
Original Research Article

Educational and Psychological
Measurement

2024, Vol. 84(1) 5–39
� The Author(s) 2023

Article reuse guidelines:
sagepub.com/journals-permissions

DOI: 10.1177/00131644231155804
journals.sagepub.com/home/epm

The Impact of Measurement
Model Misspecification on
Coefficient Omega Estimates
of Composite Reliability

Stephanie M. Bell1, R. Philip Chalmers1

and David B. Flora1

Abstract

Coefficient omega indices are model-based composite reliability estimates that have
become increasingly popular. A coefficient omega index estimates how reliably an
observed composite score measures a target construct as represented by a factor in
a factor-analysis model; as such, the accuracy of omega estimates is likely to depend
on correct model specification. The current paper presents a simulation study to
investigate the performance of omega-unidimensional (based on the parameters of a
one-factor model) and omega-hierarchical (based on a bifactor model) under correct
and incorrect model misspecification for high and low reliability composites and dif-
ferent scale lengths. Our results show that coefficient omega estimates are unbiased
when calculated from the parameter estimates of a properly specified model.
However, omega-unidimensional produced positively biased estimates when the pop-
ulation model was characterized by unmodeled error correlations or multidimen-
sionality, whereas omega-hierarchical was only slightly biased when the population
model was either a one-factor model with correlated errors or a higher-order
model. These biases were higher when population reliability was lower and increased
with scale length. Researchers should carefully evaluate the feasibility of a one-factor
model before estimating and reporting omega-unidimensional.
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A reliability estimate known as coefficient omega represents the proportion of var-

iance in a composite score (calculated by summing or averaging item scores)

explained by a latent variable, or factor, that is common to all items comprising the

composite (McDonald, 1999; Zinbarg et al., 2006). Omega estimates have become

more popular, largely due to a sizable literature advocating for the use of omega for

reliability estimation instead of coefficient alpha (e.g., Dunn et al., 2013; Graham,

2006; McNeish, 2018; Watkins, 2017). Although this literature describes the unten-

ability of essential tau-equivalence and independent errors underlying coefficient

alpha, another concern is researchers’ tendency to equate the classical test theory

(CTT) true score with a construct score. As Borsboom (2005) and Borsboom &

Mellenbergh (2002) have explained, the expected value definition of the CTT true

score does not imply that true scores are determined by a single systematic source of

variance (i.e., a single construct or latent variable; also see Bollen, 1989; Ellis,

2021). Consequently, although coefficient alpha may remain viable as an estimate of

true score reliability (e.g., Raykov & Marcoulides, 2017; Savalei & Reise, 2019;

Sijtsma & Pfadt, 2021), it is often an inadequate estimate of the extent to which an

observed score is a reliable estimate of a particular construct score, especially for

multidimensional composites (Green & Yang, 2015; Reise et al., 2010). Instead, as a

reliability estimate based on the common factor model, a coefficient omega index

can directly represent the proportion of observed score variance due to a single factor

intended to represent a well-defined construct, over and above nuisance variance

sources due to extraneous factors or error covariance. For this reason, McDonald

(1999) and Zinbarg et al. (2006) claimed that omega is useful as a ‘‘construct validity

coefficient’’ in addition to providing reliability information.

It is extremely common for researchers to attempt to estimate the reliability of a

composite’s total score under the implied assumption that there is a single construct

that all items in the composite have in common (i.e., there is a factor that influences

all items; see Flake et al., 2017); a coefficient omega index is meant to do just that.

Yet, the term coefficient omega does not refer to a single, specific reliability index.

Instead, coefficient omega broadly refers to a set of model-based indices which differ

according to the measurement model fitted to the items and how the target

construct—the construct that the composite is intended to measure—is represented

as a latent variable within that model. In the current paper, we examine the estimates

of different omega parameters that are each intended to represent the reliability of a

composite score as a measure of a target construct that influences all items; this

target construct may be represented by the only factor in a one-factor model, the gen-

eral factor in a bifactor model, or the higher-order factor in a higher-order model. The

methodological literature cited herein commonly defines omega indices with respect

to the parameters of these models; consequently, any investigation of the finite-

sample properties of omega estimates must draw on these population model

structures. Adapting terms from previous sources (e.g., McDonald, 1999; Zinbarg

et al., 2006), Flora (2020) refers to these versions of coefficient omega as vu (i.e.,

omega-unidimensional), vH (i.e., omega-hierarchical), and vho (omega-higher-order),
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respectively; we define population parameters for these versions of omega below.

Coefficient omega indices not addressed in the current paper include omega-total

(representing the proportion of composite variance explained by all factors in the

measurement model; Revelle & Zinbarg, 2009) and omega-subscale (also referred to

as omega hierarchical subscale, representing the proportion of subscale variance

explained by the corresponding specific factor of a bifactor model; Rodriguez et al.,

2016).

Coefficient Omega Definitions

First, define xij as the observed score on item j for individual test taker i. Then, the

test total score (or composite score) Xi for individual i is simply the sum of the item

scores, Xi =
PJ

j = 1 xij across all J items comprising the composite.1 Each version of

coefficient omega defined below represents the proportion of variance in Xi that is

explained by a single latent variable that influences each of the J items. Furthermore,

each version of coefficient omega is a function of the parameters of a factor-analytic

measurement model fitted to the xij observed item scores. Generally, we prefer a con-

firmatory factor analysis (CFA) approach over exploratory factor analysis (EFA) for

estimating coefficient omega, as CFA implies that there is stronger theory or prior

research for a given measurement model representing how the individual items are

related to the target construct (Flora, 2020; Zinbarg et al., 2006).

Omega-Unidimensional

In its original form, coefficient omega (McDonald, 1999) is a reliability estimate

based on the CTT congeneric model (also see Jöreskog, 1971). The congeneric model

for the item scores can be expressed as a one-factor model with

xij = ljfi + eij,

where lj is the factor loading for item j, fi is the unobserved factor score for individ-

ual i, and eij is the error term. Omega-unidimensional represents the proportion of

composite score variance attributable to the single factor. If the one-factor model is

identified such that VAR(f) = 1, then

vu =

PJ
j = 1 lj

� �2

s2
X

,

where s2
X is the variance of the composite score X. If the factor loadings are equal

across items (l1 = l2 =. . .= lJ; that is, essential tau-equivalence) and the eij error

terms are independent, then vu is equivalent to coefficient alpha (Green & Yang,

2009a).

A CFA approach to the estimation of vu allows the specification of non-zero cov-

ariances among the item errors, which in turn impacts the model-implied s2
X in the
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denominator of vu. In practice, researchers may specify non-zero error covariances

to capture method artifacts (e.g., excess covariance among items due to contextual

effects or similar wording; see Green & Yang, 2009a). Consequently, the model-

implied composite score variance is

s2
X =

XJ

j = 1

lj

 !2

+
XJ

j = 1

VAR ej

� �
+
XJ

j = 1

COV ejej0
� �

,

if VAR(f) = 1 as above. If the error covariances are fixed to 0, as is often the case,

then the model-implied composite score variance reduces to

s2
X =

XJ

j = 1

lj

 !2

+
XJ

j = 1

VAR ej

� �
,

which is a common formula for s2
X presented in articles on coefficient omega.

Clearly, however, model misspecification in the form of ignoring true, non-zero error

covariances will lead to inaccurate estimates of vu if vu is calculated using the latter

formula for model-implied s2
X (Yang & Green, 2010).

Furthermore, composite unidimensionality is a strong assumption for vu. If a one-

factor model is not the true data-generating model for the item scores, then fitting a

one-factor model to sample data will likely produce vu estimates that are inaccurate

representations of composite reliability with respect to the measurement of a factor

that influences all items despite the presence of population-level multidimensionality

(hence the motivation for vH, defined below). In the current study, we investigate the

effect of misspecifying a one-factor model for a multidimensional composite, as well

as the effect of ignoring true error covariances when estimating vu with a one-factor

model.

Kelley and Pornprasertmanit (2016) suggest that vu estimates are robust to model

misspecification when s2
X is instead estimated as the observed variance of X, and their

simulation found support for this conjecture under minor model misspecification.2

However, we expect that more substantial misspecification, such as ignoring true error

covariances, will produce biased vu estimates even when s2
X is estimated using the

observed variance of X because ignoring error covariance will also have some impact

on the factor loading estimates in the numerator of vu. Therefore, the current study

also compares omega estimates as a function of whether the denominator is calculated

using observed composite variance or model-implied variance.

Omega-Hierarchical

Tests designed to measure a single target construct often have a multidimensional

structure. This multidimensionality is often intentional, as when a test is designed to

produce subscale scores in addition to a total score. In other situations, the breadth of

the construct definition or aspects of item formats (e.g., wording effects) can produce
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unintended multidimensionality, even if a general target construct that influences all

items is still present. In these situations, the one-factor model is unlikely to explain

the item-level data adequately, implying that vu is an inappropriate measure of how

reliably the total score from a multidimensional test measures the target construct.

A bifactor measurement model is often advocated for representing multidimen-

sionality within composite intended to measure a single, general construct (e.g.,

Rodriguez et al., 2016; Zinbarg et al., 2006). The bifactor model for item score xij

can be written as

xij = ljggi + ljkski + eij,

where gi is the score for individual i on a general factor g that influences all items in

the composite and ski is the score on the specific factor k that influences item j.

Whereas the general factor loadings ljg are freely estimated for all J items in the

composite, each specific factor (also known as a group factor) influences only a sub-

set of items such that factor loadings ljk for specific factor k are freely estimated for

a predetermined subset of items (e.g., items within a proposed subscale) and fixed to

0 for all other items. For model identification, the general and specific factors are

orthogonal (Yung et al., 1999) and the variance of each factor is fixed to 1.

A version of coefficient omega known as omega-hierarchical, or vH, is a function

of the parameters of a bifactor model fitted to the items comprising a composite and

represents the proportion of composite score variance that can be attributed to the

general factor (Rodriguez et al., 2016; Zinbarg et al., 2006):

vH =

PJ
j = 1

ljg

 !2

s2
X

:

Thus, the formula for vH is nearly the same as that for vu, except now the numera-

tor is a function of the general factor loadings. Furthermore, the denominator again

represents the composite score total variance which can be estimated from either the

model-implied total variance or the observed variance of X. The bifactor model-

implied total variance is a function of the general factor loadings, specific factor

loadings, and the item error variances (and potential error covariances).

Given our earlier comment that omega-unidimensional (vu) is likely to be an inac-

curate measure of reliability with respect to the measurement of a single factor influ-

encing all items in a multidimensional composite or a unidimensional composite

characterized by (ignored) error covariance, the current study also investigates the

accuracy of omega-hierarchical (vH) estimates when the data-generating population

model is a bifactor model (correct model specification for vH), a one-factor model

with population-level error covariances (a misspecified model for vH), or a higher-

order model (another misspecified model for vH); despite differing factor structures,

each of these population models is still characterized by having a factor that influ-

ences all items. Next, we define omega-higher-order to obtain a correct population
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omega for the higher-order factor structure against which to compare vH estimates

obtained by fitting a misspecified bifactor model to data from a higher-order popula-

tion model.

Omega-Higher Order

Although vH is often recommended as a reliability estimate for the measurement of a

target construct influencing all items in a multidimensional composite (e.g., Green &

Yang, 2015; Reise et al., 2013; Watkins, 2017), the bifactor model underlying vH

may not be the correct population model structure for a target construct influencing

all items. Alternatively, researchers may hypothesize a higher-order factor structure

such that a broad, overarching latent variable (a higher-order factor) causes individual

differences in several more conceptually narrow lower-order factors, which in turn

directly influence the observed item responses. This model can be expressed with

xij = ljk fki + eij;

where fki is an individual’s score on lower-order factor k; each lower-order factor

influences only a subset of items, such that factor loadings ljk for lower-order factor k

are freely estimated for a subset of items (e.g., items within a proposed subscale) and

fixed to 0 for all remaining items. Then, instead of allowing the lower-order factors to

freely covary with each other, each is directly regressed on a higher-order factor:

fki = gkhi + zk ,

where hi is the score on the higher-order factor, gk is the higher-order factor loading

for the kth lower-order factor, and zk is an error term. This higher-order model is

identified if there are at least three lower-order factors (Rindskopf & Rose, 1988).

Omega-higher order, or vho, is a function of the parameters of a higher-order

model fitted to the items comprising a composite and represents the proportion of

composite score variance that can be attributed to the higher-order factor. Because

the associations between the higher-order factor and the observed item scores are

mediated through the lower-order factors, vho is a function of these indirect effects;

each indirect effect of the higher-order factor on an item score is the product of the

item’s lower-order factor loading and the corresponding higher-order factor loading

(i.e., ljk*gk; Raykov & Zinbarg, 2011). Consequently,

vho =

PJ
j = 1

ljkgk

 !2

s2
X

;

with the numerator of vho equaling the squared total of the indirect effects of the

higher-order factor on the observed item scores and the denominator again represent-

ing the variance of the composite score.3
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Although the bifactor model and the higher-order model are formally related (see

Yung et al., 1999), the bifactor model’s general factor and a higher-order factor have

different interpretations: The bifactor general factor has direct effects on the item

scores with the effects of the specific factors covaried out, whereas the higher-order

factor has indirect effects on the item scores which act entirely through the lower-

order factors. Yet, a higher-order factor and a bifactor model’s general factor are both

latent variables that influence all items in a multidimensional composite and there-

fore estimates of vH may provide reasonable approximations to vho. Another aim of

the current study is to assess this possibility.

The Current Study

The purpose of each version of coefficient omega presented above is to quantify the

proportion of composite score variance due to a latent variable that influences all

items comprising the composite, with vu being a function of the parameters of a one-

factor model, vH based on the parameters of a bifactor model, and vho based on the

parameters of a higher-order model. In practice, the true measurement model for a set

of items is unknowable, and researchers must rely on a variety of model fit statistics,

comparisons of competing models, and previous evidence to support their hypothe-

sized measurement model. Yet, researchers often estimate the reliability of a compo-

site without first testing its dimensionality, which in turn can lead to misleading

estimates using either coefficient alpha or vu as researchers may often assume that

the composite score is a measure of a target construct that influences all items (see

Flake et al., 2017). This practice may be indirectly encouraged by recent resources

that facilitate the calculation of vu without the explicit estimation of a factor analysis

model (Hancock & An, 2020; Hayes & Coutts, 2020; Kelley, 2022; Pfadt, van den

Bergh, Sijtsma, Moshagen, & Wagenmakers, 2022); these implementations return

omega estimates which are implicitly based on a one-factor model (estimates of vu)

with uncorrelated error terms, regardless of whether that model adequately represents

the data.

Alternatively, other resources (Gignac, 2014; Green & Yang, 2015; Reise et al.,

2013; Rodriguez et al., 2016; Watkins, 2017) advocate estimating the reliability of a

multidimensional composite score with respect to the measurement of a general fac-

tor common to all items; that is, vH, by fitting a bifactor model to item-level scores.

Yet, other work has cautioned against the overuse of bifactor models (e.g., Bonifay

et al., 2017; Markon, 2019; Reise et al., 2016). Simulations have shown that a bifac-

tor model can produce as good or better fit statistics than the correct model when fit

to data from unidimensional, two-factor, and higher-order populations (e.g., Maydeu-

Olivares & Coffman, 2006; Morgan et al., 2015; Murray & Johnson, 2013); Bonifay

and Cai (2017) found that even when data were generated to follow random patterns,

the bifactor model had good fit to a high percentage of samples.

Therefore, it is possible that researchers will report an omega estimate based on an

incorrect measurement model and consequently reach an inaccurate conclusion about
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composite reliability. That is, the true proportion of composite score variance due to

a target construct that influences all items may be best defined by a one-factor model

(with or without error correlations), a bifactor model, or higher-order model, whereas

researchers may be likely to estimate this proportion using an omega estimate calcu-

lated from a misspecified model. As yet, the degree to which different coefficient

omega statistics differ from the proportion of composite variance due to a target con-

struct when the model is incorrectly specified is not fully known, as previous studies

on this issue are limited. Therefore, the main purpose of the current study is to inves-

tigate the impact of major model misspecification on the accuracy of vu and vH esti-

mates as measures of the proportion of composite score variance due to a factor

influencing all items. In practice, however, it may be that major model misspecifica-

tion would be detected by common model fit statistics (e.g., root mean square error

of approximation [RMSEA], comparative fit index [CFI]), thus leading researchers to

revise a hypothesized model (e.g., by freeing error correlation parameters) and then

calculate a more accurate omega estimate from the parameter estimates of the revised

model. Hence, a secondary purpose of the current study is to investigate the associa-

tions between the accuracy of omega estimates and popular model fit statistics.

Previous studies have found that omega estimates are generally unbiased under cor-

rect model specification (e.g., Yang & Green, 2010; Zinbarg et al., 2006). Zinbarg et al.

(2006) simulated data from a higher-order population model and found that vH produced

relatively unbiased estimates of the proportion of variance explained by the higher-order

factor, especially with higher values of population vho and longer composites; however,

this study did not include vu estimates and used a very low number of replications.

Yang and Green (2010) found that ignoring non-zero error covariances led to positively

biased estimates of vu, although the relative bias was only around 5% with six-item

composites and decreased to approximately 2% with a 12-item composite. Yang and

Green also simulated data from a bifactor model, but compared vu estimates from a

misspecified unidimensional model with a population analog of omega-total (i.e., the

proportion of composite variance due to both general and specific factors) rather than

vH. In the current study, we are instead interested in comparing vu estimates with popu-

lation vH to determine how well vu estimates the proportion of variance explained by a

single factor that is common to all items despite population-level multidimensionality.

To address the issues described above, the current paper presents a Monte Carlo

simulation study of the finite sample properties of coefficient omega estimates of the

proportion of composite score variance due to a single factor that influences all items

as a function of correct and incorrect model specification. Specifically, this study

investigated the following research questions:

Research Question 1 (RQ1): How well does vu estimate the proportion of

variance due to a single factor when non-zero error covariances are ignored or

the true model is multidimensional?

Research Question 2 (RQ2): How well does vH estimate the proportion of

variance due to a single factor when the true model is not a bifactor model?

12 Educational and Psychological Measurement 84(1)



Research Question 3 (RQ3): To what extent is the effect of model misspe-

cification ameliorated if the denominator of omega estimates is the observed

composite score variance instead of model-implied variance?

Research Question 4 (RQ4): To what extent is the degree of bias related to

goodness of fit statistics used to assess model fit?

Our study further considers the effects of the composite length (i.e., number of items),

magnitude of population omega, and sample size. We expected that omega estimates

calculated from a correctly specified measurement model would be unbiased, but that

unmodeled complexity (i.e., incorrectly fitting a unidimensional model to a multidi-

mensional test or incorrectly fixing all error covariances to zero) would introduce con-

siderable bias for vu estimates of the proportion of variance due to a factor common to

all items. Furthermore, we expected that vH estimates would provide reasonably accu-

rate estimates of the proportion of variance due to a factor common to all items even

when the true model is not a bifactor model (e.g., a higher-order factor model).

Method

To investigate our research questions about vu and vH estimates, a series of Monte

Carlo simulations were run using the SimDesign package in R (Chalmers & Adkins,

2020; R Core Team, 2020); all simulation code is publicly posted at https://osf.io/

k7jtz/. Sample data were drawn from multivariate normal distributions with covar-

iance structures consistent with given population CFA models using the mvrnorm

function of the MASS package (Venables & Ripley, 2002). Models were estimated

using the maximum likelihood estimator in the lavaan package (Rosseel, 2012) and

vu and vH were estimated using semTools (Jorgensen et al., 2020). The proportion

of total score variance due to the factor common to all items, which we refer to as

population reliability from here forward, was calculated for each population model

and compared with sample omega estimates for 1,000 random samples for each cell

of the study design. When non-converged or improper model solutions were obtained

for a given cell of the study design, additional replications were drawn until the total

number of converged replications with proper solutions equalled 1,000. In total, there

were four population factor structures and both a high and low reliability model were

generated for both long and short composites. Each factor model was estimated with

three sample sizes, creating a total of (4 3 2 3 2 3 3) = 48 unique cells.

Study Conditions

Sample data were generated from four population models: a simple one-factor model

with no correlated errors, a one-factor model with correlated errors, a bifactor model,

and a higher-order model; path diagrams of these models are in Figures 1 through 4.

All models were specified such that factor variances equaled 1.0; consequently, the
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population-level model-implied covariance structures were in the correlation metric.

Samples generated from the simple one-factor model were fit only to the correct

model across replications. For samples drawn from all other population models, a

simple one-factor model, a correlated errors one-factor model, and a bifactor model

were fit to the sample data. Therefore, data from the correlated one-factor and bifac-

tor population models were fit to a correctly specified model as well as two incor-

rectly specified models, while data from the higher-order populations were fit only

to incorrectly specified models.

For each population model structure, there were two conditions of population

reliability (i.e., population omega) determined as a function of factor loading para-

meters. The high-reliability condition set population reliability to .85 while popula-

tion reliability was .60 in the low-reliability condition. Scale lengths were either

short (8 items) or long (16 items) except for the higher-order model, where scale

lengths were necessarily longer to ensure enough indicators per factor for model

identification. For the higher-order population condition, the short scale was 12 items

Figure 1. Simple One-Factor Population Model.
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Figure 2. One-Factor Population Model With Correlated Errors.

Figure 3. Bifactor Population Model.
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(three indicators per lower-order factor) and the long scale was 20 items (five indicators

per lower-order factor). We chose these values of population reliability and composite

length to be representative of situations commonly encountered in practice, as

described by Flake et al. (2017). There were three sample size conditions: N = 100,

selected to reflect what is often considered a small sample for the purpose of CFA;

N = 250, a medium-sized, commonly observed sample size; and N = 1,000, which is

typically considered a large sample for CFA.

Table 1 gives the factor loading parameter values for each model. Factor loadings

for the correlated one-factor model ranged from .493 to .837 in the high-reliability

conditions and from .493 to .624 in the low-reliability conditions. Half of the item

errors for the correlated errors model were allowed to correlate (see Figure 2), as

allowing all errors to freely correlate would have produced under-identified models.

The error correlations were small to moderate in the high-reliability conditions

(approximately .09–.31) and moderate to high in the low-reliability conditions

(approximately .19–.52). In a typical bifactor model, every item loads onto both a

general factor and a specific factor. However, preliminary simulations showed that

bifactor models with two specific factors fitted to data from the one-factor, correlated

Figure 4. Higher-Order Population Model.
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errors model could not converge consistently. Therefore, only one specific factor

capturing these error correlations was included along with the general factor when

bifactor models were fitted to data from the one-factor, correlated errors model.

The bifactor population models were specified to include two specific factors per-

taining to equal composite halves and a single general factor influencing all items

(see Figure 3). The correlated errors model fit to sample data from a bifactor popula-

tion model allowed all items within each half to correlate with one another, but not

with items from the other half of the composite. See Table 1 for population factor

loading values across the high- and low-reliability conditions.

Finally, the higher-order population model included a single higher-order factor

and four lower-order factors; four is the smallest number of lower-order factors by

which a higher-order model can be empirically distinguished from a correlated-factor

model (Rindskopf & Rose, 1988). See Table 1 for population factor loading values.

Evaluation of Results

For each replication, vu and vH estimates (i.e., v̂u and v̂H ) were calculated and com-

pared with population reliability, that is, the omega parameter of the correct, data-

generating population model (except v̂H was not calculated for data generated from

the one-factor model with independent errors given the gross over-specification of a

bifactor model for this condition). Omega estimates were calculated using both

model-implied and observed total variance in the denominator. Bias for each estimate

within each condition was calculated as the mean difference between the omega esti-

mate and population reliability:

bias(v̂) =
1

R

XR

r = 1

v̂r � vð Þ,

where R is the number of replications, v̂r is the omega estimate for replication r, and

v is the population reliability from the correct data-generating model. We assessed

precision using the root mean squared error (RMSE) for omega estimates relative to

population reliability with

RMSE v̂ð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R

XR

r = 1
v̂r � vð Þ2

r
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bias v̂ð Þ2 + VAR v̂ð Þ

q
:

We also present side-by-side boxplots of omega estimates across conditions to

convey the estimate distributions graphically.

Results

Convergence and Proper Solutions

Table 2 shows the proportions of replications that failed to converge to a proper solu-

tion per study condition. In general, estimation of bifactor models was most likely to

produce convergence failures, regardless of population model, as bifactor models

Bell et al. 19
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fitted to data from a bifactor population had the highest error rates. Non-convergence

was mitigated by sample size, such that an increase in sample size produced fewer

errors for all conditions. The fewest errors occurred when estimating one-factor mod-

els with no correlated errors, where only three replications failed to produce proper

solutions, all from samples of N = 100.

Simple One-Factor Population Model

Table 3 shows the mean bias and RMSE of v̂u obtained from correctly specified one-

factor models with no correlated errors while the distributions of bias for each condi-

tion within each sample size are shown in Figure 5. The v̂u estimates were unbiased

on average for all conditions, with the highest bias observed in the N = 100, 16-item,

low reliability condition, where v̂u underestimated reliability by only approximately

.01 on average. The RMSE of v̂u was most strongly related to sample size and popu-

lation reliability, such that RMSE decreased as reliability and sample size increased.

Overall, given a reasonable sample size, v̂u produced good reliability estimates in the

ideal circumstance of a correctly specified one-factor model with independent errors.

Table 3. Mean Bias and RMSE of Omega-Unidimensional Estimates (v̂u) for Samples Drawn
From a Simple One-Factor Population Model.

Condition v̂S bias RMSEv̂S
v̂S bias RMSEv̂S

8 items
N = 100

High reliability .00 .02 .00 .02
Low reliability .00 .06 .00 .06

N = 250
High reliability .00 .01 .00 .01
Low reliability .00 .04 .00 .04

N = 1,000
High reliability .00 .01 .00 .01
Low reliability .00 .02 .00 .02

16 items
N = 100

High reliability .00 .02 .00 .02
Low reliability 2.01 .06 2.01 .07

N = 250
High reliability .00 .01 .00 .01
Low reliability .00 .04 .00 .04

N = 1,000
High reliability .00 .01 .00 .01
Low reliability .00 .02 .00 .02

Note. v̂S represents omega estimates calculated using the model-implied total variance as the equation

denominator; v̂S represents the estimates calculated using the observed total variance. High reliability

refers to population reliability = .85; low reliability refers to population reliability = .60.
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One-Factor Population Model With Correlated Errors

The mean bias and RSME for omega estimates from a one-factor population model

with correlated errors are shown in Table 4, and the distribution of bias with N = 250

is shown in Figure 6 (similar patterns were observed across sample sizes; see online

supplement for figures with N = 100 and N = 1,000). Estimating the correct model

yielded unbiased v̂u estimates on average, regardless of condition. Fitting a bifactor

model to the sample data resulted in v̂H estimates showing similar performance with

v̂u (calculated with correctly specified error correlations). Only the low reliability,

long test condition showed a small bias, which was approximately .01. For both v̂u

and v̂H , RMSE decreased with higher sample sizes and higher population reliability;

RMSE ranged from .02 (for v̂u) or .03 (for v̂H ) to .09 in the low-reliability condi-

tions, and from .01 to .03 when population reliability was high. Incorrect specifica-

tion of a fitted model as bifactor, therefore, produced slightly worse estimates than

the correct model in some conditions, but the overall difference was close to negligi-

ble. In general, v̂H produced reasonable estimates of population reliability when esti-

mated with data from a one-factor population with correlated errors.

Figure 5. Boxplots of Bias of vu Estimates (Using the Model-Implied Total Variance as Its
Denominator) Obtained in the Population One-Factor Model (No Correlated Errors)
Conditions.

22 Educational and Psychological Measurement 84(1)



T
a
b

le
4
.

M
ea

n
B
ia

s
an

d
R

M
SE

o
f
O

m
eg

a
E
st

im
at

es
fo

r
Sa

m
p
le

s
D

ra
w

n
Fr

o
m

a
O

n
e-

Fa
ct

o
r

Po
pu

la
ti
o
n

M
o
d
el

W
it
h

C
o
rr

el
at

ed
E
rr

o
rs

.

v̂
u

es
ti
m

at
es

(m
is

sp
ec

ifi
ed

o
n
e-

fa
ct

o
r

m
o
d
el

w
it
h

in
d
ep

en
d
en

t
er

ro
rs

)
v̂

u
es

ti
m

at
es

(c
o
rr

ec
tl
y

sp
ec

ifi
ed

o
n
e-

fa
ct

o
r

m
o
d
el

w
it
h

co
rr

el
at

ed
er

ro
rs

)
v̂

H
es

ti
m

at
es

(m
is

sp
ec

ifi
ed

b
ifa

ct
o
r

m
o
d
el

)

C
o
n
d
it
io

n
v̂

S
b
ia

s
(R

M
SE

)
v̂

S
b
ia

s
(R

M
SE

)
v̂

S
b
ia

s
(R

M
SE

)
v̂

S
b
ia

s
(R

M
SE

)
v̂

S
b
ia

s
(R

M
SE

)
v̂

S
b
ia

s
(R

M
SE

)

8
it
em

s
N

=
1
0
0

H
ig

h
re

lia
b
ili

ty
.0

7
(.
0
8
)

.0
6

(.
0
6
)

.0
0

(.
0
3
)

.0
0

(.
0
3
)

.0
0

(.
0
3
)

.0
0

(.
0
3
)

Lo
w

re
lia

b
ili

ty
.1

7
(.
1
7
)

.1
5

(.
1
6
)

.0
0

(.
0
9
)

.0
0

(.
0
9
)

.0
0

(.
0
9
)

.0
0

(.
0
9
)

N
=

2
5
0

H
ig

h
re

lia
b
ili

ty
.0

8
(.
0
8
)

.0
6

(.
0
6
)

.0
0

(.
0
2
)

.0
0

(.
0
2
)

.0
0

(.
0
2
)

.0
0

(.
0
2
)

Lo
w

re
lia

b
ili

ty
.1

7
(.
1
7
)

.1
5

(.
1
5
)

.0
0

(.
0
5
)

.0
0

(.
0
5
)

.0
0

(.
0
6
)

.0
0

(.
0
6
)

N
=

1
,0

0
0

H
ig

h
re

lia
b
ili

ty
.0

8
(.
0
8
)

.0
6

(.
0
6
)

.0
0

(.
0
1
)

.0
0

(.
0
1
)

.0
0

(.
0
1
)

.0
0

(.
0
1
)

Lo
w

re
lia

b
ili

ty
.1

7
(.
1
7
)

.1
5

(.
1
5
)

.0
0

(.
0
3
)

.0
0

(.
0
3
)

.0
0

(.
0
3
)

.0
0

(.
0
3
)

1
6

it
em

s
N

=
1
0
0

H
ig

h
re

lia
b
ili

ty
.0

9
(.
0
9
)

.0
7

(.
0
7
)

.0
0

(.
0
3
)

.0
0

(.
0
3
)

.0
0

(.
0
3
)

.0
0

(.
0
3
)

Lo
w

re
lia

b
ili

ty
.2

5
(.
2
5
)

.2
2

(.
2
2
)

.0
0

(.
0
8
)

.0
0

(.
0
8
)

.0
1

(.
0
9
)

.0
1

(.
0
9
)

N
=

2
5
0

H
ig

h
re

lia
b
ili

ty
.0

9
(.
0
9
)

.0
7

(.
0
7
)

.0
0

(.
0
2
)

.0
0

(.
0
2
)

.0
0

(.
0
2
)

.0
0

(.
0
2
)

Lo
w

re
lia

b
ili

ty
.2

5
(.
2
5
)

.2
2

(.
2
2
)

.0
0

(.
0
5
)

.0
0

(.
0
5
)

.0
2

(.
0
6
)

.0
1

(.
0
6
)

N
=

1
,0

0
0

H
ig

h
re

lia
b
ili

ty
.0

9
(.
0
9
)

.0
7

(.
0
7
)

.0
0

(.
0
1
)

.0
0

(.
0
1
)

.0
0

(.
0
1
)

.0
0

(.
0
1
)

Lo
w

re
lia

b
ili

ty
.2

5
(.
2
5
)

.2
2

(.
2
2
)

.0
0

(.
0
2
)

.0
0

(.
0
2
)

.0
1

(.
0
3
)

.0
1

(.
0
3
)

N
ot

e.
B
o
ld

va
lu

es
re

p
re

se
nt

re
su

lt
s

fo
r

th
e

co
rr

ec
tl
y

sp
ec

ifi
ed

m
o
d
el

.
v̂

S
re

pr
es

en
ts

co
ef

fic
ie

nt
o
m

eg
a

ca
lc

ul
at

ed
u
si

ng
th

e
m

o
d
el

-i
m

p
lie

d
to

ta
l
va

ri
an

ce
as

th
e

eq
u
at

io
n

d
en

o
m

in
at

o
r.

v̂
S

re
p
re

se
n
ts

co
ef

fic
ie

n
t

o
m

eg
a

ca
lc

u
la

te
d

u
si

n
g

th
e

o
b
se

rv
ed

to
ta

l
va

ri
an

ce
as

th
e

eq
u
at

io
n

d
en

o
m

in
at

o
r.

H
ig

h
re

lia
bi

lit
y

re
fe

rs
to

p
o
pu

la
ti
o
n

re
lia

bi
lit

y
=

.8
5
;
lo

w
re

lia
bi

lit
y

re
fe

rs
to

p
o
p
u
la

ti
o
n

re
lia

b
ili

ty
=

.6
0
.
R

M
SE

=
ro

o
t

m
ea

n
sq

u
ar

ed
er

ro
r.

23



The misspecified, simple one-factor model produced highly biased v̂u estimates,

on average. This bias was lowest in the 8-item condition with high population relia-

bility, between .06 and .09. Bias of v̂u was much higher in low-reliability conditions,

ranging from .15 to .17 in the 8-item condition and from .22 to .25 in the 16-item con-

dition. Bias was slightly lower when v̂u was calculated using the observed total var-

iance denominator, but this improvement was not enough to produce a reasonably

unbiased estimate. Overall, v̂u showed very poor performance when correlated errors

were not correctly specified.

Bifactor Population Model

Table 5 shows the mean bias and RMSE of omega estimates from a bifactor popula-

tion model and Figure 7 shows the distributions of bias with N = 250 (see online sup-

plement for figures with N = 100 and N = 1,000). A correctly specified bifactor

Figure 6. Boxplots of Bias of v Estimates (Using the Model-Implied Total Variance as its
Denominator) by Fitted Model Specification Obtained With Samples of N = 250 Drawn From
the Population One-Factor Model, Correlated Error Conditions. Middle Panel Corresponds
to the Correct Model Specification Condition. ‘‘Simple’’ Refers to a One-Factor Model With
No Error Correlations.
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model produced relatively unbiased v̂H estimates on average. The RMSE of v̂H

decreased as population reliability and sample size increased. Overall, v̂H provided

good reliability estimates when based on a correctly specified bifactor model.

When v̂u was calculated from one-factor models with specified correlated errors,

the estimates were relatively unbiased, on average, in the high reliability, 8-item con-

dition and had a mean bias of .01 in the low reliability, 8-item condition. In the 16-

item condition, v̂u had a mean bias of .02 with high reliability; however, mean bias

fell between .11 and .12 in the low-reliability, 16-item condition, regardless of sam-

ple size. Therefore, v̂u provided good estimates of population reliability only for cer-

tain situations when calculated from a one-factor, correlated errors model fitted to

data from a bifactor population model.

When v̂u was calculated from simple one-factor models with no free error correla-

tions, mean bias fell between .08 and .10 in the high-reliability condition, with lower

bias in the 8-item condition. In the low-reliability condition, mean bias was approxi-

mately .15 in the 8-item condition and between .25 and .28 in the 16-item condition.

Figure 7. Boxplots of Bias of v Estimates (Using the Model-Implied Total Variance as Its
Denominator) by Fitted Model Specification Obtained With Samples of N = 250 Drawn From
the Population Bifactor Model. Left Panel Corresponds to the Correct Model Specification
Condition. ‘‘Simple’’ Refers to a One-Factor Model With No Error Correlations.
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Therefore, v̂u provided poor estimates of population reliability when calculated from

a simple one-factor model fitted to data from a bifactor population model.

Higher-Order Population Model

The bias and RMSE of omega estimates obtained from the higher-order population

model are in Table 6, and distributions of bias are shown in Figure 8 (see online sup-

plement for figures with N = 100 and N = 1,000). When v̂u was calculated from one-

factor models with no free error correlations, mean bias ranged from .07 to .23 across

conditions, worsened by both longer scale length and low population reliability.

However, specifying correlated errors improved the performance of v̂u such that

mean bias ranged from 2.04 to 0, with the only condition showing an average bias

greater than 0 being the low reliability, 16-item condition with N = 100. Similarly,

v̂H estimates were consistently unbiased except in the 16-item, low reliability condi-

tion with N = 100, where the mean bias of v̂H was 2.04. Thus, overall, v̂H produced

accurate estimates of population reliability when calculated from a bifactor model

fitted to data drawn from a higher-order model, and v̂u produced accurate estimates

when calculated from a one-factor model with correlated errors fitted to data drawn

from a higher-order model.

Denominators of Coefficient Omega

For all conditions, omega estimates were calculated using both the model-implied

total variance of the composite sum score and the observed sum score variance, as

explained earlier. In general, there were only small differences in omega estimates

between the two calculations. When models were correctly specified, mean bias and

RMSE were nearly identical; when omega estimates were obtained from misspecified

models, using the observed variance offered a very slight advantage over the model-

implied variance, but differences in mean bias did not exceed .03 in any cell of the

study and RMSE differences were negligible.

Relationship With Model Fit

We also investigated whether the accuracy of omega estimates corresponded to

model fit using three major model fit statistics (RMSEA, CFI, and Tucker–Lewis

index [TLI]). Because bias could be positive or negative, lower values did not neces-

sarily indicate lower bias. Therefore, we assessed the relation between the absolute

value of bias and model fit, but not direction of bias.

Table 7 shows rank-order correlations between descriptive model fit statistics and

absolute values of bias of omega estimates within each population model. In general,

results for the CFI and TLI were such that better model fit (higher fit index values)

was associated with lower bias. Correlations with CFI and TLI were relatively weak

(2.14 or weaker) when the fitted model was correctly specified, and strongest when

Bell et al. 27
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Table 7. Spearman Correlations Between Bias and Model Fit Indices.

Population model Fitted model RMSEA CFI TLI

One-factor, independent errors One-factor, independent errors .12 2.07 2.06
One-factor, correlated errors One-factor, independent errors 2.60 2.25 2.25

One-factor, correlated errors .11 2.14 2.04
Bifactor 2.10 .03 .03

Bifactor One-factor, independent errors 2.46 2.50 2.48
One-factor, correlated errors .34 2.49 2.43
Bifactor .08 2.10 .02

Higher-order One-factor, independent errors 2.90 2.74 2.68
One-factor, correlated errors .14 2.19 2.11
Bifactor .13 2.18 2.10

Note. Tabled values are Spearman correlations between each fit statistic and the absolute value of the

bias of omega estimates calculated using the model-implied total variance denominator. RMSEA = root

mean square error of approximation; CFI = comparative fit index; TLI = Tucker–Lewis index.

Figure 8. Boxplots of Bias of v Estimates (Using the Model-Implied Total Variance as Its
Denominator) by Fitted Model Specification Obtained With Samples of N = 250 Drawn From
the Population Higher-Order Model. ‘‘Simple’’ Refers to a One-Factor Model With No Error
Correlations.
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simple one-factor models were incorrectly fitted to data drawn from more complex

population model structures (from 2.25 to 2.74). Regarding RMSEA, the correla-

tions generally indicated that better fit (lower values of RMSEA) was weakly associ-

ated with lower bias, except for strong, negative correlations between RMSEA and

bias occurring when simple one-factor models were incorrectly fitted to data from

other population structures. Scatterplots of RMSEA by bias revealed strong, non-

monotonic patterns, indicating that these negative correlations occurred because of

strong negative associations with RMSEA values ranging from approximately .12

and greater, whereas when RMSEA was in a range generally indicative of good to

marginal fit (RMSEA \ approximately .10), the association between RMSEA and

bias was rather flat.

Discussion

Coefficient omega has become a popular composite reliability index, as multiple

authors have suggested that omega estimates should be broadly preferred over coeffi-

cient alpha. Yet, coefficient omega does not refer to a single reliability estimate;

instead, alternative versions of omega differ depending on the factor-analytic mea-

surement model fitted to item scores (see Flora, 2020). Specifically, the current paper

focuses on omega-unidimensional, vu, which represents the proportion of total score

variance due to the single factor of a one-factor model, and omega-hierarchical, vH,

which represents the proportion of total score variance due to the general factor of a

bifactor model. Both vu and vH measure the proportion of composite score variance

due to a single factor that influences all items; the primary aim of the current study

was to determine whether vu and vH can provide unbiased estimates of this propor-

tion when the underlying measurement model is misspecified. Our results are consis-

tent with previous studies, which indicate that omega estimates are generally accurate

under correct model specification and that misspecification leads to increased bias as

population reliability decreases (e.g., Yang & Green, 2010; Zinbarg et al., 2006).

Performance of vu Estimates

Estimates of vu calculated from a correctly specified one-factor model were unbiased

on average, regardless of composite length (8 vs. 16 items) and population reliability

(.60 vs .85), and showed good precision given an adequately large sample size (N�
250). However, v̂u tended to produce badly positively biased estimates of the propor-

tion of variance due to a single factor common to all items (a) when the population

model consisted of error correlations that were not specified as free parameters in the

fitted one-factor model and (b) when the population model was multidimensional

(i.e., either a bifactor or higher-order factor structure). These results were not surpris-

ing, but given that there are several prominent resources that facilitate calculation of

v̂u without first evaluating the suitability of a simple one-factor model for the item-

response variables (e.g., Hayes & Coutts, 2020; Kelley, 2022), it is important for the
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psychometric literature to show that this is a dangerous practice. Our results then

showed that v̂u becomes unbiased when error covariances in a one-factor model are

correctly specified.

In our one-factor, correlated errors population condition, the error correlations

were rather large, having been chosen to represent a situation where item wording

effects, such as those obtained with negatively valanced item stems (i.e., items that

would typically be reverse scored), are particularly strong. In many applied situations,

however, error correlations among item scores are much weaker (e.g., .10 or less).

When population error correlations are in this smaller range, the bias in v̂u induced

by estimating a one-factor model with independent errors should be smaller than that

obtained in the current study; yet, we expect that ignoring small, but non-zero error

correlations would still lead to some degree of potentially problematic positive bias

for v̂u.

Our results support Yang and Green’s (2010) observation that failure to specify

true correlated errors for a one-factor model will result in substantial bias for v̂u.

Yang and Green (2010) additionally reported that their omega estimates had lower

bias with longer scales under model misspecification. This result differs from our

finding that scale length exacerbated bias; however, this difference can be explained

by the degree of misspecification. In the current study, bifactor and higher-order pop-

ulation models included two specific and four lower-order factors, respectively, and

the unidimensional model with correlated errors included error correlations for half

of the items, whereas Yang and Green’s (2010) results were based on population

models which included only zero to two correlated errors or a bifactor model with

only one specific factor. In the current study, more items, therefore, produced more

complexity, overriding any stabilizing effect of adding items. The effect of scale

length then appears to depend on the degree of misspecification.

In conclusion, researchers should report v̂u as an estimate of composite reliability

only when their sample data and previous research provide strong support for the

unidimensionality of the composite, that is, when a one-factor model is supported.

Furthermore, if there are substantial error covariances among the items over and

above the common factor, it is important to account for those terms when calculating

v̂u (as demonstrated by Flora, 2020).

Performance of vH Estimates

In addition, we assessed how well estimates of vH, which is based on the parameters

of a bifactor model, represent the proportion of composite variance due to a single

factor common to all items under conditions of correct and incorrect model specifica-

tion. Previous simulations have indicated that bifactor models may be overused and

can produce good model fit statistics due to overfitting (e.g., Bonifay & Cai, 2017;

Morgan et al., 2015). Yet, our results showed that while v̂H provides unbiased esti-

mates when the bifactor model is correctly specified, v̂H also tends to provide a rela-

tively unbiased estimate of the proportion of composite variance due to a factor
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common to all items when the population model is either a one-factor model with

correlated errors or a higher-order factor model. This finding confirms results in

Zinbarg et al. (2006) showing that v̂H produced relatively unbiased estimates of the

proportion of variance explained by a higher-order factor; we extended the findings

of Zinbarg et al. by including a one-factor, correlated errors population model.

The ability of v̂H to provide minimally biased estimates of vho (the proportion of

composite variance due to a population higher-order factor) is especially noteworthy

given the conceptual and empirical difficulty of distinguishing between a bifactor

model and a higher-order model. Yung et al. (1999) showed that the higher-order

model is formally nested within a bifactor model and that a bifactor model can be

made equivalent to a higher-order model using a set of proportionality constraints on

the factor loadings (based on the transformation proposed by Schmid & Leiman,

1957). But Yung et al. also emphasized that the interpretation of a higher-order fac-

tor as a ‘‘superordination’’ factor (i.e., a factor with indirect effects on items) is dis-

tinct from the ‘‘breadth’’ conceptualization of the general factor in a bifactor model

(i.e., a factor with direct effects on all items). Nonetheless, both conceptualizations

involve a factor that influences all items in a composite (either directly or indirectly)

and our results show that v̂H provides reasonable estimates of the proportion of com-

posite variance due to this factor, even when the factor is incorrectly specified as a

‘‘breadth’’ factor instead of a ‘‘superordination’’ factor.

Observed Versus Model-Implied Variance. In that each version of coefficient omega con-

sidered herein is a measure of the proportion of composite score variance explained,

another research question for the current study was whether there is any advantage to

calculating omega estimates as a function of observed composite variance instead of

the model-implied composite variance. Our results provided only modest support to

the claim by Kelley and Pornprasertmanit (2016) that use of observed total variance

is robust to misspecification in that estimates calculated using observed variance were

only slightly less biased than estimates based on model-implied variance in the condi-

tions with the most severe model misspecification; yet, Kelley and Pornprasertmanit

only studied minor misspecification in their simulations. Bentler (2009) suggested

that use of model-implied composite variance would lead to more efficient omega

estimates, but our results do not support this proposal, instead showing that omega

estimates based on the observed composite variance have comparable or slightly less

variation (as shown by our RMSE values) than estimates computed with the model-

implied variance.

Associations With Model Fit. Finally, we also examined the associations between com-

mon descriptive model fit statistics—RMSEA, CFI, and TLI—and the bias of omega

statistics as estimates of the proportion of composite variance due to a factor influen-

cing all items. If the bias of omega estimates is highly correlated with model fit, then

in practice, a researcher may detect model misspecification by observing a high

RMSEA or low CFI, revise the hypothesized model (e.g., by freeing error correlation
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parameters), and then calculate an appropriate omega estimate from the parameter

estimates of the revised model and could thereby avoid calculating a highly biased

omega estimate altogether. We did find modest correlations between model fit statis-

tics and bias of omega estimates, suggesting some protection against model misspe-

cification, especially when simple one-factor models were fitted to data drawn from

more complex models. But there are situations in which misspecified models still fit

sample data well, which could lead to researchers obtaining an omega estimate that

overestimates how precisely a composite measures a factor common to all items. In

addition to model fit statistics, researchers should employ theory, results of CFAs

from previous studies, and model comparison (using statistics such as the Bayesian

Information Criterion, BIC) to establish the optimal measurement model for a

composite prior to calculating an omega estimate.

Implications for Applied Research

The current findings have important implications for researchers wishing to estimate

composite reliability using coefficient omega. Here, we remind the reader that

applied researchers are often interested in determining how reliably a composite

measures a target construct, which can be represented by a factor in a factor-analysis

model and does not necessarily correspond to the CTT true score (Borsboom, 2005).

In the current study, we investigated how well different forms of coefficient omega

estimate the proportion of total composite variance that is due to a factor that influ-

ences all items in a composite as a function of model misspecification. In other

words, we investigated how well omega estimates the reliability of a composite as a

measure of a common factor. The high bias of v̂u with data drawn from complex

population factor structures (i.e., models with error correlations, bifactor models, and

higher-order models) emphasizes the importance of investigating the fit and feasibil-

ity of a simple one-factor model before calculating v̂u. If a one-factor model is

rejected, then researchers may respecify the model to free error correlation para-

meters (if justifiable based on theoretical considerations of item content) and conse-

quently obtain an improved v̂u. Alternatively, if a composite is multidimensional,

then a bifactor model may be estimated to obtain v̂H as an estimate of composite

reliability for the measurement of a general factor; v̂H should still provide a reason-

ably accurate estimate if a higher-order model is the correct population model rather

than a bifactor model.

Regarding software implementation, we used the reliability function of the

semTools package in R to obtain all omega estimates in the current study. This func-

tion automates the calculation of omega from the estimates from a CFA model previ-

ously fitted using the lavaan package, and as such, the user is required to estimate a

measurement model for the composite prior to calling the reliability function, which

will subsequently return omega values giving the estimated proportion of composite

variance explained by each factor in the CFA model. For this reason, we recommend

the general use of semTools::reliability as demonstrated in the Flora (2020) tutorial,
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as users are forced to consider an appropriate CFA model before obtaining omega esti-

mates. The ci.reliability function of the MBESS package (Kelley, 2022) calculates v̂u

without providing any indication of the adequacy of a simple one-factor model for the

composite’s items, whereas the strel function of the Bayesrel package (Pfadt, van den

Bergh, Sijtsma, Moshagen, & Wagenmakers, 2022) uses a Bayesian approach to calcu-

late v̂u while the Bayesrel::omega_fit function provides a set of model-fit statistics for

the one-factor model (see Pfadt, van den Bergh, Sijtsma, & Wagenmakers,, 2022 for

implementation with JASP software). At this time, neither MBESS::ci.reliability nor

Bayesrel::strel can account for error correlation parameters. Finally, Hayes and Coutts

(2020) present a macro for SAS and SPSS that calculates v̂u without providing any

indication of the adequacy of a simple one-factor model.

A more encouraging result from our study is that v̂H provides relatively accurate

estimates of the proportion of composite variance due to a factor influencing all

items, even when the true factor structure is characterized by a higher-order model or

a one-factor model with strong error correlations rather than a bifactor model. Thus,

despite the tendency of a bifactor model to have good fit to data generated from dif-

ferent population models, use of v̂H as a composite reliability estimate may still be

generally viable in situations where a composite is characterized by multidimension-

ality, yet researchers still are interested in the composite as a measure of a general

construct underlying all items. Flora (2020) explains how the semTools::reliability

function will return v̂H as the omega estimate for the general factor based on a bifac-

tor CFA model fitted with lavaan.

Alternatively, output of the omega function of the popular R package psych

(Revelle, 2022) provides a statistic labeled ‘‘omega hierarchical’’ which is calculated

by (a) fitting a EFA model (with three factors by default) to the item-level data, (b)

rotating the factors obliquely and determining higher-order factor loadings from the

inter-factor correlation matrix, (c) applying the Schmid-Leiman transformation to

obtain an exploratory bifactor model, and finally (d) calculating an omega index as a

function of the resulting general factor loadings. Thus, psych::omega is an attractive

option for researchers who determine that a simple unidimensional model is not

appropriate for their composite but are not able to specify a theoretically informed

CFA model. Nevertheless, we caution that the omega-hierarchical statistic provided

by psych::omega does not correspond to the v̂H statistic studied herein because it is

based on (a) the estimates of an EFA model (i.e., a completely free factor pattern

and consequent rotational indeterminacy) rather than a more restricted CFA model

and (b) a restricted bifactor structure that is equivalent to a higher-order structure

due to use of the Schmid-Leiman transformation. Cho (2022) reports promising

results for omega estimates based on EFA parameter estimates.

Limitations and Directions for Future Research

This study investigated the accuracy of omega estimates under a range of conditions;

however, as with all simulation studies, there are omitted conditions which should be
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addressed by future studies. Although correct versus incorrect model specification

was the primary independent variable of our design, this manipulation was con-

strained to selection of an incorrect model type (i.e., one-factor models with and with-

out error correlations, bifactor model, or higher-order model). The effect of more

minor misspecification—for example, failing to model cross-loadings or small corre-

lated errors within a bifactor model—was not addressed. Further studies should verify

and expand on these findings by examining different types and degrees of misspecifi-

cation. In addition, although the current study involved generating data from a

higher-order population model to compare v̂H estimates with population vho, we did

not also calculate v̂ho estimates; thus, future research should investigate finite-sample

properties of v̂ho under both a correctly specified higher-order model and misspeci-

fied models.

Next, we generated data from the multivariate normal distributions implied by our

population model specifications. This procedure allowed us to examine the effects of

model misspecification (as well as scale length and strength of population omega)

without the confound of categorical versus continuous responses. In practice, many

composites are comprised of binary or ordered, categorical item response variables

which are best modeled with a categorical variable methodology, such as by fitting

CFA models to polychoric correlations. In these situations, estimates of coefficient

omega should be adapted to enable the CFA model’s estimates to be properly scaled

into the composite’s observed total score metric (see Flora, 2020; Green & Yang,

2009b; Yang & Green, 2010). Therefore, important expansions on the current findings

will be to investigate the performance of omega estimates for both continuous and

categorical item–response variables under additional conditions of misspecification.

Conclusion

Numerous authors have advocated for the regular use of coefficient omega to esti-

mate composite reliability in place of more traditional indices such as coefficient

alpha, despite that there is relatively little simulation evidence about the finite sample

properties of different forms of coefficient omega. Many of these recommendations

focus on omega-unidimensional and pay little heed to its dependence on the adequacy

of a one-factor model for item-level data; similarly, omega-hierarchical is based on

the parameters of a bifactor model, but it has been shown that misspecified bifactor

models often fit item-level data well. The current paper presents a simulation study

indicating that omega-unidimensional and omega-hierarchical provide unbiased esti-

mates of the reliability of a composite with respect to the measurement of a target

construct when the fitted factor model is correctly specified. However, under misspe-

cification, omega-unidimensional provided strongly biased estimates of the reliability

of a composite as a measure of a factor common to all items and should therefore

only be used in the case of a single-factor congeneric model, with care taken to

account for potential error correlations among items. Omega-hierarchical, however,

provided relatively unbiased estimates of composite reliability with respect to a
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general factor influencing all items, even when the population model was a higher-

order model or a one-factor model with correlated errors. Researchers who wish to

use estimate reliability using omega should therefore take care to ensure adequate

sample size (N� 250) and carefully factor analyze their results to select the best

model, based not only on fit indices but also on theory and previous evidence.
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Notes

1. The results presented herein generalize if Xi is instead defined as the unweighted mean of

the item scores.

2. When is s2
X estimated using the observed composite variance, Kelley and

Pornprasertmanit (2016) refer to the resulting statistic based on the one-factor model as

hierarchical omega, which is not to be confused with vH, the omega-hierarchical para-

meter, which is based on the parameters of a bifactor measurement model, as defined

later.

3. Raykov and Zinbarg (2011) refer to this version of omega, ‘‘the proportion of total scale

score variance that is accounted for by the general factor, which could be viewed as com-

mon to all components,’’ as omega-hierarchical, despite that their presentation is based on

a higher-order model instead of a bifactor model.
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