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Abstract: Whole-body center of gravity (CG) movements in relation to the center of pressure (COP)
offer insights into the balance control strategies of the human body. Existing CG measurement meth-
ods using expensive measurement equipment fixed in a laboratory environment are not intended
for continuous monitoring. The development of wireless sensing technology makes it possible to
expand the measurement in daily life. The insole system is a wearable device that can evaluate
human balance ability by measuring pressure distribution on the ground. In this study, a novel
protocol (data preparation and model training) for estimating the 3-axis CG trajectory from vertical
plantar pressures was proposed and its performance was evaluated. Input and target data were
obtained through gait experiments conducted on 15 adult and 15 elderly males using a self-made
insole prototype and optical motion capture system. One gait cycle was divided into four semantic
phases. Features specified for each phase were extracted and the CG trajectory was predicted using a
bi-directional long short-term memory (Bi-LSTM) network. The performance of the proposed CG
prediction model was evaluated by a comparative study with four prediction models having no
gait phase segmentation. The CG trajectory calculated with the optoelectronic system was used
as a golden standard. The relative root mean square error of the proposed model on the 3-axis of
anterior/posterior, medial/lateral, and proximal/distal showed the best prediction performance,
with 2.12%, 12.97%, and 12.47%. Biomechanical analysis of two healthy male groups was conducted.
A statistically significant difference between CG trajectories of the two groups was shown in the pro-
posed model. Large CG sway of the medial/lateral axis trajectory and CG fall of the proximal/distal
axis trajectory is shown in the old group. The protocol proposed in this study is a basic step to have
gait analysis in daily life. It is expected to be utilized as a key element for clinical applications.

Keywords: center of gravity; balance; insole system; gait analysis; gait phase classification; feature
engineering; bi-directional long short-term memory

1. Introduction

Dynamic stability of human movement is achieved through balance control in the
contribution of visual, vestibular, and somatosensory inputs [1,2]. Coordinated movement
of body segments that minimizes the displacement of the whole-body center of gravity
(CG) is a motor mechanism that restores balance by controlling the imbalanced state where
CG is located outside the base of support [3]. The relative motion of the CG to the base of
support is usually described by relating them to the interactions of CG and the center of
pressure (COP) [4,5]. A joint assessment of CG and COP provides a complete evaluation of
dynamic balance control [5,6]. CG stability decreases with increasing age due to a decrease
in postural control ability to restore balance. The reduced balance in the elderly is a major
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cause of falls during walking [7,8]. Therefore, gait analysis in elderly healthy can make
early screening for degenerative gait disorders and gait imbalance [9].

There are two common methods used to calculate the CG trajectory: (1) kinematic
method based on an optical motion capture system, and (2) kinetic method using a force
platform [10,11]. With the kinematic method, a number of optical markers are attached
to anatomical landmarks. Each segment’s CG is calculated based on three-dimensional
trajectories and an anthropometric model. The entire body CG is calculated by a weighted-
sum average of separate segment CGs. CG trajectory calculation with the kinetic method is
based on Newton’s second law. The sum of external forces acting on a body is expressed
as the product of the mass and acceleration of the body. CG trajectory is calculated
using double integration of acceleration with a determination of integration constants and
appropriate estimation of initial conditions. Although these two methods can calculate
CG trajectory with high accuracy, they have limitations of requiring expensive laboratory
equipment and highly skilled operator [12–14]. Particularly, there is an inconvenience for
subjects with the kinematic method since they have to walk with multiple markers attached.
With the kinetic method, restricted measurements are made for a few steps for a limited
number of force platforms fixed on the floor.

Recent advances in wireless sensor technology have made it possible to measure
daily life motions without space constraints using inexpensive sensor devices. Inertial
measurement units (IMU) and smart insole systems are representative wearable sensor
devices that have the advantage of being able to analyze human body motion using real-
time temporal information [15]. IMU that measures acceleration, angular velocity, and
magnetic field in three planes has been used in various studies to estimate CG trajectory
using strapdown integration or inertial sensors network [16,17]. Due to the inconvenience
of inertial sensors network that requires constructing a kinematic model by wearing IMUs
on each body segment, strapdown integration of the signal obtained by the IMU attached to
the surface of the fifth lumbar vertebra or the first sacrum close to the human body CG has
been preferred [18]. IMU-based CG trajectory estimation methods have been continuously
improved with sensor-fusion algorithms to compensate for the shortcomings of every
single sensor. Nevertheless, IMU has shortcomings in the measurement of direct ground
reaction force. An insole system is an unobtrusive wearable sensor for measuring ground
reaction force and gait parameters [19]. Plantar pressure distribution measured by the
insole system can reflect the dynamic balance control. It has been used in various fields
of rehabilitation and exercise analysis [20–22]. In particular, inclination angles between
COP and CG shows their relationship in a rate of angle change that describes the body’s
dynamic control during locomotion. It can be used as quantitative information to evaluate
the static or dynamic balance of the human body [23].

Despite the high correlation between the pressure information of an insole system and
the CG, there is no direct equation to calculate the CG. This problem can be solved by using
machine learning techniques. Machine learning is a powerful tool that can predict output
values when a new input is given by iteratively training the target function to best map the
relationship between input and output variables from multiple datasets [24]. Therefore,
model performance can be improved by preparing input data to have a high correlation
with output. As a representative example of data preparation, a method of temporally
segmenting input data is used. Segmentation by signal and image characteristics can label
the data and extract specialized features for each segment [25]. The availability of large
amounts of data and the improvement of computational power have made it possible to
perform high-accuracy predictions using a deep learning model composed of successive
layers [26]. Among deep learning models, long short-term memory networks (LSTM) with
a special structure in which the previous outputs are connected to data prediction of the
present time [27]. It has been reported that LSTM has higher computational accuracy for
time-series data than a feed-forward artificial neural network model [28]. The bi-directional
LSTM (Bi-LSTM) model has a structure in which existing LSTM nodes are connected in
forward and reverse directions. It is an improved model with better prediction performance
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for time series data by considering bi-directional information in the output layer [29]. For
time-series bio-signal data, the deep learning model is effective in dealing with correlated
signals and high deviation between subjects [30].

Although an insole system is a very efficient device for measuring human body
balance, studies that use it to estimate the CG trajectory have not been reported yet. The
purpose of this study was to present a new protocol for estimating the CG trajectory using
pressure data obtained from a low-cost wireless wearable insole system. To this end, a
wireless low-cost insole system composed of piezo-resistive sensors was fabricated and
verified, and a CG estimation protocol using the insole pressure measure was proposed.
A deep learning model following the proposed protocol was developed using data from
young and old healthy male groups and its performance was evaluated.

2. Materials and Methods
2.1. Low-Cost Insole Prototype

The insole device manufactured for CG trajectory prediction consisted of an insole de-
vice with nine pressure sensors and a control circuit board that could convert the measured
analog signal into a digital signal and transmit wireless data to the workstation (Figure 1).
The pressure sensor attached to the insole device was a piezo-resistive sensor (Tekscan
A301, Tekscan Inc., South Boston, MA, USA) in the form of a thin film. It has a characteristic
that resistance changes according to the pressing force. The pressure sensor was attached
to nine areas where the greatest pressure was generated during walking according to the
anatomical structure of the foot [31]. It was manufactured in three sizes in consideration of
subjects’ foot sizes (250 mm, 260 mm, and 270 mm). The control circuit board consisted
of a microcontroller unit (STM32F103C8, STMicroelectronics, Geneva, Switzerland) for
converting the measured analog signal to digital signal, a battery (3.7 V 2000 mhA) for
driving the device, a Bluetooth 2.0v module for wireless data transmission, and a number
of elements. A resistor distribution circuit was constructed to continuously measure sensor
resistance that could change according to the magnitude of the pressure. The measured
voltage was converted into a digital signal in the microcontroller unit. The converted
digital signal was wirelessly transmitted at a rate of 100 samples/s through the Bluetooth
module. The pressure measurement value of the manufactured insole was acquired using
the LabVIEW program (LabVIEW ver. 20.0, National Instruments Corp, Austin, TX, USA).

Calibration was performed to convert a sensor signal measured in voltage unit into a
pressure value. Calibrations for individual sensors were performed according to charac-
teristics of the piezo-resistive sensor with different resistance values for each sensor at the
same pressure [32]. Calibration was performed by attaching a zig device that could apply
a vertical force to a digital push-pull gauge meter (DTG-100, DIGITECHCO. Ltd., Osaka,
Japan) with a built-in load cell. The sensor was placed on a digital push-pull gauge meter
fixed plate. A linearly increasing pressure was applied to measure the sensor voltage value
against the pressure. For each sensor, calibration was performed three times. Measured
values were established in the form of an exponential function using Matlab curve fitting
toolbox version R2018b (Mathworks, Natick, MA, USA).

2.2. Subjects and Experimental Protocols

For the experimental subjects of this study, 15 healthy adult males (age: 25.67± 2.01 years,
height: 172.28 ± 6.71 cm, weight: 69.59 ± 6.13 kg) and 15 healthy elderly males (age:
77.33 ± 5.80 years, height: 168.24 ± 5.59 cm, weight: 65.76 ± 5.86 kg) over 60 years of
age without history of musculoskeletal disorders were recruited. All experiments were
approved by the local ethics committee (IRB No. 2018AN0297). They were conducted
in the Biomedical Engineering Lab of Sungkyunkwan University in accordance with the
experimental protocol. Written informed consent was obtained from all participants before
the experiment. Each subject wore shoes of same design with flat sole. The shoe’s original
insole was also removed to have flat and rigid contact. Optical markers were attached
to 35 anatomical boundaries according to the modified Helen-Hayes marker set [33]. Six
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MCAM2 cameras (VICON, Oxford Metrics, Oxford, UK) driven at 120 Hz were used for
CG trajectory calculation based on the kinematic method (Figure 2). All subjects performed
warm-up exercises before participating in the experiment and they were allowed sufficient
practice walking to adapt to the experimental environment. This period allowed to make
similar insole temperature to human body, limiting drift and associated measurement
errors [34]. As for the walking speed, subjects walked at a comfortable pace that they would
normally walk [35]. Average walking speed of subjects was 1.41 ± 0.05 m/s. Participants
performed level-ground walking from a start to a finish line (straight 8 m walkway). Each
subject performed at least seven trials. The camera system and the insole system were
manually synchronized based on major gait events such as heel strike and toe-off [28].

Figure 1. (a) Overview of the insole device and placement of the sensors; (b) control circuit of the
insole system with connector, bluetooth module, microcontroller unit and switch; (c) circuit diagram
of the custom-designed insole system.

Figure 2. Overview of the experimental environment: infrared cameras receive signals of infrared
markers attached to the human body and custom designed insole system placed under the foot.
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2.3. CG Prediction Protocol

The protocol proposed in this study consisted of a data preparation process and a
model training process. The overall flow is shown in Figure 3. Input and target data
preprocessing, gait phase-based feature engineering, data augmentation, Bi-LSTM network
model, comparative study, and statistical evaluation are the processes. Each process is
described in detail in the following section.

Figure 3. Overall architecture of the proposed protocol for CG prediction using an insole system.

2.3.1. Input and Target Data Preprocessing

Data obtained from the nine pressure sensors attached to the left and right feet,
respectively, were used as input data. The 3D trajectory of the infrared marker obtained
from the motion capture system was used as the target data of the model. For pressure
sensor signals and marker trajectory data obtained during walking, high-frequency noise
was removed by applying a 4th-order butter-worth lowpass filter. Cut-off frequencies of
7 Hz and 10 Hz were applied through residual analysis, respectively [35]. For both input
and target data, time series data were extracted based on the heel strike to heel strike of the
right foot of a gait cycle. Data were normalized to 100 frames and the measured pressure
values were normalized to the subject’s weight [36].

The trajectory of the CG of the human body was calculated using the Vicon Plug-in-
Gait model (kinematic method). The calculated CG trajectory data was converted to a local
coordinate system with the middle point of double support as the origin during walking.
The anterior/posterior direction (x-axis) of the local coordinate system was selected based
on the walking direction. The proximal/distal direction was the same as the global z-axis.
The medial/lateral direction (y-axis) was set as a cross product of the proximal/distal
direction (z-axis) and the anterior/posterior direction. The calculated CG was normalized
to the subject’s leg length to remove the effect of height difference [37].

2.3.2. Gait Phase-Based Feature Engineering

Feature engineering is an important process for determining the accuracy of a model.
It is a step in which the learning model selects a feature that can perform accurate prediction
among several feature candidates [38]. As a first step, gait analysis was performed using
a pressure sensor that calculated 30 input parameters based on previous studies [39,40]
and extracted 210 features by applying a sliding window of 5 frame sizes to 7 time-domain
features (Average, Maximal, Minimum, Range, Mean absolute deviation, Kurtosis, Skew-
ness) (Figure 4). A total of 240 feature candidates were composed by adding raw data
(30 features) corresponding to the last value of each window along with extracted features.
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Figure 4. Engineered features. A total of 210 feature candidates were calculated by compounding
input parameters and feature extraction features within five windows (A/P: anterior/posterior, M/L:
medial/lateral).

Gait is a movement in which both feet cross each other’s stance phase and swing
phase. One gait cycle is defined as the heel strike of the principal leg to the next heel
strike. It is used as a reference section for intra-subject or inter-subject analysis in human
kinematics studies using gait experiments. In particular, it is possible to derive a subdivided
characteristic through a phase divided into several gait events in one gait cycle [41]. In this
study, gait phase segmentation was performed to divide the gait cycle into four phases [42]:
(1) principal foot heel strike to mid-stance, (2) principal foot mid-stance to opposite foot
heel strike, (3) opposite foot heel strike to mid-stance, and (4) opposite foot mid-stance
to principal foot heel strike based on the heel strike of the stance leg and the mid-stance
event (Figure 5). Whenever the section is changed within the gait cycle, a pole where
the CG vertical trajectory is converted appears. At this time, the conversion between the
gravitational potential energy and the kinetic energy for gait efficiency and posture control
occurs [43]. Therefore, the proposed gait phase segment enables the construction of a
predictive model suitable for changes in mechanical properties of CG. In addition, since
single support and double support are mixed in each phase (Phase 1, 3: single and double
support; Phase 2, 4: single support only), the performance of the prediction model can be
improved by selecting input feature points suitable for the phase. Heel strike and mid-stance
events were detected using a kinematic model calculated in the motion capture system. For real
applications where kinematic model calculation is impossible, an auto-classification model that
classifies gait phases by insole pressure input can be developed.

The SVM used to classify the gait phase is one of the machine learning methods that
can select the hyperplane that best distinguishes the input data set [44]. SVM is known to
be quite beneficial in gait analysis because of generalization ability even for small amounts
of data [45]. In this study, SVM was trained with 240 feature candidates as input and
gait phase labels as output. A total of 30 subjects (15 young, 15 old, 3 trials for each
subject) were used for cross-validation (CV). CV was performed five times. For each CV,
26 subjects (13 young, 13 old) were used for training, 2 subjects (1 young, 1 old) were used
for validation, and 2 subjects (1 young, 1 old) were used for the test data set. Candidates of
SVM parameters used for grid search parameter optimization were: ‘C’, {0.1, 1, 100, 1000};
‘kernel’, {‘rbf’, ‘poly’, ‘sigmoid’, ‘linear’}; ‘degree’, {1, 2, 3, 4, 5, 6}; and ‘gamma’, {1, 0.1,
0.01, 0.001, 0.0001}. Regarding hyperparameters obtained through optimization, ‘C’ = 1,
‘kernel’ = ‘rbf’, and ‘gamma’ = 0.1 were used.
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Figure 5. Description of four gait phases. A gait cycle is separated into four phases based on the
proximal/distal movement of the CG (RHS: Right heel strike, LTO: Left toe−off, LHS: Left heel strike,
RTO: Right toe−off).

Feature selection can reduce the input dimension of the predictive model to a combi-
nation of highly relevant features, thereby preventing the increase in computational cost of
the model due to unnecessary features and improving the predictive performance of the
model. As a feature selection method, mutual information (MI) was used. MI represents
the amount of information indicating the relationship between two random variables [46].
Feature selection using MI can calculate the MI of the target and all features to derive
feature ranking. The equation used for MI calculation is shown as follows:

I(X, Y) = ∑
x∈X, y∈Y

p(x, y)· log
(

p(x, y)
p(x)p(y)

)
(1)

Here, I(X, Y) represents the MI for two variables X and Y. p(x, y) denotes the joint
probability distribution function of a and b, and p(x) and p(y) denote the marginal proba-
bility distribution function. In each classified gait phase, MI with 240 feature candidates
was derived by targeting (anterior/posterior, medial/lateral, and proximal/distal) CG
trajectories in the 3-axis direction. After scaling MI values calculated for each direction
to 0~1, the average value was derived and scored and features representing each phase
were selected. Optimization was performed to select the optimal number of features using
the relative root mean square error of the CG trajectory calculated through the support
vector regressor (SVR) as the objective function. The flowchart of gait phase-based feature
engineering is shown in Figure 6.

Figure 6. Details of gait phase-based feature engineering process using support vector machine and
mutual information.

2.3.3. Data Augmentation

Data augmentation can prevent overfitting of the model and increase robustness by
increasing the amount of training data by generating pair samples. Data augmentation can
change data in magnitude and time domains. The magnitude data augmentation technique
changes the original signal intensity of time series data to confuse label characteristics,
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thereby reducing model accuracy [47,48]. Therefore, in this study, three types of time-domain
augmentation (jittering, time-warping, and pooling) techniques were applied [47,49]. Time
warping is a method of changing temporal properties of samples by distorting the time
interval between samples. Time warping based on a random smooth warping curve
generated by cubic spline with four knots at random magnitudes (µ = 1, σ = 0.2) [47].
Jittering is a method to enhance the robustness of the training model by adding white
Gaussian noise to the training data. Random noise from a Gaussian distribution with a
mean µ = 0 and a standard deviation σ = 0.03 is added to the original time series [47].
Pooling is a method to reduce the resolution without changing the length of time series
data. by averaging a pooling window. We use a window of size 3 [47].

Twenty-six subject data (13 healthy young males, 13 healthy old males) were aug-
mented and used for training. The size of the training data was 26 subjects × 3 trials ×
100 frames × 4 folds augmentation (1 raw signal, 3 augmented signals) = 31,200, 2 subjects
(1 healthy young male, 1 healthy old male, 3 trials and 100 frames for each subject) were
used for validation and 2 subjects (1 healthy young male, 1 healthy old male, 3 trials and
100 frames for each subject) were used for the test data set.

2.3.4. Bi-LSTM Network Model

To estimate the sequential CG trajectory, Bi-LSTM deep learning model specialized
for time-series data prediction was used in this study. Bi-LSTM model is a class of LSTM
model that can learn information from multiple time frames (t – n, . . . , t − 1), which is
the limit of RNN in which only the information of the previous frame (t − 1) is used for
time frame (t) prediction [29]. Bi-LSTM has a structure in which LSTM nodes are connected
in forward and reverse directions. Prediction is performed using subsequent time frame
information in addition to previous time frame information. The core prediction structure
of the Bi-LSTM model is shown in Figure 7a. The internal structure of the Bi-LSTM cell is
shown in Figure 7b. In the part shaded in red as shown in Figure 7a, learning is carried out
in each gait phase. Input passes through independent Bi-LSTM layers {64, 32} with features
selected appropriately for each phase. In the part shaded in blue shown in Figure 7a, four
arrays derived through the phase layer are combined into one to pass through the Bi-LSTM
layer {32, 32}. Data passed through the combined layer are used to predict the 3-axis CG
trajectory through the prediction layer. The array extracted through the phase layer and
the combined layer contains local features suitable for phase prediction. Prediction layer is
designed to perform 3-axis CG trajectory prediction.

Figure 7. Details of prediction model using Bi-LSTM network. (a) prediction model structure
(b) architecture of Bi-LSTM network.

Input and output data were normalized to 0 and 1 for model optimization. The
parameters used for hyperparameter optimization are ‘batch size’: {5, 10, 50}, ‘initial
learning rate’: {0.1, 0.01, 0.001}, ‘optimizer’: {‘adam’, ‘adamax’, ‘rmsprop’}, ‘batch size’: 10,
‘initial learning rate’: 0.001, ‘optimizer’: ‘adam’ were used as hyperparameters obtained
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through optimization. In addition to the optimized parameters, max epoch was 1000 in
the algorithm, sigmoid is used as the activation function, and the number of hidden units
in each layer is shown in Figure 7. For the model configuration, Keras from TensorFlow
was used. In order to limit overfitting, in addition to the already mentioned parameters,
the callback functions ‘ReduceLROnPlateau’ and ‘EarlyStopping’ provided by Keras are
used [50]. ‘ReduceLROnPlateau’ is a callback function that induces model improvement
by adjusting the learning rate when there is no model improvement. ‘EarlyStopping’
is a callback function that terminates training in advance during training if there is no
improvement in validation loss within max epoch. The model implementation used Python
3.7 version using a RTX 2080Ti GPU (4352 CUDA cores, 1665 MHz base clock speed, and
11 GB RAM).

2.4. Comparative Study

Four comparative models were designed to evaluate the performance of the gait phase-
based CG trajectory prediction model proposed in this study. Feature engineering process,
which is different between the comparative models and the proposed model, is shown in
Figure 8. Unlike the proposed models, feature engineering processes of the comparative
models did not use the segmented gait phases, input features from a whole gait cycle were
used. Model 1 (None) predicted the CG trajectory using data without feature selection
as the Bi-LSTM network input. In Model 2 (recursive feature elimination, RFE), Model 3
(mutual information, MI), and Model 4 (elastic net, ELA), CG trajectories were predicted
using features selected by applying different feature selection methods without gait phase
discrimination. Models 2–4 representing three categories of feature selection methods
(wrapper method, filtering method, embedded method) [51] were selected. Wrapper
methods use machine learning to select features according to the performance of the model.
RFE is a representative wrapper method. By calculating a feature-specific importance score
using machine learning, features with low scores are removed from the subset. This process
is repeated until the set number of remaining features is reached. The filtering method is
a method that can select features based on the statistical significance between each input
feature and target using a statistical measurement method without using a predictive
model. MI is a representative method (discussed in Section 2.3.2). The embedded method
is a mixture of wrapping and filtering methods. It is configured to perform feature selection
during the training process of the predictive model. As a representative method, elastic
net can group variables with correlation among variables from feature candidates. With
L1 regularization (lasso regression) and L2 regularization (ridge regression), elastic net
performs automatic variable selection and continuous contraction at the same time and can
select a group of correlated variables. Elastic net is a method of including the entire group
to which the variable that has a strong correlation with the dependent variable belongs in
model building.

Figure 8. The feature engineering sequence of comparative models is different from the Proposed model.

2.5. Statistical Evaluation

The performance of the SVM-based gait phase classification model was evaluated
with precision, recall, and f1 score [52]. Correlation coefficient, root mean square error
(RMSE), and relative RMSE (rRMSE) [28] were used to evaluate the performance of the
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CG trajectory calculated by the kinematic method and five predictive models. Analysis of
variance (ANOVA) was performed for statistical comparison of the error rate between each
model. Tukey test was used as a post hoc test. Significance levels were set at p < 0.05 and
p < 0.01. Performance evaluation was calculated with Python 3.7. All statistical analyses
were performed using the PASW Statistics version 18 (SPSS Inc., Chicago, IL, USA).

3. Results
3.1. Sensor Calibration and Validation

Figure 9 shows the correlation between the voltage value and the pressure value for
the representative sensor measured during the calibration process. Two measured values
showed a non-linear relationship. The relationship was established using an exponential
function. The relational formula established for each sensor showed an average correlation
coefficient of 0.98 (±0.05) and a root mean square error (RMSE) of 4.14 (±1.49) N when
compared with the actual measured pressure value. All nine pressure sensors showed a
similar trend.

Figure 9. Sensor calibration result. Sensor output-pressure versus voltage.

3.2. Input Feature Selection

Figure 10 shows a confusion matrix for gait phase classification. A test data set of
3000 frames was constructed using 30 trial data sets (5 CV × 3 trials × 2 subjects (young 1,
old 1)) consisting of a gait cycle of 100 frames. Among these three thousand data, 698, 813,
719, and 770 frames of data belonged to phases 1, 2, 3, and 4, respectively. Misclassification
occurred only when the phase was changed.

Figure 10. Confusion matrix, precision, recall, and f1 score of results of gait phase classification.
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Figure 11 shows the error rate derived from the optimization process for selecting the
optimal number of features for each phase. In Phase 1, when 10 features were used, an error
of about 10.41% was shown. Thereafter, as the number of features increased, the error also
showed a tendency to increase. In Phase 2, 13 features converged to an error rate of 10.11%.
An approximate error was calculated even when features were added. Phases 3 and 4
had the smallest errors when 14 and 15 features were used, respectively. Accordingly, the
optimal number of features according to each phase was selected and used as the Bi-LSTM
model input.

Figure 11. Relative root mean square error (%) computed during feature number optimization to use
variables as input of Bi-LSTM network.

Input feature selection results for each phase are shown in Figure 12 and Table 1.
Figure 12 shows the feature importance score based on MI feature selection for 240 feature
candidates. In each phase graph, the left 120 features mean feature candidates calculated
from the left foot and the right 120 features mean feature candidates calculated from the
right foot. In Phase 1, all features except one from the right foot were derived from left foot
features. In the case of Phase 2, all features were selected from the right foot. Among the
features of the right foot, six front foot signals and four COP components were selected. In
Phase 3, features on the left and right foot were evenly selected. The front area of the right
foot (sixth, seventh, eighth sensors and front foot) components accounted for about 60% of
the selected features. In the case of Phase 4, all 15 selected features were selected from the
left foot. Among them, the COP component occupied the most weight. Features finally
selected for each phase are shown in Table 1.

Table 1. Selected features in each phase using mutual information.

Phase Description

Phase 1

Max values about 6th sensor data of the left foot;
Moving average about 6th sensor data of the left foot;
Moving average about sum of total signals from the left foot;
Max values about 7th sensor data of the left foot;
Max values about sum of total signals from the left foot;
Max values about front foot;
signals of the left foot;
Minimum values about 8th sensor data of the left foot;
Minimum values about front foot;
signals of the right foot;
Minimum values about sum of total signals from the left foot;
Minimum values about 7th sensor data of the left foot;
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Table 1. Cont.

Phase Description

Phase 2

Max values about front foot;
signals of the right foot;
Max values about y-axis center of pressure of the right foot;
Moving average about front foot;
signals of the right foot;
Max values about 8th sensor data of the right foot;
Last data of a window from front foot;
signals of the right foot;
Max values about 7th sensor data of the right foot;
Max values about x-axis center of pressure of the right foot;
Moving average about 8th sensor data of the right foot;
Last data of a window from x-axis center of pressure of the right foot;
Max values about x-axis center of pressure of the right foot;
Moving average about 1st sensor data of the right foot;
Minimum values about rear foot;
signals of the right foot;
Minimum values about y-axis center of pressure of the right foot;

Phase 3

Moving average about sum of total signals from the right foot;
Moving average about front foot;
signals of the right foot;
Max values about front foot;
signals of the right foot;
Max values about sum of total signals from the right foot;
Minimum values about y-axis center of pressure of the left foot;
Moving average about front foot;
signals of the left foot;
Moving average about 7th sensor data of the right foot;
Moving average about 8th sensor data of the right foot;
Moving average about y-axis center of pressure of the left foot;
Minimum values about front foot;
signals of the right foot;
Last data of a window from front foot;
signals of the right foot;
Max values about 6th sensor data of the right foot;
Max values about 7th sensor data of the right foot;
Max values about 8th sensor data of the right foot;

Phase 4

Max values about x-axis center of pressure of the left foot;
Max values about y-axis center of pressure of the left foot;
Minimum values about x-axis center of pressure of the left foot;
Moving average about x-axis center of pressure of the left foot;
Last data of a window about x-axis center of pressure of the left foot;
Max values about front foot;
signals of the left foot;
Last data of a window about y-axis center of pressure of the left foot;
Moving average about 9th sensor data of the left foot;
Max values about 7th sensor data of the left foot;
Max values about 9th sensor data of the left foot;
Moving average about y-axis center of pressure of the left foot;
Minimum values about 7th sensor data of the left foot;
Minimum values about y-axis center of pressure of the left foot;
Moving average about 9th sensor data of the left foot;
Last data of a window about y-axis center of pressure of the left foot;
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Figure 12. Feature selection result. Selected features from 240 candidates are colored red.

3.3. Prediction Performance of CG Trajectory

Figure 13 shows estimated CG trajectories of three directions calculated by the kine-
matic method. The predicted trajectories are from four comparative models and the
proposed prediction model during one cycle of gait of a representative subject.

Figure 13. CG trajectories of measurement and prediction (None, RFE, MI, ELA, Proposed). (a) Ante-
rior/posterior direction; (b) medial/lateral direction; (c) proximal/distal direction.



Sensors 2022, 22, 3499 14 of 19

Figure 14 shows relative RMSE comparison results for each model in each direction
for the total subject. In the anterior/posterior direction, there was a significant (p < 0.01)
difference in the rRMSE value with the remaining models compared to the Proposed model.
The rRMSE of the Proposed model was 2.12 ± 0.13%, showing the least error. In the
medial/lateral direction, there was a significant (p < 0.01) difference in the rRMSE value
with the remaining models showing reduced error compared to None. The rRMSE was
24.08 ± 1.40% for None and 12.97 ± 1.48% for the Proposed model, showing the largest
difference. In the proximal/distal direction, the rRMSE was 12.47 ± 1.85% for the Proposed
model and 17.96± 1.06% or more for the remaining models, showing a significant difference
(p < 0.01). The rRMSE was 22.77 ± 1.08% for None, showing a difference between MI and
ELA at p < 0.01 level. These results revealed that the Proposed model, which performed all
proposed protocols, showed the lowest error rate in the prediction of three directions.

Figure 14. Average relative root mean square errors of CG prediction for five different models.

Table 2 shows the prediction results of young and old groups by model. The CG tra-
jectories prediction accuracy for each group of subjects in each model was compared based
on three performance criteria: correlation coefficient, RMSE, and rRMSE. Representatively,
with the Proposed model, correlation coefficients on anterior/posterior, medial/lateral, and
proximal/distal axes for the young subject group were 0.99 (0.99–0.99), 0.92 (0.98–0.75), and
0.92 (0.98–0.60) with RMSE of 26.73 ± 2.92 mm, 8.72 ± 1.68 mm, and 6.12 ± 0.72 mm, re-
spectively, (rRMSE: 2.13 ± 0.21%, 14.24 ± 1.72%, and 14.01 ± 1.09%). The Proposed model
showed improved prediction results in most directions. As a result of young subject CG
prediction, in the anterior/posterior direction of rRMSE, None and the RFE model showed
a significant difference with a significance level of 1% compared to the Proposed model. In
the medial/lateral direction, compared to the Proposed model, None and the RFE model
showed a significant difference at p < 0.01 and p < 0.05, respectively. In the proximal/distal
direction, all models showed a difference from the Proposed model at the significance level
of 1%. In the case of old subjects, only the Proposed model and None showed a difference
(p < 0.01) in the anterior/posterior direction, and only the Proposed model and the MI
model showed a difference at p < 0.05 in the medial/lateral direction. In the case of the old
subjects, the None model and the RFE model showed a difference in p < 0.01 compared
to the Proposed model in the anterior/posterior direction, and the MI model showed a
difference in p < 0.05. The None model showed a difference in significance level of 5%
in the medial/lateral direction and 1% in the proximal/distal direction compared to the
Proposed model.
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Table 2. Overall performance of CG prediction models.

Age Model Name

Correlation Coefficient RMSE (mm) rRMSE (%)

Anterior/
Posterior

Medial/
Lateral

Proximal/
Distal

Anterior/
Posterior

Medial/
Lateral

Proximal/
Distal

Anterior/
Posterior

Medial/
Lateral

Proximal/
Distal

Young

Model 1 (None) 0.99 (0.99–0.97) 0.91 (0.95–0.71) 0.92 (0.98–0.72) 65.01 ± 3.10 11.97 ± 1.15 9.98 ± 0.59 5.37 ± 0.55 ** 25.86 ± 2.16 ** 22.03 ± 1.65 **
Model 2 (RFE) 0.99 (0.99–0.98) 0.89 (0.95–0.66) 0.85 (0.96–0.07) 62.11 ± 8.71 11.94 ± 1.55 11.49 ± 1.44 4.99 ± 0.69** 22.71 ± 1.97 * 26.14 ± 1.87 **
Model 3 (MI) 0.99 (0.99–0.99) 0.86 (0.89–0.80) 0.92 (0.96–0.72) 33.91 ± 2.57 10.25 ± 1.02 8.96 ± 0.68 3.02 ± 0.20 19.90 ± 1.66 22.16 ± 1.43 **

Model 4 (ELA) 0.99 (0.99–0.99) 0.87 (0.89–0.80) 0.89 (0.97–0.65) 37.65 ± 2.77 10.24 ± 0.99 9.38 ± 0.70 2.73 ± 0.20 19.52 ± 1.29 21.24 ± 1.23 **
Proposed 0.99 (0.99–0.99) 0.92 (0.98–0.75) 0.92 (0.98–0.60) 26.73 ± 2.92 8.72 ± 1.68 6.12 ± 0.72 2.13 ± 0.21 14.24 ± 1.72 14.01 ± 1.09

Old

Model 1 (None) 0.99 (0.99–0.83) 0.89 (0.98–0.80) 0.85 (0.97–0.63) 84.52 ± 12.93 15.03 ± 0.99 12.41 ± 0.74 7.12 ± 1.06 ** 22.92 ± 1.76 * 23.83 ± 1.44 **
Model 2 (RFE) 0.99 (0.99–0.98) 0.91 (0.99–0.64) 0.89 (0.95–0.63) 59.64 ± 5.14 5.78 ± 1.29 7.1 ± 0.73 4.87 ± 0.43 ** 12.71 ± 2.98 16.14 ± 1.11
Model 3 (MI) 0.99 (0.99–0.98) 0.92 (0.99–0.70) 0.89 (0.98–0.71) 55.03 ± 3.46 5.06 ± 1.10 6.53 ± 0.96 4.48 ± 0.28 * 10.43 ± 2.41 14.37 ± 1.36

Model 4 (ELA) 0.99 (0.99–0.98) 0.92(0.98–0.67) 0.91 (0.98–0.59) 47.77 ± 4.73 6.20 ± 1.08 6.62 ± 0.83 3.86 ± 0.36 12.72 ± 2.33 14.68 ± 1.28
Proposed 0.99 (0.99–0.99) 0.96 (0.99–0.90) 0.91 (0.97–0.79) 25.86 ± 2.15 5.74 ± 1.08 5.39 ± 0.84 2.10 ± 0.17 11.70 ± 2.42 11.74 ± 1.27

*, significant difference (p value < 0.05) between the proposed model and model 1, model 2, model 3, or model 4.
**, significant difference (p value < 0.01) between the proposed model and model 1, model 2, model 3, or model 4.

4. Discussion

The existing CG measurement method based on a motion analysis system has a
major limitation in requiring expensive apparatuses with limited measurement volumes,
as discussed in the Introduction. In this study, with characteristic coincidence between
gait phase events and the CG trajectory peaks [53], a gait-phase-based input segmentation
and feature engineering method was proposed. Our proposed method was able to select
optimal input features for gait phase segments. The entire CG trajectory prediction protocol
was designed by using the data augmentation technique that could improve the quality
and quantity of training data and deep learning algorithm. CG trajectory was predicted
from gait pressure data of young and old group subjects measured using a self-made insole
system. CG trajectory prediction performance was validated through statistical analysis
by comparing with CG prediction models having the traditional feature selection method
with an unsegmented gait cycle.

The insole system is one of the state-of-the-art technologies used in gait analysis. In
this study, an insole system composed of nine piezoresistive sensors was manufactured
and pressure distribution was measured with gait experiments. Pressure sensors were
positioned at points where the pressure was concentrated in gait using a heat map mea-
sured with a commercial Pedar-X mobile system [31,54]. Sensors were distributed at three
zones (rear, mid, and forefoot) [55] and sequential gait events (heel strike, mid stance,
and push-off) of foot-ground interactions could be accurately measured. For the healthy
male group, CG trajectory prediction results of the Proposed model using the fabricated
insole system were satisfactory with anterior/posterior of 0.99, medial/lateral of 0.92, and
proximal/distal of 0.92 correlations (Table 2) It is difficult to interpret the exact cause of
the high prediction result due to the structure of the machine learning model where the
intermediate learning process is an unknown black box [56]. Still, the feature engineering
step to select gait phase-dependent features and the data augmentation step to create new
data patterns that have not been acquired are considered factors leading to the high pre-
diction accuracy. However, the number and location of the sensors in this study cannot be
guaranteed as an optimal arrangement for CG estimation. A more improved CG estimation
can be accomplished through hardware-oriented research studies to find the optimal sensor
location and number.

Prediction results showed that the Proposed model with gait phase segmentation had
the most accurate CG trajectory in all three planes (Figure 14). The training method by
dividing the entire input data into several temporal segments is a method mainly used
in pattern recognition and classification, which combines segments with an independent
LSTM cell to extract features that can accurately distinguish a class, thus increasing model
classification accuracy [57]. A typical segmentation method using a sliding window with a
fixed frame is generally used. However, it has been revealed as an ineffective approach
for training irregular transitions that occur in human body motions with different char-
acteristics [58]. Since there was the requirement for semantic segmentation by motions,
mid-stance and heel strike events were used as breakpoints dividing one gait cycle in this
study. Mid-stance is the moment when the hip and ankle joint center of the stance leg and
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the CG trajectory is perpendicular to the ground. At the moment, the gravity potential
energy converted from kinetic energy has the highest amount. The energy flow is reversed
as the CG moves into the front of the ground contact point [43]. Conversion to the kinetic
energy moves the human body forward along with vertical CG fall. The heel strike acts as
a mechanism that stops the CG fall of collapsing balance and turning point of gathering
gravitational potential energy. Statistically significant rRMSE of the proposed method
(Figure 12) showed that input segmentation also had an effect on improving the prediction
accuracy of the regression model, thus boosting the inherent sliding window-based featur-
ing of the deep learning model. More segmented data segmentation would be required if
patient data showing various gait patterns are added. An in-depth model training can then
be performed.

Biomechanical analysis should be able to quantitatively measure an individual’s motor
performance and represent significant differences between different subject groups [59]. It
is possible to diagnose and evaluate balance maintenance ability using various parameters
derived from CG, such as XCoM and CoMv [60]. As a study to evaluate the possibility
of biomechanical analysis using the predictive model, young and old group differences
were analyzed using the peak to valley range (PV range) [61]. PV range was quantified by
subtracting values from the peak and valley on the CG trajectory. It was used to evaluate
differences in medial/lateral and proximal/distal directions according to age (Table 3).
When average PV ranges of the young and old groups were calculated using the kinematic
method, they were significantly (p < 0.05) higher in the old group in both medial/lateral
and proximal/distal directions. The proposed prediction model also showed statistically
significant differences (p < 0.05) in medial/lateral and proximal/distal directions in the
same manner as the kinematic method showed. The large sway of the medial/lateral axis
trajectory and the fall of the proximal/distal axis trajectory shown in old group gait typical
patterns have been reported in previous studies [53,60–62], indicating the low balance
control ability. In terms of the motor control mechanism of gait, a decrease in hip abductor
muscle strength with aging can reduce the medial acceleration of CG, resulting in greater
medial/lateral CG displacement. A decrease in active braking of the plantar flexors group
for vertical CG fall can result in an increase in proximal/distal CG displacement. The
equaling statistical difference of the predictive model from the kinematic method means
that the insole-based CG predictive model can provide quantitative individual measures
and well distinguish different groups.

Table 3. Average measured and predicted CG trajectory PV ranges for age categories.

CG Trajectory PV Range (mm)

Direction Age Test Prediction

Medial/lateral
Young 45.25 ± 2.53 44.15 ± 2.64

Old 64.32 ± 2.87 61.35 ± 4.34

Proximal/distal
Young 41.36 ± 2.11 40.09 ± 3.61

Old 46.84 ± 2.72 45.22 ± 3.01

There are several limitations to overcome before applying the proposed wireless insole
system-based CG prediction model in daily life. In this study, the model was trained
using limited conditions of a gait experiment targeting healthy elderly and normal young
adults. However, it is known that gait speed, disease status, age, and gender differences
are factors affecting gait characteristics [63]. The purpose of this study was to present a
protocol for estimating gait CG using pressure data of the low-cost insole system for the
first time. A robust model validation study comprising various subject datasets presented
above is needed so that the prediction model can be used for clinical or rehabilitation
monitoring in the future. In addition, the protocol presented in this study focused on
generating optimal training input through data preparation steps so there is a limitation
in that the data training model is limited to the Bi-LSTM model. Various verified deep
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learning architectures exist, including convolutional neural networks (CNN). A future
study is needed to optimize the training and prediction process by differing various deep
learning models combined with the proposed data preparation method. Additionally,
an empirical study with a longer period of sensor measurement is required. A potential
concern with plantar pressure systems is their drift over time, which will be important
when the systems are used in real-life settings for long periods of time.

5. Conclusions

In this study, a deep learning model-based protocol for a low-cost insole-based CG
trajectory estimation was proposed. The gait phase segmentation process allows us to
effectively improve the prediction accuracy in the presented protocol. It contributed to the
improvement of the learning efficiency by selecting optimized features according to the
gait phase. When the prediction accuracy was compared with those of four comparative
models, in which the gait cycle segmentation was not performed, the Proposed model
showed the highest performance (2.12% for anterior/posterior, 12.97% for medial/lateral,
and 12.47% rRMSE for proximal/distal). This study showed that the proposed deep
learning architecture that independently trained four subdivided gait phase segments
could effectively estimate CG trajectories. The protocol proposed in this study is a basic
study for gait analysis in daily life and is expected to be utilized as a core element of
a rehabilitation monitoring system for postural control ability evaluation and balance
recovery of the elderly.
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