; Norway) proved that the reef building CWC Lophelia pertusa
displays activity rhythms over the 24-h range, where polyp extrusions are influenced by tidal
currents [21]. Similarly, in the Stjernsund between Tromsö and Hammerfest, the gorgonian bubblegum
coral Paragorgia arborea showed a similar tidal-oriented filtering activity [23].

To date, it is of strategic relevance to increment data collection capabilities of cabled
observatories with autonomous image treatment and multiparametric data processing capabilities [6,24].
Monitoring autonomous functions needs to be developed through a pipeline of consecutive
and automated steps for the acquisition, processing, validation and multivariate treatment of
multiparametric data [12,25–29]. A major goal would be to pave the route to establish a real-time data
processing and interpretation software toolkit, specifically designed for underwater observatories.
That toolkit would enable the automated tracking of species behavior (and consequently rhythmic
activity), providing the end-users of online statistic tools to evaluate the effects of different oceanographic
variables (e.g., salinity, temperature, chlorophyll concentration, turbidity and water column depth as
proxy for tides) to the biological response [6,24,27,30,31].

This study proposes an advanced AI-based Convolutional Neural Network (CNN) routine for
the tracking of behavioral activity in the conservation-iconic Paragorgia arborea [32–34], to be used
as baseline for the establishment of monitoring programs at the Lofoten-Vesterålen (LoVe) deep-sea
observatory. Taking as inspiration previous computer science experiences and data treatments for this
species in the area [21,23], we also acquired high-frequency time-lapse images of one coral colony with
a fixed camera. We consequently established a CNN approach to evaluate colony changes in surface
coverage in terms of percentages of extruded and retracted polyps as a proxy for the activity rhythm of
the species. That approach was developed in a real-world context, where the marked oceanographic
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variability and operational monitoring challenges (e.g., light flickering and variable imaging angle)
occurred [28]. Chronobiology-oriented statistics and advanced Artificial Neural Network (ANN)
multivariate regression modeling were also used on all acquired behavioral and oceanographic data
sets, to provide examples for further automation steps of multiparametric data treatment to be used to
establish a pipeline of real-time treatment of ecological information at cabled observatories.

2. Materials and Methods

2.1. The Lofoten-Vesterålen (LoVe) Ocean Observatory

The Norwegian continental shelf hosts some of the richest CWC reefs in the world [35]. A network
of cabled video-observatories endowed with oceanographic multiparametric sensor technology
(i.e., the Lofoten-Vesterålen, LoVe) was installed in the Hola Trough ~20 km off the north-west coast of
the Lofoten Islands (Norway; Figure 1) [36]. LoVe has been in operation since 2013, to monitor the
biological status of CWC mounds and their associated communities [37]. Node 1 (Figure 1A) is located
in the south-eastern part of the Hola Trough at a depth of ~260 m, just south of the Vesterålsgrunnen
bank, where CWCs are mostly constituted by Lophelia pertusa [38,39]. It has two satellite platforms and
the #2 provided the imaging data set for this study (Figure 1B), being surrounded by P. arborea colonies
(Figure 1C).
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Figure 1. Overview of the Lofoten-Vesterålen (LoVe) canyon area (from Aguzzi et al. [6]). (A) The 
bathymetric map with the extended cabled transect with nodes (black dots) numbered 1–7 for 
shallower (light blue) to deeper realms (dark blue) and connected by a marine cable (continuous line). 
Node 1 is located in the shallowest part of the trough (orange areas represent the cold water coral 
(CWC) reefs). (B) A 3D detailed representation of the area around Node 1, where satellite no. 2 with 
camera appears on top of a small mound (encircled in red). (C) Enlarged view of the areas 
surrounding the satellite #2, where Paragorgia colonies are schematized. 

2.2. The Monitored Soft Coral Species 

Paragorgia arborea (Linnaeus, 1758) is a semi-cosmopolitan deep-sea gorgonian [40–44], occurring 
on rocky and on dead coral frameworks, facing prevailing current [45–47]. This species occurs in 
fjords, continental margins, submarine canyons and seamounts [48–50]. Its arborescent morphology 
provides habitat and a niche to a wide variety of invertebrates [51,52] and fishes [53]. Due to slow 
growth and low recruitment rates, P. arborea is highly vulnerable to anthropogenic impacts such as 
trawling and long-line fishing [54,55] as well as sediment resuspension from bottom trawling or drill 

Figure 1. Overview of the Lofoten-Vesterålen (LoVe) canyon area (from Aguzzi et al. [6]).
(A) The bathymetric map with the extended cabled transect with nodes (black dots) numbered 1–7 for
shallower (light blue) to deeper realms (dark blue) and connected by a marine cable (continuous line).
Node 1 is located in the shallowest part of the trough (orange areas represent the cold water coral
(CWC) reefs). (B) A 3D detailed representation of the area around Node 1, where satellite no. 2 with
camera appears on top of a small mound (encircled in red). (C) Enlarged view of the areas surrounding
the satellite #2, where Paragorgia colonies are schematized.

2.2. The Monitored Soft Coral Species

Paragorgia arborea (Linnaeus, 1758) is a semi-cosmopolitan deep-sea gorgonian [40–44], occurring on
rocky and on dead coral frameworks, facing prevailing current [45–47]. This species occurs in fjords,
continental margins, submarine canyons and seamounts [48–50]. Its arborescent morphology provides
habitat and a niche to a wide variety of invertebrates [51,52] and fishes [53]. Due to slow growth and
low recruitment rates, P. arborea is highly vulnerable to anthropogenic impacts such as trawling and
long-line fishing [54,55] as well as sediment resuspension from bottom trawling or drill cuttings [56].
Future management plans should pay special attention to polyp behavior and its temporal expression
in relation to the oceanographic factors, as an indicator of anthropogenic stress.

2.3. Image and Oceanographic Data Collection

The temporal activity of an individual colony of P. arborea was studied with 1-h time-lapse images
acquired by a High Definition camera (Metas A.S.) from 23rd February (11:30) to 11th June (23:30) 2018.
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Although the camera was stereoscopic, only mono-images at a resolution of 2751 × 2206 pixels were
used. A total of 6799 images were acquired. Two flashes on both sides of the camera illuminated the
scene for 3 s prior to camera capture.

Oceanographic data such as temperature, salinity, turbidity, chlorophyll-a (hereafter named as
chlorophyll) and water column depth (as a proxy for tidal bulges) were collected at 1 s frequency by
sensors installed beside the camera (Table 1), in the same satellite #2 frame infrastructure (see Figure 1C).
We selected the oceanographic data corresponding to the timing of each image. This simultaneous
acquisition of oceanographic data is of relevance to enforce an experimental in-situ approach to the
characterization of deep-sea species ecological niches [24]. In particular, one should notice that we
used the following algorithm for the calculation of the chlorophyll concentration:

Chl a = 1.050 * Chl fl (day) + 1.0129 for daytime values

Chl a = 0.963 * Chl fl (night) + 0.2159 for nighttime values

where Chl and fl stand for chlorophyll and fluorescence. The LoVe observatory was under establishment
at the time of the conducted measurements, so total values may be subject to change. In the present
phase, the observatory focus is laid on the quality assurance of data.

Table 1. Oceanographic variables and sensors used at the LoVe monitoring site for statistic comparison
with P. arborea polyp extrusion/activity rhythms.

Sensor Model

Pressure and temperature Aanderaa 4117D
Salinity Aanderaa 4319A

Turbidity Aanderaa 4112A
Chlorophyll WetLabs BFL2W

2.4. Image Treatment

Different steps were implemented to extract the biological information on coral activity from
images, based on extruded or retracted polyps (see below in Section 2.4.2). These steps were presented
as a processing pipeline, to provide a model for the future implementation of automated procedures
(Figure 2). All pipeline image treatment steps are described along with the terminal steps related to the
time-series and multivariate statistical treatment and modeling.
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Figure 2. Pipeline for biological data extraction (via automated video-imaging procedures, based on
Convolutional Neural Network (CNN) groundthruted routines) and analysis (via multivariate
time-series treatment) of high relevance for advanced ecological monitoring functionalities by cabled
observatories. Numbers on the upper right corner of each box (i.e., the treatment pipeline step)
are referring to the numerals for the respective Materials and Methods section of this paper.
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2.4.1. Image Enhancement

The images were usually very dark. Thus, different computer vision approaches were tested for
enhancing the foreground/background contrast while simultaneously maintaining the original color,
prior to the automated extraction of the morphological index (see next Section 2.4.2.). Several filtering
procedures were evaluated as Gamma, Logarithmic, Sigmoid, as well as Histogram Equalization,
Re-Scale intensity and Contrast Limited Adaptive Histogram Equalization (CLAHE). A total of
20 images were randomly selected to be filtered with all the mentioned methods. CLAHE was the best
and only rendering technique that achieved both objectives.

2.4.2. Supervised Tagging of Coral Areas

Images of the coral were processed, in order to extract an index for polyp extrusion and retraction,
as a proxy for colony activity. That activity pattern was indicated here as bloated at full polyp extrusion
(e.g., likely during filter-feeding phases) and non-bloated, when all polyps were fully retracted with a
transient semi-bloated phase of mixed colony behavior (i.e., with clusters of extruded and retracted
polyps) [57–61].The two major statuses, bloated and non-bloated morphology, are presented in Figure 3
for the whole colony. A third transient semi-bloated status is also considered and shown in Figure 4
along with other bloated and non-bloated ones for comparison, within enlarged views.Sensors 2020, 20, x FOR PEER REVIEW 6 of 24 
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A training dataset for the automated classification of the three coral states was created. That dataset
was established by randomly choosing 1000 images out of the total (i.e., 6799 images). In each image,
3 different rectangular regions of the coral (such as those presented in Figure 4, as an example)
were manually tagged, to determine the activity status, resulting in 3000 section images: 1376 bloated,
708 non-bloated, 916 semi-bloated. As the tagging was manually performed, the sizes of each of the
rectangular regions was slightly different in size.

2.4.3. Coral Segmentation

A background/foreground image segmentation was implemented in order to improve the
classification performance of the coral behavioral status in terms of area coverage by polyps in
the extruded or retracted status. A color-based (red) mask segmentation by Hue Saturation Value
(HSV) [62] was used for this approach. The images were transformed into HSV color space and the
mask color ranges were set to extract the foreground coral region. Next, a bitwise comparison was
made between the image and the color mask, producing a binary threshold image. The red-segmented
color mask processing allowed for the extraction of the pixels belonging to the coral with a fast and
low-intensive computational burden (Figure 5). Then, several filters were applied to empirically
compare the segmentation results [63]: Blur, Gaussian Blur, Bilateral, and finally, Median. The different
filter effectiveness is evidenced by image treatment outputs in Figure 5.Sensors 2020, 20, x FOR PEER REVIEW 7 of 24 
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2.4.4. Data Preparation

Coral segmentation with a color mask allowed for the pre-processing of each of the manually
tagged sections of the coral. For each of these regions, the segmentation techniques were applied
(see above). From each segmented image, 120 pixels belonging to the coral (white pixels) and 40 pixels
belonging to the background (black pixels) were randomly selected and encoded into a text file together
with a pixel label: bloated, semi-bloated, non-bloated and background. Thus, for each image, 160 pixels
were stored.

2.4.5. The Convolutional Neural Network (CNN) Model

To characterize the temporal expression of polyp behavioral rhythm (i.e., bloated, semi-bloated
and non-bloated), a CNN model [64] was implemented to segment and hence identify the pixels
belonging to each behavioral category, as follows. A six-layer CNN was trained with image pixel
annotations and the corresponding images from the previous training stage. For each of the annotation
pixels, a 30 × 30 crop image was created from its corresponding coral image where the middle pixel
was the annotation pixel, following a strategy similar to Patches-GT [65]. This strategy is based on
expanding the labeled ground truth pixels into labeled patches around those pixels. It assumes that
the surrounding pixels of a labeled one are identical. Each of these cropped images was labelled with
its corresponding pixel class. These cropped images and their labels were used as training/test data.

The CNN was implemented with a Keras library [66]. The proposed CNN (Figure 7) was composed
of: a convolutional layer with 32 outputs and an input shape of (30,30,3); another convolutional
layer with 32 outputs; a dropout layer with a rate of 0.25; a convolutional layer with 64 outputs;
another convolutional layer with 64 outputs; a dropout layer with a rate of 0.25; a convolutional layer
with 128 outputs; another convolutional layer with 128 outputs; a dropout layer with a rate of 0.25;
a dense layer with 512 outputs; and finally a final dropout layer with a rate of 0.5 plus a dense layer
with 4 outputs. The last dense layer had a value of 4, being equal to the number of statuses to classify
(i.e., bloated, semi-bloated and non-bloated) plus the background. All the convolutional layers had
3 × 3 filters and the Rectified Linear Unit (ReLU) activation functions, except for the last dense layer,
which had a Softmax activation function. Even convolutional layers had MaxPooling2d with a pool
size of (2,2).
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As for the optimization used to train the model, several variations of the algorithm ADAM were
compared through trial and error. The best algorithm used a learning rate of 0.0001, beta_1 of 0.9 and
beta_2 of 0.999. These parameters allowed the CNN to converge faster. The model was compiled with
a loss function of “categorical_crossentropy” [67], since a non-binary class problem was addressed.

Data augmentation was used on the train/test crop images to have a much wider dataset that would
yield a larger representation of coral shapes, by horizontal and vertical flips as well as width and height
shift ranges of 0.1. A 10-fold cross-validation [68] was used to test the model. Each fold was stratified
and randomized, in order to preserve the percentage of samples of each class. Within the 10-fold
cross-validation, 9 folds were used for training and 1-fold for validation, repeating the experiment
10 times, by changing the validation fold each time (and as consequence the training folds). The final
performance was the average of all the single validation performances. A batch size (number of
training samples utilized in each iteration) of 256 was set for the training. The network was trained
with 100 epochs (number of times the algorithm works through the training dataset).

2.4.6. The Segmentation of Coral Behavioral Statuses by CNN Modelling

The procedure to segment the images was performed via 30 × 30 window crops and yielded
to the classification of coral behavior into the 3 categories plus the background (see Section 2.4.2.
above). As we needed to iterate the pixel matrix of high-resolution images, the required computational
time would have been too high (3000 s in average). In order to create a lighter computational tool,
columns and rows were iterated with a step-width of 10. With this approach, the processing time of
each image was reduced to ~75 s. This approach allowed us to create a map over the image in which
each classified 30 × 30 window could partially overlapped other windows [69]. This procedure created
a more realistic and precise map to interpret the activity status of the coral.

2.5. Behavioral and Environmental Time Series Compilation

The CNN automated approach enabled us to quantify the coral activity status from all considered
images. Once the segmentation of each image was concluded, we could classify and count the
pixels belonging to bloated, semi-bloated and non-bloated categories. In order to calculate an overall
percentage of activity statuses for the whole coral colony, the pixels belonging to the three behavioral
categories were summed up. Then, for each status, the sum of its pixels was divided between the total
amount of coral pixels considered, obtaining a relative percentage.

Finally, a final dataset was created based on environmental and oceanographic data (as collected
at times corresponding to images) as follows: date, time of the day, overall percentage of colony in
bloated, semi-bloated and non-bloated status, readings for temperature, salinity, turbidity, chlorophyll,
and depth.

2.6. Time Series Analysis

The occurrence of significant periodicities in all temporal data sets was analyzed with the
Lomb–Scargle periodogram by the El Temps chronobiology software package (www.el-temps.com).
All periodicities were screened in a window of frequencies between 600 and 1620 min (equivalent to
10–27 h, respectively), encompassing ranges for diurnal and semi-diurnal tides plus the day–night
cycle [16]. In the periodogram output plot, the peak exceeding a significant threshold (p < 0.05)
represented the maximum percentage of total data variance, explained by the inherent dominant
periodicity [70].

Waveform analysis for the 3 coral activity statuses and the oceanographic data was performed to
identify the phase (i.e., peaks timing) of rhythms and cycles [13]. All time series were subdivided into
24-h segments with a 1-h sampling frequency. All values were averaged at corresponding 1-h time
intervals throughout all segments. Resulting averages (plus standard deviations) were displayed in
24-h plots (i.e., the waveform), along with a Midline Estimated Statistic of a Rhythm (MESOR). This is
a daily average, obtained by re-averaging all waveform values [70]. In the waveform plot, the phase

www.el-temps.com
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of a rhythm (i.e., the averaged peak) is identified by all values above the MESOR. Waveform plots
for the three coral activity statuses were represented with intermediate dusk and dawn timings at
the 23rd of April 2018 (i.e., considering the 5-months’ extension of the image acquisition period),
as indicated by the local astronomical web service (https://www.timeanddate.com/sun/norway/bergen):
dusk, 21:30 and dawn, 6:00. This plot implementation was done in order to show the linkage of
detected rhythms upon the light intensity cycle.

2.7. Multivariate Modeling of Coral Activity

An AI classification approach was used to predict the activity status of the coral, considering a
global binary behavior for the colony, with 2 statuses as bloated and non-bloated (semi-bloated was
merely transient) [21,71]. We considered 7 independent and conditioning variables (i.e., the input
x-block): time of the day (reported as a unit fraction of 24 h), chlorophyll, temperature, depth, turbidity,
salinity and the Field Of View (FOV). The latter is a binary dummy variable, while the remaining
6 are continuous. The continuous variables were standardized (i.e., centered with respect to their
mean and scaled by the relative standard deviation). The dependent response variable (y-block)
was the bloated percentage of each image, discretized into a binary variable (i.e., bloated, not-bloated);
when the percentage of the bloated surface was higher than or equal to 50%, it was converted to 1, and,
when lower, it was converted to 0.

The x-block was trained several times using shallow neural networks for binary classification with
different hidden layer sizes. If no convergence was reached due to underfitting, the number of features
was increased by considering the square and cubic terms of the x-block obtained by multiplying its
columns in a combinatorial fashion. In order to mitigate the overfitting, the cross-validation Root Mean
Square (RMS) error was calculated as a function of the number of features. Thus, 133 features were
obtained and used to train a Multi-Layer Feed forward artificial neural Network (MLFN; [72,73]) with a
single hidden layer architecture, using sigmoid hidden and SoftMax output neurons. The ANN-based
MLFN approach was trained with the Bayesian regularization back propagation algorithm [74,75],
as implemented in the deep learning MATLAB toolbox. The dataset was partitioned using 70% of the
observations (N = 1150) as training set and the rest as test set (N = 503). The test set was used to validate
the model. This partitioning was optimally chosen with the Euclidean distances, selecting parameters
without a priori knowledge of a regression model. The cost function was minimized using the
normalized RMS error performance function with a 10−10 threshold on the gradient. Precision (P) and
Recall (R) were also calculated on training and test sets.

In order to extract the most informative features, among the 133 acquired ones, a feature importance
analysis was conducted as follows [76]. The hidden layer matrix (9 nodes x 133 variables) was a
posteriori analyzed by considering its elementwise absolute value. From this matrix, the maximum
value for each variable (i.e., column) was extracted, obtaining a 1 × 133 row vector. The top 15 most
significant variables were chosen. The larger the value, the more relevant the contribution to the MLFN
model. The model was developed by using the MATLAB 9.7 R2019b Deep Learning Toolbox.

Having the phenomenon of an activation shape, a comparison between the real percentage
of bloated coral surfaces and the sigmoid of the most relevant standardized quantitative variables
(i.e., time of the day, chlorophyll, salinity, temperature, depth and turbidity) was made. Pearson linear
correlation and their probability were estimated.

3. Results

3.1. CNN Coral Segmentation: Evaluation of Training and Performance

After the CNN was trained, 3000 images were segmented via a 30 × 30 crop window classification,
in order to have at least one value of coral activity status per one hour. Bloated pixels of the coral
were visualized as the blue color, semi-bloated pixels as purple and non-bloated ones as red (Figure 8).
The resulting CNN was used to segment the remaining images from the time series. The CNN model

https://www.timeanddate.com/sun/norway/bergen
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had an average test accuracy of 86.16% and an average Area Under Curve (AUC) score of 0.9732 in the
10-fold cross-validation of the model.Sensors 2020, 20, x FOR PEER REVIEW 11 of 24 
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Figure 8. Examples of coral segmentation indicting activity status (above) and original images
(below). Non-bloated areas are in red and bloated ones are in blue. Purple areas are in the transient
semi-bloated condition.

After the 10-fold cross-validation, the CNN model was trained with a 70/30 split in the dataset.
This meant that a random 70% was used as training data, while the 30% left was used as test data.
The CNN gave a final test accuracy of 78.08% and a validation AUC of 93.47%. The obtained Precision
Accuracy (PA) and User Accuracy (UA) are shown in Table 2.

Table 2. Precision Accuracy (PA) and User Accuracy (UA) of each of the 4 state categories.

States PA UA

Bloated 82.85% 80.97%
Non-Bloated 61.57% 61.57%
Semi-Bloated 65.04% 65.04%
Background 87.36% 87.36%

3.2. Time Series Analysis

Time series analysis was performed on coral activity data (percentage of colony surface coverage
by extruded and retracted polyps) as a final step in the pipeline of information treatment (see Figure 2).
During the study period, polyp activity was registered continuously in terms of the percentage of
colony surface, showing a bloated, non-bloated and semi-bloated status (Figure 9). Colony surface
coverage values for bloated and non-bloated statuses attained maximum values close to 100% and 90%,
respectively (Table 3; Figure 9A,C). Differently, the semi-bloated condition attained lower maximum
area coverage values, close to 70% (Figure 9B). The oceanographic data contained large gaps as a product
of transient sensor malfunction and pauses in measurement activity during platform maintenance
(Figure 9D).

Periodogram analysis outputs for time series of those percentages of colony coverage in bloated,
non-bloated and semi-bloated statuses are presented in Table 3. Significant 24-h patterns were reported
for all three activity variables. No analysis was conducted on time series of oceanographic data,
since those data were non-continuous.
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Figure 9. Time series of automated percentages of colony surface with polyps in full extrusion (bloated;
(A)) or full retraction (non-bloated; (C)) status as well as the intermediate condition with patches of both
(semi-bloated; (B)), plus the concomitantly monitored oceanographic variables for comparison (D).

Table 3. Time series parameters as absolute maximum and minimum as well as significant (p > 0.05)
periods (both in total minutes (Min) and hours (h)) for all behavioral and oceanographic variables
measured at the LoVe observatory in 2018. The Midline Estimated Statistic of a Rhythm (MESOR) is
also reported as a result from waveform analysis for all the time series.

Period

Max Min MESOR Min h

Bloated 99.97 4.43 60.56 1435 23.9
Non-Bloated 87.07 0.00 21.42 1435 23.9
Semi-Bloated 67.86 0.00 18.02 1435 23.9
Temperature 7.31 5.61 6.52 Not Done

Salinity 35.00 34.23 34.74 Not Done
Chlorophyll 26.24 0.32 7.05 Not Done

Turbidity 124.28 5.56 6.58 Not Done
Depth 251.15 248.88 250.10 Not Done

Waveform analysis of the three different coral activity statuses are presented in superposition to
show their phases relationship (Figure 10). One should notice that the temporal pattern depicted by
this graphic output sustains periodogram results (i.e., a single large peak per 24-h cycle; see Table 3).
That combined and overlapped plotting evidenced the occurrence of a bloated peak towards dusk
(and, consequently, a drop in non-bloated percentages at that time). Waveform values above the
MESOR, showed for the bloated time series a significant increase from 14:30 to 00:30 (i.e., the peaks
duration corresponds to all values above the MESOR). Conversely, the non-bloated status peaked from
2:30 to 14:30. Similarly, the semi-bloated condition showed a significant increase from 1:30 to 10:30
(with an isolated significant increase also at 13:30).



Sensors 2020, 20, 6281 12 of 23

Sensors 2020, 20, x FOR PEER REVIEW 13 of 24 

 

this graphic output sustains periodogram results (i.e., a single large peak per 24-h cycle; see Table 3). 
That combined and overlapped plotting evidenced the occurrence of a bloated peak towards dusk 
(and, consequently, a drop in non-bloated percentages at that time). Waveform values above the 
MESOR, showed for the bloated time series a significant increase from 14:30 to 00:30 (i.e., the peaks 
duration corresponds to all values above the MESOR). Conversely, the non-bloated status peaked 
from 2:30 to 14:30. Similarly, the semi-bloated condition showed a significant increase from 1:30 to 
10:30 (with an isolated significant increase also at 13:30). 

 
Figure 10. Waveform analysis outputs as averaged percentages for colony surface with polyps in full 
extrusion (bloated) or full retraction (non-bloated) as well as the intermediate condition (semi-
bloated) are reported with the standard deviation. A marked unimodal increase in bloated status (i.e., 
possibly corresponding to filter feeding activity) is evident in antiphase with non-bloated and semi-
bloated statuses (see the MESOR threshold values in Table 3). On should notice that waveforms Y-
axes have different scales to make time series pattern as visually comparable. The gray shaded area 
represents the hours of darkness. 

The same waveform analysis was also performed for the oceanographic variables (Figure 11), to 
show the of phases relationships among their cycles. Considering MESOR values (not plotted but 
reported in Table 3), the marked bimodal water column depth variations (as proxy for tidal current 
regimes) are evident (two peaks: 11:30–15:30 and 0:30–5:30). This hydrodynamic pattern affected 
turbidity, which also showed two major sharp increases over 24 h, slightly delayed in comparison to 
water column peaks (16:30 and 07:30). Conversely, chlorophyll showed a high variability (wide SD 
bar ranges) over the 24-h cycle. Salinity and temperature were also very variable over the 24 h and 
peaked as follows: salinity between 11:30 and 20:30 and temperature between 10:30 and 18:30. 
  

Figure 10. Waveform analysis outputs as averaged percentages for colony surface with polyps in full
extrusion (bloated) or full retraction (non-bloated) as well as the intermediate condition (semi-bloated)
are reported with the standard deviation. A marked unimodal increase in bloated status (i.e., possibly
corresponding to filter feeding activity) is evident in antiphase with non-bloated and semi-bloated
statuses (see the MESOR threshold values in Table 3). On should notice that waveforms Y-axes have
different scales to make time series pattern as visually comparable. The gray shaded area represents
the hours of darkness.

The same waveform analysis was also performed for the oceanographic variables (Figure 11),
to show the of phases relationships among their cycles. Considering MESOR values (not plotted but
reported in Table 3), the marked bimodal water column depth variations (as proxy for tidal current
regimes) are evident (two peaks: 11:30–15:30 and 0:30–5:30). This hydrodynamic pattern affected
turbidity, which also showed two major sharp increases over 24 h, slightly delayed in comparison to
water column peaks (16:30 and 07:30). Conversely, chlorophyll showed a high variability (wide SD bar
ranges) over the 24-h cycle. Salinity and temperature were also very variable over the 24 h and peaked
as follows: salinity between 11:30 and 20:30 and temperature between 10:30 and 18:30.
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Figure 11. Waveform analysis outputs of oceanographic data, where all hourly averaged values are
presented with their standard deviation.

Some clues about the occurrence of seasonal trends in polyp extrusion activity were found during
our monitoring period (Figure 12). This trend was evidenced by the computing of monthly averages
in polyps’ extrusion activity in comparison with the oceanographic variables. A significant increase
(considering MESORs values in Table 3) in overall activity occurred in April, May and June, matching a
similar pattern for chlorophyll and turbidity. Monthly values of chlorophyll for April, May and June
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were significantly higher than those registered in February and March (PERMANOVA, PSEUDOF:
474, p = 0.001). For monthly turbidity values, a significant increase was found from April to May
(PERMANOVA, PSEUDOF: 3177, p = 0.02).
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Figure 12. Seasonal pattern of variation in P. arborea polyps’ activity and concomitantly measured
oceanographic variables. (A) Monthly average percentages of different polyp activity statuses.
(B) Monthly averaged oceanographic variables. All data are presented with the standard deviation.

3.3. Multivariate Modeling of Coral Activity

Multivariate statistic treatment and modelling were performed as a final step for our automated
data treatment pipeline (see Figure 2), to evaluate the response of biological data with respect to
ambient environmental conditions. Our choice for the ANN class modelling was based on its feasibility
for automation when the phenomenon to be analyzed has a non-linear temporal dynamic. In Figure 13,
the RMS error, as a function of the number of features, is reported for training, test and validation sets.
Since the cross-validation curve has a minimum at 133 features, we have chosen this value to perform
the following calculations. The results were obtained averaging over 10 random trials.
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Only 1653 observations (from 2nd February to 8th June 2018) were processed out of 3000.
The remaining behavioral data were eliminated because they occurred during a gap in oceanographic
data acquisition (see Figure 9D). The algorithm converged after 500 iterations with 0.26% of false
predictions during training of the network and 31% of wrong predictions during tests. The output of
the “softmax” function is a real number 0 < p ≤ 1, which represents the modelled probability of the
coral to be bloated. Table 4 reports the principal results of the MLFN model used to predict bloated
vs. non-bloated corals on the base of 133 variables (x-block). The confusion matrixes of the training
and test sets are reported in Table 5. In the training set, only three out of 1150 (0.26%) were wrongly
classified. During testing, 156 out of 503 (31%) samples were misclassified. Among these 156 + 3
(159) misclassified observations, 30 (18.9%) showed a percentage of bloated coral surface ranging from
20% to 80%. In this large interval (20–80%), there were only 197 observations (11.9%) of which 30
were misclassified (15.2%). In the remaining intervals (0–20% and 80–100%) the error was much lower
(8.9%). This confirmed the dominant binary character of coral behavior, where polyps are globally open
(bloated) or retracted within the calyx (non-bloated) in an almost synchronous mode. An intermediate
state (semi-bloated) is only reached for a very limited time, thus confirming the appropriateness of
the classification approach. The precision (P) values of the training and test sets were, respectively:
0.999 and 0.721. The recall (R) values of the training and test sets were, respectively: 0.997 and 0.761.

Table 4. Characteristics and principal results of the Multi-Layer Feed forward artificial neural Network
(MLFN) model (training and internal test) in predicting the coral activity status (i.e., bloated vs.
non-bloated) for the training and the test sets.

Training (70%)

Number of cases 1150
Number of hidden layers 1

Number of nodes 9
Training time 0:7:02

Number of trials 500

% bad predictions 0.26 (3)

Testing (30%)

Number of cases 503
% bad predictions (N) 31 (156)

Table 5. Confusion matrix of the test set of the MLFN model used in predicting the classification
bloated versus non-bloated activity statuses. Targets are reported on rows. The correctly classified
samples are reported on the main diagonal of the matrix.

Bloated Non-Bloated Total

Bloated 223 70 293
Non-Bloated 86 124 210

Considering the feature importance analysis, conducted to understand which variable or
combination of variables had a higher impact on the constructed MLFN model for coral activity
response, the top 10 features were the following: temperature2, salinity2, chlorophyll × salinity,
hour × depth/pressure × FOV, hour × salinity, hour × temperature x salinity, depth × salinity,
chlorophyll2 × depth, depth3, depth × salinity × FOV.

Due to the structure of the x-block, the contribution of the continuous features (time of day,
chlorophyll, temperature, depth, turbidity and salinity) was difficult to assess. On the other hand,
given the binary attitude of coral behavior, samples were arranged for plotting in a saturation curve
with a sigmoidal shape, to show an activation profile, i.e., the progressive percentage of bloated coral
surface versus the growing status of the environmental variable. Figure 14 shows the comparison
between the real percentage of bloated coral surface and the sigmoid of each standardized quantitative
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variable. One should notice that, if sorted accordingly, the standardized variables’ time of the day and
chlorophyll showed an increasing linear relationship. As can be seen, the sigmoid of the time of the day
(A) and chlorophyll (B) significantly correlate with the bloated status of the coral, r = 0.87 (p < 0.001)
and r = 0.99 (p < 0.001), respectively. On the other hand, the sigmoid of the depth (E) and turbidity (F)
are significantly anti-correlated with the bloated status of the coral; r = −0.78 (p < 0.001) and r = −0.99
(p < 0.001), respectively. The sigmoid of the temperature (D) is significantly correlated with the bloated
status of the coral derivative: r = 0.17 (p < 0.001). The sigmoid of the salinity (C) is not correlated.
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Before processing the oceanographic standardized variables with the sigmoidal function, a moving
average was applied in order to smooth their signal.

4. Discussion

In this study, we proposed a new pipeline for the extraction of biological information referring
to the activity status of a sessile organism, the iconic bubblegum deep-sea coral species P. arborea,
based on automated segmentation and CNN processing. That pipeline was also implemented in
two relevant steps for time series statistic treatment for cabled observatories multidisciplinary data,
based on chronobiology and multivariate statistics. This study indicates a new route for the further
development of online tools for real-time processing of complexly interrelated multiparametric bio-
and oceanographic data sets, which is still missing in most of the data management structures of
cabled observatories today. Such an effort is at the core of our future capability to efficiently establish
monitoring and surveillance programs with those marine infrastructural assets [24,26].

With the proposed pipeline for information extraction and data processing, we evidenced a
tidal-independent and crepuscular activity pattern. A previous work on P. arborea image treatment
showed tidal rhythms in polyp activity through the manual analysis of images for activity status
classification [23]. Moreover, previous authors used logistic regressions (combined with the Recursive
Feature Elimination), to decide which oceanographic variables were significantly linked with coral
activity. Here, we used chronobiology-oriented statistical approaches (i.e., periodogram and waveform
analyses), combined with an advanced Artificial Neural Network (ANN) modelling statistic. With this
data treatment pipeline, we showed that the diurnal coral extrusion rhythm is phased at dusk and it is
therefore strongly influenced by the time of the day rather than the tide status. Apparently, the difference
in results between both studies can be attributed to increased analytic precision obtained with automated
CNN routines in comparison to the manual processing of images.
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4.1. Implications of a CNN-Based Pipeline for Ecological Information Treatment at Cabled Observatories

Cabled observatory cameras are still used for temporally scattered studies with no ambition
for establishing institutionalized monitoring programs. This is because very few imaging devices
are capable of hosting intelligence on board for extracting time series of biological data in a fully
autonomous fashion [27,30]. This study indicates a new way of using optical data to link biological
processes to the environmental forcing, by using a CNN-based automation procedure in the extraction
of biological information from temporally extensive sets of acquired images. The tailored CNN
procedure was a simple segmentation tool designed for this local experiment based on a 6-layer
classification CNN. For the moment, no comparison studies were made with other segmentation
approaches, such as CNN-based or Fully Convolutional based Network (FCN-based) approaches.
However, CNN efficiency was tested, showing to be reliable for the objectives described in [77].
The 78.08% test accuracy and 93.47% AUC value are promising results even though user precision and
product precision results could be improved with more balance between all classes.

Future studies should include a comparison with state-of-art approaches, such as Mask R-CNN [78]
and other FCN architectures [79]. Furthermore, if more public datasets of deep-sea Paragorgia arborea
become available, one should try using different colonies in different locations to achieve a more
complete and adaptable segmentation tool.

Here, we efficiently used that image filtering and reconstruction procedures prior to CNN treatment.
The artificial background illumination within the FOV varied in its intensity over consecutive photos
for the flickering of the lighting system and also for the absorption and scattering effects caused by
suspended particulate (i.e., turbidity). Many approaches were proposed in the scientific literature for
improving the quality of underwater images, e.g., [80–83]. Restoration methodologies are based on the
physical model of the light propagation and are used for correction of the effects of light absorption
and scattering [84–86]. Contrastingly, enhancement methodologies do not assume any physical model
and are based only on computer vision approaches for improving the light and color distribution and
for reducing the hazing effects due to suspended particulate load [87–90].

The variation of the underwater acquisition conditions (e.g., light distribution and water turbidity)
and the huge variety of marine fauna with respect to shape and size are the most relevant factors
affecting the performance of the automated recognition and classification of underwater visual
data [91,92]. All this differentiated information can be successfully managed by the supervised machine
learning approach, where a set of examples representing all the information needed for discriminating
the relevant specimens, can be used for training of the automated algorithms for recognition and
classification [93,94]. The relevant information in visual data (i.e., polyp extrusion and retraction
statuses as proxy for activity rhythms) was recognized and classified by combining computer vision
and artificial intelligence methodologies after supervised training [95]. That training was efficiently
carried out on a set of manually classified quadrants with only a reduced number of images, resulting in
a performance that is comparable to that of a visual inspection operated by expert users.

The lack of automation in image treatment is strongly constraining the extraction of information
from marine imaging devices [4,92] and, unfortunately, a universal customization is not feasible [27,30].
This situation is impairing the use of remote monitoring by cabled observatories to track changes in
the status of ecosystems at high ecological levels of complexity (i.e., animals and the services they
provide) [12]. Fortunately, the scientific literature is becoming rich in consolidated and emerging
methodologies on computer vision and pattern recognition, e.g., [96–99]. CNN methodologies are
becoming diverse, offering several customized examples of innovation for specific applications and
environmental contexts (reviewed in [28]). A more innovative step forward is the evaluation of CNN
procedures within the context of entirely automated pipelines for data treatment at cabled observatories,
as the one we have drawn here (see Figure 2; [29]). Those pipelines should be considered and debated
in relation to the feasibility to create future cyber-infrastructures including advanced digital libraries
for storing, accessing and processing the data [24].
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4.2. Functional Explanation of the Detected P. arborea Polyps’ Extrusion and Retraction Rhythms

Here, we report P. arborea polyps’ extrusion and retraction rhythms associated to the day-night
rather than the tidal cycle, with activity peaking form the second half of the day toward a maximum
at dusk. Anthozoan polyp extrusion has been positively correlated with current velocity [100],
food availability or water temperature [101]. In deep-sea aphotic realms, activity rhythms relationship
with current regimes are due to organic carbon transport [102]. In the LoVe deployment area,
strong tidal cycles were supposed to drive the polyp extrusion of the CWC Lophelia pertusa [21]. It has
been known for decades that the Lofoten area is a region of high mesoscale activity and associated to
the amplification of eddy kinetic energy currents, i.e., [103]. The tidal forces mainly impacting the area
are the semidiurnal lunar and solar tides and, although a factor smaller, by the diurnal lunar and solar
ones (i.e., [102]). Despite the high variability in the circulation pattern within the area, the impact of
hydrodynamics on the short-term behavior of the bubblegum coral seems to be limited, and, because of
that, no deeper analysis was conducted on time series of oceanographic data.

Our results suggest a synchronization of Paragorgia polyps’ activity upon solar background
illumination rather than tides. High-energy monochromatic blue radiation is still present even at
depths greater than 250 m (depending on local turbidity conditions [103]). The benthic community
at the LoVe deployment area may therefore be influenced by solar light-driven intensity variations.
Our reported polyps’ activity could be related to the 24-h intermittent presence and absence of predators
(e.g., pelagic amphipods and euphausiids; [104]) that could be visually lurking on the coral surface
at a specific moment of the day-night cycle. Nudibranchs, snails and sea-stars are also predators of
deep-sea gorgonian corals [105]. Their presence activity may progressively increase over the seabed at
daytime in our study site, affecting Paragorgia’s behavior.

In this scenario, the applied multivariate statistic ANN modelling approach demonstrated a
non-linear dependence of Paragorgia polyp extrusion in relation to some combination of oceanographic
variables. Bloating was correlated with chlorophyll concentrations over consecutive months as a
proxy for seasonality (see Figure 13), which cannot be confirmed here for the lack of longer time
series of biological data. Sherwood et al. [106] identified that that a main food source for CWC is
fresh phytodetritus. Fresh chlorophyll inputs can be transported to deep-sea canyon areas by tidal
pulses on a 24-h basis and high concentrations can be detected below photic and despotic areas [107].
Furthermore, during the study period, polyp extrusion activity (i.e., the bloated status likely associated
to filtering) increased from March to June being associated with an incremental increase in chlorophyll
concentration. This would agree with previous observations on shallow water octocorals, where polyp
extrusion rates seasonally fluctuated depending on overall food inputs [108–110].

5. Conclusions

Our results reaffirm that unexplored underwater environments can be analyzed with the help
of traditional computer vision approaches combined with deep learning approaches. In doing so,
we established a model for the development of highly integrated pipelines for the extraction of biological
information from times series images and consequent online treatment of multidisciplinary information
at cabled observatory infrastructures. The computer vision approaches for the improvement and
enhancement of underwater image quality plays an important role that, when combined with techniques
aimed at the classification of relevant subjects, can produce relevant operational advances in the
ecological monitoring capability of cabled observatories.
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