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In brief

Zhang et al. provide a comparative

analysis between anterior pituitary glands

(APGs) and pituitary neuroendocrine

tumors (PitNETs) at single-cell resolution.

The differentiation status of PitNETs is

evaluated, and the recurrence prediction

values of differentiation-related markers

are validated in an independent cohort of

800 patients.
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SUMMARY
Pituitary neuroendocrine tumor (PitNET) is one of the most common intracranial tumors with variable recur-
rence rate. Currently, the recurrence prediction is unsatisfying and can be improved by understanding the
cellular origins and differentiation status. Here, to comprehensively reveal the origin of PitNET, we perform
comparative analysis of single-cell RNA sequencing data from 3 anterior pituitary glands and 21 PitNETs.
We identify distinct genes representing major subtypes of well and poorly differentiated PitNETs in each line-
age. To further verify the predictive value of differentiation biomarkers, we include an independent cohort of
800 patients with an average follow-up of 7.2 years. In both PIT1 and TPIT lineages, poorly differentiated
groups show significantly higher recurrence rates while well-differentiated groups show higher recurrence
rates in SF1 lineage. Our findings reveal the possible origin and differentiation status of PitNET based on
which new differentiation classification is proposed and verified to predict tumor recurrence.
INTRODUCTION

Pituitary neuroendocrine tumor (PitNET) is one of the most

common intracranial tumors, with a prevalence of 14%–

22%.1 PitNET originates from the anterior pituitary gland

(APG),2,3 which secretes six hormones: prolactin (PRL),

growth hormone (GH), thyroid-stimulating hormone (TSH), ad-

renocorticotropic hormone (ACTH), follicle-stimulating hor-

mone (FSH), and luteinizing hormone (LH) (Figure S1A).

PitNET exhibits a series of clinical manifestations due to

excessive hormone secretion and local invasion of surround-

ing structures.4,5 The current pathological classification of

PitNET, according to the latest 2022 WHO criteria, is based
Cell Rep
This is an open access article under the CC BY-N
on histological hormone staining and the expression of three

lineage-specific transcription factors (TFs), including PIT1

(also called POU1F1), TPIT (also called TBX19), and SF1

(also called NR5A1).6 The most widely used classification in

clinical practice is the clinicopathological classification,7,8

which combines the immunohistochemistry (IHC) of three

TFs and the levels of serum hormone. The clinicopathological

classification categorizes PitNETs into PIT1 lineage (lacto-

troph, somatotroph, thyrotroph, and silent PIT1 tumors),

TPIT lineage (corticotroph and silent TPIT tumors), SF1 line-

age (gonadotroph and silent SF1 tumors), null cell, and

plurihormonal tumors. Among these types, non-hormone-

secreting PitNETs are classified as silent PIT1, silent TPIT,
orts Medicine 4, 100934, February 21, 2023 ª 2023 The Authors. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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silent SF1, or null cell tumors based on the expression of three

TFs. The present clinicopathological classification of PitNET is

listed in Figure S1B.

The primary treatment of PitNET includes surgery, medication,

and radiotherapy. Although great advances have been achieved

in recent years, the recurrence, especially the long-term recur-

rence rate (varying from 10% to 30%), remains a big challenge

in the clinic.9–12 The complete resection rate of the recurrent

tumors was significantly lower and usually leads to visual

defects and hypopituitarism, which needs lifelong hormone

replacement therapy.13 For those patients with higher risks of

recurrence, close follow-up and timely interventions should be

taken. Therefore, precise prediction of recurrence is necessary

for the individualized management of PitNET. However, the cur-

rent clinicopathological classification cannot fulfill the above-

mentioned needs, which only contains several risk factors for

recurrence, including high Ki-67 index, lactotroph adenoma in

men, silent corticotroph adenoma, and Crooke cell adenoma.6

The specific molecular markers that could precisely predict tu-

mor recurrence remain lacking.

Understanding the cellular origin and differentiation status is

fundamental for expanding and refining the current tumor classi-

fication, which may enhance its ability to predict tumor recur-

rence. The recent rapid progress in single-cell RNA sequencing

(scRNA-seq) technologies provides an opportunity to compre-

hensively understand the cellular components and regulatory

networks for heterogeneous tumors.14 For example, through

the comparative analysis of scRNA-seq data between neural-

crest-derived neuroblastoma (NB) and fetal adrenal glands, the

tumor origin of NB was mapped to the noradrenergic chromaffin

cells, of which proliferation/differentiation status have a critical

prognostic effect on NB.15 Considering the diversity in both line-

ages and hormone-producing cells, APG and PitNET are ideal

objects for scRNA-seq technologies to explore tumor origins

and differentiated status.

Several publications have reported scRNA-seq for mouse pitu-

itary,16–24 rat pituitary,25,26 human fetal pituitary,27 and human pi-

tuitary cells.28 The later study was performed on archived frozen

pituitary tissues and thus at single-cell resolution, while the data

of fresh adult human APG are limited. For tumors, one study

showed the single-cell tagged reverse transcription sequencing

data of 2,311 cells from 3 lineages of PitNETs, revealing a few

novel tumor-related genes and intra-tumor heterogeneity.29

Another two scRNA-seq studies conducted by Zhang et al.

focused on the secretion and invasion mechanism in ACTH and

silent TPIT PitNETs, respectively.30,31 One recent publication

elaborated in detail on the apoptosis-evading mechanisms in
Figure 1. Single-cell transcriptome profiling of three adult human APG

(A) Overview of the study design and workflow.

(B) Integrated UMAP plot of all 6,589 cells from three APGswith clusters outlined b

lactotrope; SOMATO, somatotrope; THYRO, thyrotrope; GONADO, gonadotrope

(C) Integrated UMAP plot of APGs with cells colored according to the expressio

SOX2).

(D) Dot plot of novel marker genes in endocrine cell types of the APG. The color r

type, and the size indicates the proportion of cells expressing the marker genes

(E) mIHC staining of S100B, SOX2, CLDN4, SOX9, and VIM in sections from an

S100BPos STEM (SOX2+ S100B+). The arrows indicate S100BNeg STEM (SOX2+
ACTH PitNETs.32 Despite these studies, an in-depth exploration

combining APG and PitNET data to identify tumor origin and dif-

ferentiation status at single-cell resolution is highly required.

Therefore, we first performed scRNA-seq on three adult hu-

man APGs and established the transcriptional landscape at

single-cell resolution. Thenwe used this unique resource to iden-

tify the transcriptional characteristics and possible origin of 21

PitNETs and use the data to classify their differentiation status.

The novel molecular markers identified in each differentiated

status PitNET were then utilized to predict tumor recurrence in

an independent cohort of 800 tumors with an average follow-

up duration of 7.2 years.

RESULTS

Single-cell transcriptome profiling of adult human APGs
Weobtained APGs from three adult donors (Figure 1A; Table S1),

and these tissues were subjected to scRNA-seq. After stringent

quality control, we obtained 6,589 cells in total, with the average

number of detected genes per cell being 2,682 and 11,643 for

the average number of detected unique molecular identifiers

(UMIs) per cell (Figure S1C; STARMethods). Based on canonical

markers, six main cell populations were separated, including

PIT1 lineage, TPIT lineage, SF1 lineage, stroma cells, immune

cells, and stem cells (Figures 1B and S1D). These cell popula-

tions were further divided into 14 clusters by unsupervised clus-

tering (LACTOHigh, LACTOMedium, PIT1_I, PIT1_II, SOMATO,

THYRO, GONADO, CORTICO, S100BPos STEM, S100BNeg

STEM, myeloid cells, lymphocytes, fibroblasts, and endothelial

cells) (Figures 1B, S1E, and S2A; STAR Methods; Table S2).

Notably, each cluster contained cells from different samples,

indicating that cell types and gene expression patterns are

broadly consistent across APG samples, and there are no

obvious donor-specific subpopulations or batch effects (Fig-

ure S2B). The hormone-secreting cells were identified within

each lineage based on the enriched gene expression levels of

well-known markers as reported previously (Figures 1C and

S2C). Some novel markers specifically expressed in each cell

type are summarized in Figure 1D.

We detected two population of cells with significantly high

SOX2 expression and further identified these cells into S100B-

positive cells (S100BPos STEM) and S100B-negative cells

(S100BNeg STEM).26,28,33 Of note, several makers that had previ-

ously been identified in the stem cells of fetal pituitaries,27 such

as CLDN4, also had enriched expression in these cells (Fig-

ure 1D). By multiplex IHC (mIHC) staining, we further verified

the colocalization of adult pituitary stem cell markers (SOX2,
s

y lineages and cells colored according to the corresponding cell types. LACTO,

.

n of classical marker genes of pituitary (PRL, GH1, TSHB, FSHB, POMC, and

epresents the scaled relative expression level of the marker genes in each cell

.

adult APG. Tissues were counterstained with DAPI. The arrowheads indicate

S100B–). Scale bars, 50 mm. See also Figures S1 and S2.
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SOX9, S100B, CLDN4, and VIM) in another APG sample, which

showed different distribution patterns of two hypothetical stem

cell clusters: (1) S100BPos STEM and S100BNeg STEM were

sparsely scattered in the parenchymal of APGs; (2) S100BNeg

STEMwere continuously distributed at the edge of Rathke’s cleft

(Figure 1E).34

Cellular diversity within PIT1 lineage cells of APGs
We noticed that two clusters of PIT1 lineage cells (PIT1_I and

PIT1_II) showed low expression of GH1, PRL, and TSHB

(Figures 1B and 1C). Particularly, PIT1_I shared several markers

with S100BPos STEM, including PITX2 and LMO4 (Table S2). In

addition, it presents the enriched expression of GATA3

(Figures 1D and S2D), a TF indicative of the poorly differentiated

PIT1 lineage PitNETs in the 2022WHO classification.6 Therefore,

we speculated that this subpopulation comprises poorly differ-

entiated PIT1 cells and could be the progenitor of hormone-

secreting cells in the PIT1 lineage (Pro.PIT1).

To support our hypothesis, we performed trajectory analysis

using scVelo and Monocle3.35,36 As we expected, these results

showed the same differentiation pattern from Pro.PIT1 in three

directions: GH-, PRL-, and TSH-secreting cells (Figures 2A,

2B, and S3A–S3C; Tables S2). We identified several genes,

such as IGFBP7, GATA3, and LRRC4C, that were downregu-

lated along differentiation (Figures 1D, 2C, and S2D). We also

identified specific markers for well-differentiated GH- and PRL-

secreting cells, including ENPP1 and NTS (Figures 1D and 2C).

Moreover, we found PIT1_II to be a transient state along the tra-

jectory from Pro.PIT1 cells to PRL-secreting cells. PIT1_II shared

several markers with both Pro.PIT1 cells (STAT3, CCNL1) and

PRL-secreting cells (NR4A1, ARC) (Figure S3D), suggesting the

earlier differentiation status of PIT1_II (Pre. Lacto).

We further reconstructed the developmental trajectory from

the fetal to the adult APG by integrating our adult APG dataset

with previously published fetal APG scRNA-seq data27

(Figures 2D and S3E). For both datasets, we identified five cell

populations of hormone-secreting cells from three lineages

and the stem cells (Figure S3F). We constructed the develop-

mental trajectories for five hormone-secreting cells and found

that the Adult.Pro.PIT1 and Adult.Pre.Lacto clusters are located

at the earlier differentiation status of adult PIT1 lineage cells and

adult PRL-secreting cells along the trajectory, respectively

(Figures 2D, S3G, and S3H). Mapping Adult.Pro.PIT1 cells

located at the entrance of the adult PIT1 lineage further validate

the root cells’ position (Figure S3I).

The presence of poorly differentiated (Pro.PIT1) and well-differ-

entiated (TSH-, GH-, or PRL-secreting) PIT1 cells was validated in

adult human APGs by mIHC staining. NTS was colocalized with

PRL-secreting cells, while ENPP1 was present in GH- and PRL-

secreting cells (Figure 2E). Among Pro.PIT1 cells, IGFBP7 and

LRRC4C were coexpressed in the cells with negative GH, PRL,

or TSHB staining but positive PIT1 staining (Figure 2F).

Single-cell transcriptome profiling of PitNET
We generated a scRNA-seq landscape for three APGs and

PitNETs from 21 patients, including 3 lactotroph, 5 somatotroph,

2 thyrotroph, 1 silent PIT1, 2 corticotroph, 3 silent TPIT, 2 silent

SF1, 1 null cell, and 2 plurihormonal tumors (Figures 3A and
4 Cell Reports Medicine 4, 100934, February 21, 2023
S4A). All tumor tissues were also fixed for histopathological

examination of canonical PitNET markers, including APG hor-

mones and TFs. Among the tumors, 12 tumors were invasive

and classified as Knosp grade37,38 3 or 4, while the Ki-67 index

of 6 tumors was greater than 3%. Only one GH-secreting tumor

(P04) had GNASmutation and one corticotroph tumor (P20) car-

ried USP8 mutation (Figure S4A). Additional sample details and

patient demographics are summarized in Table S1.

After stringent quality control, 58,348 cells were obtained, with

an average of 3,438 genes and 17,559 UMIs detected per cell

(Figure S4B). Consistent with pathological IHC, we found similar

expression patterns of PitNET classification markers (such as

GH1, PRL, and TSHB) in scRNA-seq data (Figure S4A). We inte-

grated the data of PitNET and APG cells and divided them into

29 clusters by unsupervised clustering, which could be generally

grouped into 8 cellular populations based on canonical

markers (Figures 3A and S4C; STAR Methods; Table S2). Sur-

prisingly, cells from APGs were embedded within tumor cells,

especially those from LACTOHigh, LACTOMedium, GONADO,

and CORTICO (Figures S4D–S4F and S5A). In addition, tumor

cells from the null cell tumor (P14) shared the same cluster

with tumor cells from silent SF1 tumor (P15), implying the similar-

ity between these two cell populations (Figures S4D, S4F, and

S5A). Of note, a previous study suggested that the definition of

SF1 lineage PitNETs should be extended to a partial null cell tu-

mor.39 We observed variations of the proportions of immune and

stroma cells among APG and tumor samples (Figure S5B).

The endocrine cells of each tumor showed the monoclonal char-

acteristics in both lineage composition and copy number varia-

tion state (Figures S5C and S6A). We next distinguished and

excluded the non-tumor neuroendocrine cells in PitNET samples

(Figures S5C, S6A, and S6B; STAR Methods).29,40,41

Heterogeneity of tumor stem-like cells in PitNET
The detection of cluster 21, which consisted of SOX2-expressing

cells from APGs and PitNETs, implicated the presence of tumor

stem-like cells (TSCs) in PitNETs (Figures 3A, S4C–S4F, and

S5A).42,43 We conducted mIHC staining in another two PitNET

tumor samples and showed the colocalization of multiple stem

cell markers identified in cluster 21 (VIM, SOX2, KRT19,

TROP2, and CLDN4) (Figures S6C and S6D). We also found

the exclusive expression of SOX2 and MKI67 by both mIHC

staining and scRNA-seq, suggesting that the TSCs in PitNETs

tend to be in non-proliferative state (Figure S4C).

In the APG, the SOX2-expressing cells can be divided into

S100BPos STEM and S100BNegSTEM. We wondered whether

there were similar patterns in the PitNETs. To address this ques-

tion, we performed a second round of clustering with only the

750 cells from cluster 21 and divided them into 10 clusters

(Figures S7A–S7E; Tables S2 and S3). Regrouped clusters 0, 1,

2, 3, and 9 showed the expression of S100B and S100A1, while

clusters 4, 5, 6, 7, and 8 were negative for the two markers of

S100BPos STEM (Figure S7F). We next performed a comparative

analysis to evaluate the similarity between TSCs and SOX2-ex-

pressing cells in APGs (Figure S7G). TSCs in clusters 0, 2, and 3

showed a high score of S100BPos STEM characteristics and

were named tumor S100BPos STEM-like cells. TSCs in clusters

4, 6, 7, and 8 were then named tumor S100BNeg STEM-like cells.
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Figure 2. Several differentiation statuses were identified based on the cellular diversity within APGs

(A) Partition-based graph abstraction connectivity among clusters of PIT1 lineage cells in APGs based on velocity-inferred directionality.

(B) Integrated UMAP plot of PIT1 lineage cells from APGs with cells colored by Monocle3-inferred pseudotime.

(C) Gene expression trends in particular genes along the differentiation trajectory from Pro.PIT1 toward SOMATO and LACTOHigh.

(D) Integrated UMAP plot and Slingshot developmental trajectories of integrated adult and fetal APGs with cells colored according to the corresponding cell type.

(E) mIHC staining of GH, NTS, PIT1, PRL, ENPP1, and TSHB in sections from adult APGs. Tissues were counterstained with DAPI. Scale bars, 50 mm

(F) mIHC staining of GH, IGFBP7, PRL, LRRC4C, PIT1, and TSHB in sections from adult APGs. Tissues were counterstained with DAPI. Scale bars, 50 mm. See

also Figure S3.
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TSCs in clusters 1, 5, and 9 were considered intermediate states

for showing comparable similarity with both S100BPos STEM and

S100BNeg STEM. The epithelial-mesenchymal transition (EMT)

process has been identified in stem cells of multiple cancers44

and the fetal APG.27,45 Therefore, we estimate the EMT scores

for each cell as described previously (Figures S7G and S7H). Sur-

prisingly, the epithelial and mesenchymal status of the TSCs were

mutually distributed. Tumor S100BNeg STEM-like cells exhibit a

high level of epithelial score and express epithelial markers such

as CLDN4 and KRT19. Meanwhile, most tumor S100BPos STEM-

like cells exhibit a higher level of mesenchymal score and express

mesenchymal markers such as CXCR4 and VIM (Figures S7F and

S7G).Moreover, both theepithelial andmesenchymal scoreswere

decreased in the non-TSCPitNET tumor cells, suggesting the spe-

cific role of EMT in TSCs (Figures S7I and S7J).

Comparison between the PitNET and APG clusters
uncovered novel characteristics of PitNET
To explore the tumor origin and differentiation status of PitNETs,

we evaluated the similarity and distinguished the intra-lineage

differences between the 21 clusters from the PitNETs with the

10 clusters from the APGs (Figure 3B). Cell scoring was applied

to PitNETs clusters against the top 20 DEGs of each endocrine

and stem cluster of APGs. The top DEGs were ranked according

to the specificity and expression levels in each cluster (STAR

Methods). The scores were z-scaled by row (each APG cluster)

and the top 1–3 scored APG clusters within each column were

considered the most similar and potential origin for each

PitNETs cluster. Scoring PitNETs clusters using the top 15–30

DEGs was also calculated and produced similar results.

Based on scoring, the 21 tumor cell clusters could bemerged

into 13 subtypes (Figures 3B and 3C). We named each subtype

according to its similarities to APG clusters, TF expression,

differentiation status, and predominant clinicopathological

subtypes: seven well-differentiated subtypes (PIT1_PRLHigh,

PIT1_PRLMedium, PIT1_GH + PRL, PIT1_GH, PIT1_CGA,

TPIT_Well-diff, and SF1_Well-diff); three poorly differentiated

subtypes (PIT1_Poorly-diff, TPIT_Poorly-diff, and SF1_Poorly-

diff); one stem cell cluster (SOX2_stem); and two extra sub-

types (PIT1_GH + CGA and TPIT_PAX7) (Figure 3C).

To further confirm whether the molecular characteristics of

each tumor cell cluster in the same subtype were similar, we per-

formed Spearman’s correlation and hierarchical clustering of all

PitNETs clusters, considering the transcriptomic similarities

within the 21 PitNET clusters. We found that the clusters in the

same subtype were highly consistent (Figure S8A).

Characteristics of well-differentiated subtypes
The seven well-differentiated subtypes showed similar expres-

sion patterns to those of their hypothesized origin APG clusters
Figure 3. Comparison between PitNETs and APGs revealed the possib

(A) Integrated UMAP plot of all 64,937 cells from 21 PitNETs and 3 APGs with cl

(B) Heatmap showing each PitNET cluster (columns) scored by each endocrine c

the highest scores in each PitNET cluster. The cells from APGs were excluded fr

(C) Integrated UMAP plot of cells from PitNETs with cells colored according to th

four categories (right).

(D) Heatmap shows specific genes of the 12 main subtypes. See also Figures S4
(Figure 3D; Table S2). PIT1_PRLHigh exhibited high expression

of PRL, NTS, and VGF, which were also detected in the

LACTOHigh cluster in APGs. Both LACTOMedium in APGs and

PIT1_PRLMedium express SOX4 and ANGPT1. Compared with

LACTOHigh and PIT1_PRLHigh, the PRL expression in

LACTOMedium and PIT1_PRLMedium was lower, respectively.

Several markers of SOMATO in APG, including GH1, GH2,

ENPP1, and GNAS, were also highly expressed in PIT1_GH.

PIT1_GH + PRL exhibited high expression of GHRHR, and the

common markers of LACTOHigh (TENT5A and PCK1) and

SOMATO (HES6 and RCN1) were also detected in this subtype

(Figure S8B). The high expression of CGA (the a-subunit of

TSH) was detected in PIT1_CGA, including tumor cells from clin-

ical TSH-secreting PitNETs, which was consistent with the

elevated circulating a-subunit in these patients. Well differenti-

ated TPIT and SF1 lineages also expressed the corresponding

hormone-related genes. Different endocrine cells in APG secrete

hormones in distinct patterns, which may still exist in the derived

PitNETs. The regulons of each cell were assessed using single-

cell regulatory network inference and clustering (Figure 4A;

Table S2).46 In well-differentiated subtypes, three lineage-spe-

cific regulons (PIT1, TPIT, and SF1) showed high activity, sug-

gesting that they may be involved in the biological process of

hormone secretion (Figure 4A). We tend to identify themolecules

with great contribution to these hormone secretion pathways;

we found that ENPP1, a member of ‘‘cellular response to peptide

hormone stimulus,’’ was highly expressed in all GH-secreting

cells from both APGs and PitNETs (Figures 4B and S9A). On

the other hand, NTS was significantly highly expressed in

lactotroph tumors and was also involved in ‘‘hormone activity’’

and ‘‘neuropeptide hormone activity’’ pathways (Figures 4B

and S9A).

Characteristics of poorly differentiated subtypes
We also identified three subtypes with the different molecular

characteristics of poorly differentiated PitNETs: PIT1_Poorly-

diff, SF1_Poorly-diff, and TPIT_Poorly-diff. They were named

based on two characteristics, including the close similarity to

less differentiated clusters in APGs (Pro.PIT1- or SOX2-express-

ing cells include S100BPos STEM and S100BNeg STEM) and

negative hormonal IHC staining. Each subtype had its features.

PIT1_Poorly-diff was the PitNET subtype most similar to

the Pro.PIT1 cluster in APGs, suggesting the low differentiation

status of this subtype. These two clusters shared several

markers, including IGFBP7, GATA3, and LRRC4C (Figure 3D).

SF1_Poorly-diff showed similarity to both GONADO and

S100BPos STEM clusters of APGs (Figure 3B). Compared with

SF1_Well-diff, SF1_Poorly-diff showed decreased expression

of FSHB (the b-subunits of FSH) (Figure S4C), suggesting lower

hormone secretion in this subtype. Most TPIT_Poorly-diff cells
le origin of each tumor cluster

usters outlined by cell types.

luster in the APGs (rows). Scores were z-scaled. The black rectangles indicate

om PitNET clusters.

e corresponding classifications (left). These classifications were combined into

–S8.

Cell Reports Medicine 4, 100934, February 21, 2023 7



CDH1BCL6

CITED1

ID4 NEAT1

NEUROD1 ONECUT2 TBX19 (TPIT)

N
or

m
al

iz
ed

 e
xp

re
ss

io
n

Latent time Clusters 0 14

Log2(fold change) relative to
Pro.PIT1 and Pre.Lacto in APGs

Downregulation Upregulation

Cellular fatty acids pool

Genes
PIT1_Poorly-diff vs

Pro.PIT1 and Pre.Lacto
TPIT_Poorly-diff vs

Pro.PIT1 and Pre.Lacto

−0.16 0.56

SLC2A3

0.13 0.00
HK1

0.37 0.11

HK2

0.12 0.31

PFKM

0.19 1.15

GAPDH

−1.13 0.12

ENO1
−0.08 0.40

ENO2

−0.94 0.39

PKM

0.60 1.59

LDHA
1.13 −1.52

LDHB

0.17 −0.34

SLC16A1

0.30 2.28

SREBF1

−0.04 0.41

LDLR
0.70 0.38

VLDLR

0.30 0.35

ACAT2
0.69 0.51

ACAT1

0.24 0.04

HMGCS1

0.43 −0.38

HMGCR

−0.85 1.06

NDUFAB1
−0.09 0.67

FASN
−0.12 0.54

ACSL1

0.09 0.98

ELOVL5
0.10 2.31

SCD

0.44 2.24

FADS1

TG/CE

1.41 1.16

FADS2

0.20 −0.19

ACLY

1.55 −0.14

IDH1

0.49 0.46

ABCA1
0.48 −0.16

ABCG1

1.36 2.74

DBI 1.03 −0.03

APOE

Glucose

Glucose

Glucose-6P

FBP

BPG

PEP

Pyruvate

Lactate

Lactate

Citrate

Acetyl-CoA

Oxaloacetate

HMG-CoA

MVA

Cholesterol

Long-chain fatty acids

Monounsaturated fatty acids

(Poly)unsaturated fatty acids

Isocitrate

α-KG

Glutamate

−0.16 0.50

PDHA1

Pyruvate

Acetyl-CoA

Citrate Oxaloacetate

TCA cycle

Mitochondria

0.18 −0.07

CS

Nucleus
SRE

Target genes

1.15 −0.98

FABP5

0.61 −0.40

ME1
Pyruvate

−0.20 1.04

G6PD
−0.03 0.56

PGLS

G3P

−0.13 0.39
PGD

R5P

6-phosphogluconate

0.59 −0.18

TKT
0.26 0.30

TALDO1

Fructose-6-P

Glycolysis

Pentose
phosphate
pathway

Cholesterol
biosynthesis

Fatty acid
metabolism

0.21 1.22

TECR

0.42 −0.11

SLC1A2

Glutamate

FA/Cholesterol

POU1F1(PIT1)
MZF1
VAX2
RARA
EGR3
FOXG1
HES6
HOXA5
FOXO1
HOXB4
SMAD1
KLF15
HOXB6
TFDP2
ZNF787
HOXB7
HOXB8
HOXB9
ARX
RXRG
GATA2
VSX2
ATF6B
TBX19(TPIT)
NEUROD1
ONECUT2
ONECUT1
SREBF1
LMX1A
MNX1
ASCL1
PPARGC1A
PAX7
HDAC2
PAX6
SOX2
NR5A1(SF1)
SALL2
MSX1
NR0B1
GATA3
HOXB2
TEAD3

PIT1_PRLHigh

PIT1_PRLMedium

PIT1_GH+PRL

PIT1_GH

PIT1_GH+CGA

PIT1_Poorly-diff

PIT1_CGA

SF1_Well-diff

SF1_Poorly-diff

TPIT_Poorly-diff

TPIT_Well-diff

TPIT_PAX7

Hormone activity
Neuropeptide hormone activity
NGF stimulated transcription
Positive regulation of cell differentiation
Tissue migration
Growth hormone receptor signaling
Positive regulation of IGF receptor signaling pathway
Cellular response to peptide hormone stimulus
Secretion
Regulation of mapk cascade
Cyclin D associated events in G1
Aberrant regulation of mitotic G1/S transition
Transport vesicle
Transcriptional regulation by MECP2
Cell population proliferation
Pituitary gland development
Neuron migration
GABA synthesis release reuptake and degradation
Regulation of cholesterol metabolic process
Long chain fatty acyl CoA biosynthetic process
Response to steroid hormone
Response to fatty acid
MAPK family signaling cascades
Signaling by nuclear receptors
Ligand activated transcription factor activity
Peptide hormone biosynthesis
Regulation of transmembrane transport
Regulation of membrane potential
Positive regulation of epithelial cell proliferation
Positive regulation of peptidase activity
Cellular responses to external stimuli
Cell substrate junction
Regulation of hormone levels
Endocrine system development
Hormone metabolic process
Non canonical WNT signaling pathway
G protein alpha subunit binding
Mesenchymal to epithelial transition
Steroid hormone biosynthesis

PIT1_PRLHigh

PIT1_PRLMedium

PIT1_GH+PRL

PIT1_GH

PIT1_GH+CGA

PIT1_Poorly-diff

PIT1_CGA

SF1_Well-diff

SF1_Poorly-diff

TPIT_Poorly-diff

TPIT_Well-diff

TPIT_PAX7

Lineage

Pi
tN

ET
 d

ec
on

vo
lu

tio
n

PIT1
markers

TPIT
markers

Lipid
metabolism

markers

PIT1_PRLHigh

PIT1_GH

PIT1_PRLMedium

PIT1_GH+CGA

PIT1_CGA

PIT1_Poorly-diff

TPIT_Poorly-diff

TPIT_Well-diff

SF1_Poorly-diff

SF1_Well-diff

PIT1_PRLMedium

PIT1_GH+PRL

PIT1_PRLHigh

PIT1_GH+CGA
PIT1_GH

PIT1_CGA
PIT1_Poorly-diff
TPIT_Poorly-diff

TPIT_PAX7
TPIT_Well-diff

SF1_Poorly-diff
SF1_Well-diff

SOX2_STEM

POU1F1
NR5A1
TBX19
ENPP1
NTS
IGFBP7
GATA3
ID4
CITED1
FADS1
FADS2
SCD
ACSL3
HMGCR

Gender
Size
SecretionType
HistoType

MIB1Percent
Aggressiveness

SREBF1

mRNA group

Gender
Female
Male

Size(mm)

0
10
20
30
40

SecretionType
Hyperperprolactinemia
MixedAcroHyperPRL
Acromegaly
Hyperthyroidism
Gonadotrophin
Silent
CushingOvert
CushingSubclinical
Nelson

HistoType
Lactotroph
Mixed_GH−PRL
Somatotroph
Thyrotroph
Plurihormonal_PIT−1
Gonadotroph
Null−cell
Corticotroph

MIB1Percent

0
1
2
3
4

Aggressiveness
Aggressive
Resistant
Persistent
Remission

Expression

low

Proportion

high

Low

High

mRNA group
t1
t2
t3

t4
t5
t6

UMAP1U
M

AP
2

OFF
ON

Binary activity
of regulon

Module score

low

high

C

D E

A B

(legend on next page)

8 Cell Reports Medicine 4, 100934, February 21, 2023

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
were found in silent TPIT tumors (P17, P18, and P19), which is

one of the PitNET subtypes with the worst prognosis.47–50 To

further examine the heterogeneity and differentiation status

within the TPIT_Poorly-diff subtype, we performed another

scVelo analysis including only cells of this subtype (Figure 4C).

Surprisingly, cells from each sample were distributed all along

the trajectories, with only slightly different trends. We identified

several downregulated markers during the latent time develop-

mental progression, including ID4, NEAT1, BCL6, and CDH1,

which were considered markers of the poorly differentiated

TPIT_Poorly-diff subtype (Figures 4C and S9B; Table S2).

The expression of TPIT_Poorly-diff-specific TFs, including

NEUROD1 and ONECUT2, was also elevated at the beginning

of the trajectory. On the other hand, the expression levels of

several differentiated markers, such as TBX19 and CITED1,

were elevated along the trajectory.

These three poorly differentiated subtypes also share common

features. In pathway enrichment analysis, we identified dysregula-

tion of several lipid metabolic pathways among the poorly differ-

entiated subtypes (Figure 4B). To comprehensively investigate

the metabolic reprogramming landscape, we applied scMetabo-

lism51 for both the APG and PitNETs (Figure S9C). While all SF1

lineage tumors showed elevated metabolism regardless of

differentiation status, PIT1_Poorly-diff and TPIT_Poorly-diff were

characterized by upregulated metabolism, especially lipid meta-

bolism. The relatively highly differentiated PitNET subtypes,

such as PIT1_PRLHigh and PIT1_PRLMedium, were characterized

by decreased metabolism, consistent with their hypothesized

origin cells (LACTOHigh andLACTOMedium) in theAPG (FigureS9C).

Next, we focused on the difference in lipid metabolism pathways

and themRNA levels of the correspondingmetabolic enzymesbe-

tween two poorly differentiated PitNETs, PIT1_Poorly-diff and

TPIT_Poorly-diff, and their hypothesized origin cells, Pro.PIT1

and Pre.Lacto in APGs (Figure 3B). TPIT_Poorly-diff was charac-

terized by activated regulon of sterol regulatory element-binding

TF 1 (SREBF1) (Figures 4A and 4D), which was proven to upregu-

late lipid metabolism-related pathways, including the ‘‘biosyn-

thesis of unsaturated fatty acids’’ and ‘‘fatty acid elongation’’

pathways (Figure S9C).52 Representative metabolic enzymes

such as fatty acid desaturase 1 (FADS1), fatty acid desaturase 2

(FADS2), and stearoyl-CoA desaturase (SCD) were upregulated
Figure 4. The molecular features of well and poorly differentiated PitN

(A) Heatmap showing the activity of the specific single-cell regulatory network

differentiated subtypes are highlighted in bold red font.

(B) Heatmap showing the representative pathways of the 12 subtypes. Pathway

Genes and Genomes, and REACTOME datasets. Lipid metabolic-related pathw

highlighted in bold red font.

(C) RNA velocities of TPIT_Poorly diff cells (left) and gene expression trends in part

of three silent TPIT tumors (P17, P18, and P19) shown in clusters 0 and 14 (Figu

(D) Diagram summarizes metabolic genes involved in glycolysis, the pentose phos

acid metabolism. Alterations are defined by significant upregulation or downreg

Pro.PIT1, Pre.Lacto. The alteration scores for each gene are presented as log ratio

in each subtype versus the originate group in APGs]). Red, upregulated genes; b

gene, the left is the alteration score of PIT1_Poorly-diff verse Pro.PIT1 and Pre.

Pre.Lacto.

(E) The top heatmap shows MuSiC-based deconvolution of an independent coho

clinical characteristics and signature gene expression levels. Poorly differentiated

genes was marked using red dotted rectangles. The original classes (t1–t6), as

Figures S9 and S10.
in TPIT_Poorly-diff. PIT1_Poorly-diff was characterized by en-

riched steroid biosynthesis pathways, whose upregulated repre-

sentative enzymes included acetyl-CoA acetyltransferase 1

(ACAT1), HMG-CoA reductase (HMGCR), and apolipoprotein E

(APOE) (Figure 4D).

We validated these results in an independent cohort reported

by Neou et al.39 Using multisubject single-cell deconvolution (Mu-

SiC),53 we determined the proportions of the above-mentioned

subtypes (Figures 3B and 3C) in the 134 samples and divided

them into 10 groups (Figure 4E). The samples with predominantly

poorly differentiated PitNET tumor cells (TPIT_Poorly-diff and

PIT1_Poorly-diff) and SF1 lineage (SF1_Well-diff and SF1_Poorly-

diff) tumor cells exhibited marked mRNA expression of lipid acid

metabolism genes, including FADS1, FADS2, SCD, and SREBF1,

which is consistent with our results (Figure 4D).

We also identified another subtype (TPIT_PAX7) marked by

TBX19, PAX7, SOX2, and PCSK2 (Figures 4A, S10A, and

S10B). All cells in this subtype were from a 51-year-old male

patient (P21) suffering from ACTH-dependent Cushing’s syn-

drome. This patient underwent two surgeries. After the second

surgery, the tumor relapsed quickly and increased to its preop-

erative size in only 3 months. He then received radiotherapy

and temozolomide chemotherapy. Unfortunately, this combina-

tion treatment had no effects on controlling the tumor, and the

patient expired 1 month later (Figures S10C and S10D). We

noticed that the tumor cells in this subtype could be divided

into two clusters based on UMAP (Figure 3A). One cluster

showed similarity to CORTICO, while the other was more like

GONADO (Figure 3B). Using mIHC, we confirmed the existence

of two cell types in this TPIT lineage tumor: ACTH-positive

SOX2-negative cells and ACTH-negative SOX2-positive cells

(Figure S10A). Thus, we considered this tumor a rare PitNET

with high intra-tumoral heterogeneity.

The differentiation status was related to long-term
recurrence in a large retrospective cohort of 800
PitNETs
To investigate the clinical relevance of the newly discovered bio-

markers in cell differentiation, we recruited an independent

cohort of 800 PitNETs, including 298 (37.3%) PIT1 lineage tu-

mors (76 lactotroph, 178 somatotroph, 13 thyrotroph, 26 silent
ETs

inference and clustering-inferred master regulons of the 12 subtypes. Poorly

s were retrieved from the HALLMARK, gene ontology, Kyoto Encyclopedia of

ays are marked with red dotted rectangles. Poorly differentiated subtypes are

icular genes along scVelo latent time (right). The two clusters are the tumor cells

re 3A).

phate pathway, the tricarboxylic acid cycle, cholesterol biosynthesis, and fatty

ulation of mRNA expression between PIT1_Poorly diff, TPIT_Poorly diff, and

s (fold-change, expressed as log2[ratio of the averagemRNA expression value

lue, downregulated genes. Each element box, the top symbol was metabolic

Lacto, the right is the alteration score of TPIT_Poorly-diff verse Pro.PIT1 and

rt of 134 PitNETs from Neou et al.39 The bottom heatmap shows corresponding

subtypes are highlighted in bold red font. The enrichment of lipid metabolism

a column from Neou et al.,39 are also shown in the ‘‘mRNA group.’’ See also
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Figure 5. The differentiation status was related to long-term recurrence in an independent cohort of 800 patients

(A) Heatmap showing IHC staining intensities in an independent cohort of 800 PitNETs.

(B–D) Scatterplot showing the NTS H score (x axis) versus the PRL H score (y axis) (B), serum PRL concentration (ng/mL) (y axis) (C), and DRD2 H score(y axis)

(D) in 115 pathologically PRL-positive tumors, respectively. The p value was calculated by Spearman’s correlation analysis.

(E and F) Kaplan-Meier PFS curves for 220 patients with PIT1 lineage tumors (E) and 61 patients with silent TPIT tumors (F) stratified by differentiation marker

expression. The p value was calculated by the log rank test.

(G) The bar plot shows the gender proportion between well and poorly differentiated silent TPIT tumors. The p value was calculated by Fisher exact test.

(H) Kaplan-Meier PFS curves for 83 patients with silent TPIT tumors stratified by gender. The p value was calculated by the log rank test.

(I) Kaplan-Meier PFS curves for 281 patients with SF1 lineage tumors stratified by differentiation marker expression. The p value was calculated by the log rank

test. See also Figure S11.
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PIT1, and 5 plurihormonal tumors), 125 (15.6%) TPIT lineage tu-

mors (13 corticotroph and 112 silent TPIT tumors), 354 (44.3%)

SF1 lineage tumors (44 gonadotroph and 310 silent SF1 tumors),

and 23 (2.9%) null cell tumors. This cohort included similar

numbers of female andmale (368 versus 432) patients with ame-

dian age of 50 years (range: 12–83) and a median tumor size of

2.7 cm (range: 0.8–8.0). The follow-up was available in 624
10 Cell Reports Medicine 4, 100934, February 21, 2023
(78.0%) patients. The median follow-up duration was 7.2 years,

with a tumor recurrence rate of 7.1% (44/624) (Figure 5A;

Table S4). The pituitary hormones and representative differenti-

ation markers were detected in the cohort of 800 PitNETs by

IHC, and the staining intensities of each antibody for each tumor

were quantified as H score when blinded to patient clinical out-

comes (Figures 5A and S11A; STAR Methods; Table S4).
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In the PIT1 lineage, the H score for NTS was positively corre-

lated with PRL staining, preoperative serum PRL level, and

DRD2 staining in PRL-positive tumors (Spearman’s correlation

analysis; R = 0.75, p < 2.2e�16, R = 0.61, p = 2.2e�12, and

R = 0.55, p = 3.7e�10, n = 115) (Figures 5B–5D). We defined

PIT1 PitNETs with a high H score for IGFBP7, LRRC4C, or

GATA3 as poorly differentiated PIT1 tumors and the remaining

PIT1 PitNETs with a high H score for either ENPP1 or NTS as

well-differentiated PIT1 tumors. Patients with poorly differenti-

ated PIT1 tumors had a significantly worse progression-free sur-

vival (PFS) than those with well-differentiated PIT1 tumors (log

rank test, p = 0.00046) (Figure 5E). Independent high H score

for IGFBP7, LRRC4C, and GATA3 was also significantly related

to worse PFS (log rank test, p = 0.037, p = 0.0027, and p =

0.043) (Figures S11B–S11D). Moreover, the H score for FADS1

was elevated in poorly differentiated PIT1 tumors (Wilcoxon

rank-sum test, p = 2.3e�11, Figure S11E), suggesting upregu-

lated unsaturated fatty acid metabolism.

We explored the pseudotime trajectory of TPIT_Poorly-diff

and identified ID4 and CITED1 as markers for poorly and well-

differentiated silent TPIT cells, respectively (Figure 4C). Here, in

the validation cohort, we revealed the value of these twomarkers

as a pair of recurrence prediction markers for silent TPIT tumors

(log rank test, p < 0.0001 and p = 0.0054; Figures S11F and

S11G). Since ID4 expression was elevated in poorly differenti-

ated TPIT cells in scRNA-seq data, we defined silent TPIT

PitNETs with high H scores for ID4 as poorly differentiated silent

TPIT tumors, and the remaining silent TPIT PitNETs with high

H scores for CITED1 as well-differentiated silent TPIT tumors.

Patients with well- and poorly differentiated silent TPIT

tumors showed a significant survival difference (log rank test,

p < 0.0001, Figure 5F). Notably, while most patients with silent

TPIT PitNETs were female (74/84, 88.1%), all silent TPIT tumors

in male patients were classified into the poorly differentiated si-

lent TPIT group (chi-square test, p < 0.001, Figure 5G), and ex-

hibited strong predictive value (log rank test, p < 0.0001, Fig-

ure 5H), suggesting that male gender was a high risk factor for

poorly differentiation status in silent TPIT PitNET. Poorly differen-

tiated silent TPIT tumors showed higher H scores for FADS1 and

HMGCR than well-differentiated silent TPIT tumors (Wilcoxon

rank-sum test, p = 0.025 and p = 0.0066, Figures S11H and

S11I), suggesting more synthesis of polyunsaturated fatty acid

and cholesterol. However, well-differentiated silent TPIT tumors

showed a higher H score for SCD (Wilcoxon rank-sum test, p =

0.00018, Figure S11J), indicating that even well-differentiated si-

lent TPIT PitNETs preserve significant dysregulation of lipid

metabolism.

In 354 SF1 lineage tumors, 73 (20.6%) SF1 tumors with high

FSHB H scores were defined as well-differentiated SF1 tumors,
Figure 6. The recurrence prediction capability of Ki-67 index for PitNE

(A) Cox regression survival analyses reveal the recurrence predictive values of

*p < 0.05, **p < 0.01, ***p < 0.001.

(B–D) Kaplan-Meier PFS curves for PIT1 lineage tumors (B), silent TPIT tumors (C),

by the log rank test.

(E–G) Kaplan-Meier PFS curves for patients with PIT1 lineage tumors (E), silent TP

Ki-67 index. The p value was calculated by the log rank test.

(H) Recurrence prediction value of differentiation status and Ki-67 index in each
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while others were defined as poorly differentiated SF1 tumors.

To our surprise, well-differentiated SF1 tumors, but not poorly

differentiated tumors, exhibited a higher risk of recurrence (log

rank test, p = 0.0065, Figure 5I).

Multiple factors used as predictors for the recurrence of

PitNET were also evaluated in this cohort, including clinicopath-

ological classification, Ki-67 index, tumor invasion (surgery or

radiology), completeness of resection, tumor diameter, gender,

and age (Table S4).12 To evaluate the predictive value of differen-

tiation status, we compared it with previously reported factors

using Cox regression survival analyses. We found that the Ki-

67 index showed significant recurrence prediction capability in

PIT1 lineage tumors in both univariable and multivariable ana-

lyses (p < 0.001) (Figure 6A). Furthermore, we performed survival

analyses and consistently found that the Ki-67 index could pre-

dict the tumor recurrence only in PIT1 lineage rather than in silent

TPIT and SF1 lineages (log rank test, p = 0.0023, p = 0.23, and

p = 0.54, respectively; Figures 6B–6D). In PIT1 lineage, the Ki-

67 index demonstrated the highest predictive value in well-differ-

entiated tumors, while the predictive value is limited in poorly

differentiated tumors (log rank test, p = 0.02 and p = 0.05,

respectively; Figure 6E). However, in both silent TPIT and SF1

lineages, the Ki-67 index had no predictive value neither in

well-differentiated nor poorly differentiated groups (p = 0.84 in

well-differentiated silent TPIT, p = 0.95 in poorly differentiated

silent TPIT, p = 0.34 in well-differentiated SF1, p = 0.19 in poorly

differentiated SF1; Figures 6F and 6G). The predictive values of

differentiation status and Ki-67 index are summarized in Fig-

ure 6H. However, neither tumor invasiveness nor tumor diameter

were independent predictors for tumor recurrence in our cohort

(Figure 6A).

DISCUSSION

PitNET is the most common neuroendocrine tumor, character-

ized by high tumor heterogeneity and diverse clinical manifesta-

tions. At present, the prediction of tumor recurrence is a tremen-

dous challenge, as the current classification system has limited

prediction value. In this study, we conducted a comparative

analysis of normal adult APG and PitNET at single-cell resolution

and evaluated the differentiation status of PitNET (Figure 7).

Then, single-cell transcriptomic signatures were unfolded in

the three major lineages of the current clinicopathological classi-

fication. ENPP1, NTS, GATA3, IGFBP7, and LRRC4C are spe-

cific markers for PIT1 lineage; ID4 and CITED1 are specific

markers for TPIT lineage; FSHB is a specific marker for SF1 line-

age. Expanding the current classification with new transcriptome

signatures and markers is the principal scientific novelty of this

study, whichmay enhance its clinical translation and application.
T was stratified by the new differentiation classification

multiple factors in three lineages. HR, hazard ratios; N, number of patients;

and SF1 lineage tumors (D) stratified by Ki-67 index. The p valuewas calculated

IT tumors (F), and SF1 lineage tumors (G) stratified by differentiation status and

lineage. n.s., not significant.
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The top yellow box, middle green box, and bottom brown box represent TPIT, PIT1, and SF1 lineage, respectively. The left panel represents the self-renewal

trajectory of adult APG. The middle and right panels represent PitNETs in well and poorly differentiation status, respectively. The solid line represents the

development process of endocrine cells in adult APG. The dashed line represents the potential tumorigenesis process of PitNET. The markers were annotated

below each APG or PitNET subtype. Characteristics of each tumor subtype are listed below the diagram, with higher recurrence subtypes emphasized in bold red

font. The speculated Pre.TPIT and Pre.SF1 are labeled with gray dashed line circles since they were not detected in our study.
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Furthermore, based on the differentiation status of PitNETs tu-

mor cells, a new differentiation classification was proposed: well

and poorly differentiated groups. In a separate large cohort of

800 patients with a median follow-up duration of 7.2 years, we

validated these markers identified from two differentiated

groups. Poorly differentiated groups showed significantly higher

recurrence rates in both PIT1 and TPIT lineage, while well-differ-

entiated groups showed significantly higher recurrence rates in

SF1 lineage. Together, these demonstrate the potential applica-

tion of the new differentiation classification in recurrence

prediction.

In addition, the new differentiation classification could also

stratify the predictive ability of the Ki-67 index, a proliferative

marker widely used as a predictor of tumor recurrence.54–56

We found that, in well-differentiated PIT1 PitNETs, Ki-67 holds

excellent predictive value for tumor recurrence, while in poorly

differentiated PIT1, TPIT, or SF1 PitNETs, the predictive value

for tumor recurrencewas limited. Thesemay explain the conflict-

ing results of Ki-67 prediction value in gonadotroph tumors or

nonfunctioning pituitary adenomas.57–60 Collectively, establish-

ing a new differentiation classification that could precisely pre-

dict tumor recurrence with specific molecular markers was the

clinical innovation of this study, whichmay help to create individ-

ualized follow-up strategies.

We revealed the developmental trajectory in the APG and

identified a cluster named Pro.PIT1. After merging our adult
APG data with the fetal APG data, we found that large numbers

of fetal PIT1 cells were in a poor differentiation status and similar

to the Pro.PIT1 cells in the adult APG. In particular, most lacto-

tropes in the fetal cells were immature, suggesting the postnatal

development of this cell type.27 For TPIT and SF1 lineages, cells

in adult APG were similar to the corresponding fetal cells, while

the progenitor cells of these two lineages were not identified in

this study. We speculate that the progenitor cells of these two

lineages may be located at the marginal zone or the remnant

of Rathke’s cleft. Another scRNA-seq study including all pituitary

tissues (anterior lobe, Rathke’s pouch, and posterior lobe)

should be processed to understand adult pituitary heterogeneity

further.

We focused on 750 SOX2-expressing cells (296 from APGs

and 454 from PitNETs) and found that activation of EMT-related

pathways was shared across individuals and decreased along

with degree of differentiation. We also identified and validated

several cell surface markers shared by most SOX2-expressing

cells (e.g., CLDN4), which could be used for flow sorting. Inter-

estingly, we found that most TSCs in PitNETs were not prolifer-

ating. On the other hand, an in vitro study suggests that isolated

PitNET TSCs could grow as spheroids.61 These results sug-

gested the TSCs were in a non-proliferative state in vivo and

had the potency to proliferate and differentiate.

By comparing PitNETs with APGs, we estimated the possible

cellular origin and differentiation status of each tumor cluster.
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Well-differentiated PitNETs showed activation of hormone

biosynthesis- and secretion-related pathways. On the other

hand, most poorly differentiated PitNETs were silent tumors

and showed upregulation of metabolism-related pathways,

especially lipid metabolism. This pattern may be due to the

high proliferation of these subtypes and the necessity of lipid

metabolites formultiplemitosis-related processes, such as cyto-

membrane synthesis and intracellular signal transduction.62 The

molecular features of well- and poorly differentiated PitNETs

were also verified in a cohort of 134 PitNETs published by

Neou et al.39 The characteristic alterations may provide ideas

for future therapeutic target exploration and drug development

for these highly recurring PitNET subtypes.

Notably, we sequenced a rare tumor coexpressing SOX2 and

PAX7, indicating its poorly differentiation status.16,63 This patient

relapsed quickly and responded poorly to treatments (Fig-

ure S10). These features supported the importance of evaluating

tumor differentiation status, especially for those clinically inva-

sive tumors. Further study accumulating more cases with poorly

differentiated tumors should be performed to focus on the clin-

ical characteristics, molecular features, and high proliferation

mechanism, which may identify the prognostic value of this

new subtype and provide new treatment targets.

In conclusion, we reveal the single-cell transcriptomic land-

scape of three adult APG and 21 PitNET tumors and estimate

the differentiation status of each PitNET. We further found that

the markers of each differentiation status could help predict the

recurrence of PitNETs.

Limitations of the study
There are still some limitations of this study. First, death may

have potential impact on the transcriptome program of APG

cells, leading to the unknown bias of data. Second, the number

of PitNETs is still limited for each subtype. Additional studies that

include a higher number of samples and their data integration are

needed to get deeper insights. Third, although our study inferred

the possible origin of the PitNET by comparative analysis, line-

age-tracing confirmation studies of the PitNET models are

required to confirm the origin of the PitNETs studied.
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Scanorama v1.7.1 Hie et al.68 https://github.com/brianhie/scanorama

pySCENIC v0.11.2 Van de Sande et al.46 https://aertslab.org/#scenic

velocyto v0.17.17 La Manno et al.69 https://velocyto.org/

scVelo v0.2.4 Bergen et al.35 https://scvelo.readthedocs.io/

Survival v3.2_13 N/A https://CRAN.R-project.org/package=survival

clusterProfiler v3.18.1 Yu et al.70 https://guangchuangyu.github.io/software/clusterProfiler/

MSigDB v7.4 Subramanian et al.71 http://www.gsea-msigdb.org/gsea/msigdb/index.jsp

Monocle3 v1.0.0 Cao et al.36 https://github.com/cole-trapnell-lab/monocle3

slingshot v2.2.0 Street et al.72 https://github.com/kstreet13/slingshot

PAGA Wolf et al.73 https://github.com/theislab/paga

UMAP McInnes et al.74 N/A

scMetabolism Wu et al.51 https://github.com/wu-yc/scMetabolism

MuSiC v0.2.0 Wang et al.53 https://xuranw.github.io/MuSiC/index.html

DESeq2 v1.34.0 Love et al.75 https://bioconductor.org/packages/release/bioc/

html/DESeq2.html

ggpubr v0.4.0 N/A https://rpkgs.datanovia.com/ggpubr/index.html

tableone v0.13.0 N/A https://CRAN.R-project.org/package=tableone

QuPath v0.3.0 Bankhead et al.76 https://qupath.github.io/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Yao Zhao (zhaoyaohs@

vip.sina.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d All raw scRNA-seq data have been deposited at the National Genomics Data Center (NGDC, https://bigd.big.ac.cn/) under the

accession number PRJCA009690.

d This study did not generate original codes. All software and algorithms used in this study are publicly available and listed in the

key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient recruitments
Two cohorts of patients were recruited: one for scRNA-seq analysis (21 PitNETs) and another for IHC validation (800 PitNETs). All

patients received surgery at the Department of Neurosurgery at Huashan Hospital, an affiliate of Shanghai Medical College, Fudan

University. The 21 PitNETs cohort received surgery between 2018 and 2021, while the 800 PitNETs cohort were collected between
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2010 and 2014. Both cohorts only included subjects without previous malignancies. Patients’ clinical data for all patients were

collected from medical records retrospectively (Tables S1 and S4). Four adult anterior pituitary gland tissues were obtained from

cadaveric organ donors without evidence of any endocrine disease (Table S1). All patients gave written informed consent, and

the ethics committee at Huashan Hospital approved the study.

METHOD DETAILS

Preparation of single-cell suspensions
Each specimen was equally cut into at least two fragments. One fragment of the provided tissues was processed for scRNA-seq, and

the remainder was processed for histopathological assessment. In brief, fresh tumor tissues were mechanically chopped with scal-

pels on a plate and enzymatically digested with Human Tumor Dissociation Kit (Miltenyi Biotec, Bergisch Gladbach, Germany) per

manufacturer guidelines. Cell viability was confirmed to be >70% in all tissues using trypan blue exclusion. Cell suspensions were

filtered using a 70 mm strainer (ThermoFisher Scientific), and dissociated cells were pelleted and re-suspended in PBS with 1%BSA.

Multiplex immunohistochemistry
Formalin-fixed and paraffin-embedded tissue sections (3mm) were de-paraffinized and rehydrated. Next, heat-induced epitope

retrieval (HIER) was performed, followed by blocking with 3% hydrogen peroxide in TBST for 10 min and staining with the multiplex

mIHC kit (PerkinElmer, NEL861001KT, Shanghai Kelin Institute). Briefly, after the first primary antibody staining, slides were incu-

bated using the HRP-polymer detection system for 10 min, then visualization using Opal TSA working solution (1:100) for another

10min. Afterward, antigen retrieval was conducted again to prepare the slides for the next antibody. Using this Opal stainingmethod,

primary antibodies were applied sequentially. Lastly, slides were counterstained with DAPI (Sigma, 1:1000) for nuclei visualization

and subsequently coverslipped using the Hardset mounting media (VectaShield, H-1400).

All tissue sections that underwentmultiplex fluorescent staining for each fluorophore were imaged using the Vectra Polaris imaging

system (PerkinElmer, Shanghai Kelin Institute) under the appropriate fluorescent filters to produce the spectral library required for

multispectral analysis. A whole slide scan of the multiplex tissue sections produced multispectral fluorescent images visualized in

Phenochart (PerkinElmer) and imaging at 2003 magnification.

Immunohistochemistry staining of tissue sections
PitNET tissues were fixed in 4% paraformaldehyde (PFA) for 24 h and processed for paraffin embedding tissue sections of 3mm.

Following deparaffinization and rehydration, heat-induced epitope retrieval (HIER) was performed by submerging the slides in anti-

gen unmasking solution (Solarbio).

After blocking endogenous peroxidase and nonspecific binding sites (0.3% H2O2 and 5% normal goat serum, sequentially), pri-

mary antibodies were applied at 4�Covernight. Slides were incubatedwith DakoREAL EnVision HRP rabbit/mouse (belong to K5007,

DAKO, Glostrup, Denmark) at RT for 20min, followed by treatment with Dako REAL DAB + CHROMOGEN and Dako REAL substrate

buffer (belong to K5007, DAKO, Glostrup, Denmark) to visualize staining signals under light microscopy, finally counterstained using

hematoxylin solution. Stained slides were scanned using Ocus (Grundium, Tampere, Finland) and analyzed with Qupath software

(see below).

IHC image analysis
Stained slides were scanned using Ocus (Grundium, Tampere, Finland) and analyzed with Qupath software v0.3.076. Images were

preprocessed by the build-in stain vector estimator. Cells with shape and stain parameters in each areawere identified by build-in cell

detection via nucleus stain (hematoxylin). The mean DAB optical density (OD) thresholds for positivity were decided according to the

staining pattern and intensities on all images for each antibody. The H-score was calculated as the percentage of tumor cells with

positive staining multiplied by the average intensity of positive staining. Scripts of the whole-slide images analysis protocol above

were created, batch performed on each set of images, and further checked by two expert pathologists. All quantifications were eval-

uated blinded to patient clinical information and outcomes.

DNA extraction and targeted exome sequencing
Total DNA (0.3 mg) was extracted from the 10 mg FFPE tissues using QIAamp DNA FFPE Tissue Kit (Qiagen). Sequencing libraries

were generated using the probe independently designed by Medical Laboratory of Nantong ZhongKe Co, Ltd. Then the DNA li-

braries were sequenced on Illumina Novaseq 6000 platform. Fastp was used to control the data quality of the obtained raw data

(FASTQ). Valid sequencing data was mapped to the reference human genome (UCSC hg19) by Burrows-Wheeler Aligner (BWA)

software77 to get the original mapping results stored in BAM format. Then, SAMtools78 and Sambamba were used to recalibrate

the BAM file quality, and calculated the sequence coverage and depth. Single-nucleotide polymorphisms (SNPs) and small inser-

tions and deletions (InDels) of each exome were detected using the HaplotypeCaller tool of Genome Analysis Toolkit (GATK). The

somatic SNVs and InDels were detected by muTect2.79 Filter criteria for high quality variants were defined as the allelic fraction

more than 15%.
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Droplet-based single-cell RNA-seq
The scRNA-seq was performed by Jiayin Biotechnology Ltd. (Shanghai, China), according to the manufacturer’s instructions of the

Chromium Single Cell 30 Reagent Kits v3. Single-cell suspensions were loaded on the Chromium Controller (10x Genomics, Pleas-

anton) to generate Gel Bead-In-Emulsions (GEMs). Next, barcoded sequencing libraries were conducted following the instruction

manual of the Chromium Single Cell 30 Reagent Kits v3 (10x Genomics). Following the library preparation, the sequencing was

performed with paired-end sequencing of 150nt each end on one lane of NovaSeq 6000 per tissue.

Processing scRNA-seq data
Raw sequencing data were processed using the CellRanger (10X Genomics, v3.1.0) with default parameters. Reads were aligned to

the human genome reference sequence (GRCh38). Uniquely mapped reads were used for UMI counting, and gene expression levels

were further quantified for each barcode detected.

These raw feature-barcode matrices were processed by CellBender64 with default parameters to remove ambient RNAmolecules

for each sample. The clean corrected expression matrices were then processed and analyzed using Seurat package (v4.1.0).65 To

filter out low-quality cells, cells that failed to meet the following criteria were discarded: 1) the number of detected genes more than

500, 2) the number of detected UMIs more than 3,000, and 3) a fraction of mitochondrial UMIs counts less than 30%. Doublets were

identified by scDblFinder66 with the parameter dbr.SD = 1, and carefully removed based on the expression patterns of cell type/

lineage-specific markers.

Data integration, clustering, and normalization
To remove potential batch effects, consensus variable features among samples, including APGs, APGs and PitNETs, human adult

APGs and fetal APGs, were first identified. For individual samples, highly variable features were selected. These selected features

were merged, and consensus features were generated based on hits across samples. Scanorama (v1.7.1)68 was used for dimension

reduction with these consensus features and to integrate these datasets with default parameters. The graph-based clustering was

then performed using functions FindNeighbors and FindClusters. In this study, raw counts were scaled to 10,000 and log2-trans-

formed. Gene expression levels were defined as log2(normalized counts +1).

Identifying differentially expressed genes (DEGs) and cell classification
DEGs were identified with the FindAllMarkers function in the Seurat package (one-tailed Wilcoxon rank-sum test, p values adjusted

using the Bonferroni correction). These DEGs with adjusted p value less than 0.01 were considered significant DEGs.

Cells in APGs were first classified based on the expression of classical marker genes.17,20,26,32 The expression percentage of each

marker gene in the given cell type is annotated in parentheses. Endothelial cells were identified by specific expression of PLVAP

(92.3%), ESAM (86.5%), PECAM1 (80.8%), CLEC14A (84.6%), EMCN (90.4%), FLT1 (84.6%), ADGRL4 (84.6%), CAVIN2 (94.2%)

or KDR (84.6%); fibroblasts were identified by COL1A1 (95.2%), COL1A2 (100%), COL3A1 (95.2%), COL5A1 (100%), DCN

(95.2%), LUM (95.2%), ACTA2 (90.5%), FN1 (95.2%) or FBLN1 (95.2%); lymphocytes were identified by PTPRC (86.0%), CD3E

(82.2%), CD3D (70.1%), CD52 (81.3%) or CD48 (85.0%); Myeloid cells were identified by FCER1G (97.8%), CD68 (89.6%), CD14

(80.8%), CD74 (99.5%), RGS1 (87.4%), CSF1R (81.9%), C1QA (84.1%), C1QB (80.8%) or C1QC (81.9%). Pituitary endocrine cells

were identified by SCG2 (88.8%), SCG3 (78.1%), CHGB (97.7%), SEZ6L2 (82.9%), SYP (63.6%), SNAP25 (79.8%), or UCHL1

(91.5%), including the following cell type-specific markers: CORTICO were identified by POMC (100.0%), TBX19 (94.0%), GAL

(98.8%), RAB3B (90.4%) or ASCL1 (38.6%), GONADO were identified by NR5A1 (46.4%), CGA (65.4%), LHB (33.5%), FSHB

(54.4%), TGFBR3L (90.6%) or GNRHR (21.2%); SOMATO were identified by POU1F1 (59.0%), GH1 (100.0%), GH2 (27.1%) or

GHRHR (77.7%); LACTO (LACTOHigh and LACTOMedium) were identified by POU1F1 (80.1%), PRL (100.0%), DRD2 (52.9%), or

VGF (50.4%); THYRO were identified by POU1F1 (83.0%), TSHB (52.3%), CGA (100.0%). Pituitary stem cells were identified by

SOX2 (86.9%), AGR3 (78.5%), SLPI (97.7%), KRT19 (75.2%), TACSTD2 (45.6%), MGST1 (74.2%), including the following cell

type-specific markers: S100BPos STEM were identified by S100B (33.2%), S100A1 (63.8%), SOX9 (46.2%), FABP7 (69.8%),

TTYH1 (72.4%), LYPD1 (84.4%), or RFX4 (63.8%).

Inferring CNVs from single-cell RNA-seq data
The single-cell CNVs were inferred by a moving averaged expression profiles across chromosomal intervals using InferCNV as pre-

viously reported.80–84 In particular, the endocrine and stem cells identified in APGs were considered as the reference cells,15 and

average CNVs value for these cells was subtracted from all other cells. When excluding suspicious normal APG cells in P10, we

scored ‘‘CNV correlation’’, which refers to the correlation between the CNV profile of each cell and the average CNA profile of all

neuroendocrine cells from the corresponding tumor. Cells were then classified as suspicious normal APG cells if they had CNV cor-

relation less than 0.340,41.

Exclude suspicious normal APG cells in PitNET samples
Three approaches were combined to distinguish the non-tumor neuroendocrine cells in PitNET samples. First, through the lineage

annotation of tumor cells in each sample, we detected cells with more than one lineage in one tumor sample (P10) (Figure S5C). Since

APGs are composed of heterogeneous endocrine cells while PitNETs were considered monoclonal origin,2,85 the identification of
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cells frommultiple lineages suggests the possible presence of normal APGs cells in this tumor sample. Next, to distinguish suspicious

normal APG cells in P10, we inferred CNVs and excluded tumor cells with CNV correlation less than 0.3. Finally, to double-check any

normal APG cells left, wemerged the residual cells fromPitNETs through unsupervised clustering (Figure S6B). Clusters frommultiple

tumor samples were annotated by canonical markers, and none of them were neuroendocrine cells, while all neuroendocrine cells

were mainly constituted of one tumor, suggesting all suspicious normal APG cells were excluded before downstream tumor origin

analysis.

Calculating gene expression score
The gene scores were calculated using the AddModuleScore function in the Seurat R package based on a certain predefined expres-

sion program.

The epithelial (EPI) and mesenchymal (MESEN) signatures used for evaluating the epithelial-mesenchymal transition (EMT) status

of SOX2 expressing cells were retrieved from Tan et al.86

In Figure 3B, PitNET clusters were scored by the top-20 DEGs identified in the endocrine and stem cluster of APGs. The top DEGs

were ranked according to the formula pct.1*(1-pct.2)*avg_log2FC, to consider both the expression and specificity of DEGs. The

pct.1, pct.2, and avg_log2FC in the formula were precalculated by FindAllMarkers function in Seurat within all endocrine and

stem cells in APGs. Scoring PitNETs clusters using top 15 to 30 DEGs was also calculated and produced similar results.

Pathway enrichment analysis
Pathway enrichment analyses were performed by GSEA, enricher, and compareCluster functions implemented in clusterProfiler

(v3.18.1)70 with pathway database MSigDB (v7.4)71. The gene sets were retrieved from the following categories: hallmark, KEGG,

Reactome, GO biological processes, GO cellular components, and GO molecular functions.

Inferring activated transcription factors by SCENIC analysis
The Single-Cell rEgulatory Network Inference and Clustering (SCENIC) analysis was performed using the python pipeline pySCENIC

(v0.11.2)46 with default parameters. The co-expression modules were identified by GRNBoost. The input matrix was the normalized

expression matrix for cells of interest. And the output AUCell matrix of regulon activities was further binarized. A human TF gene list

was retrieved from the resources of pySCENIC (https://github.com/aertslab/pySCENIC/tree/master/resources). The motifs data-

base for Homo sapiens was downloaded from the cisTargetDBs (https://resources.aertslab.org/cistarget/).

Inferring cell state transition by RNA velocity
RNA velocities were calculated using velocyto (v0.17.17)69 and scVelo (v0.2.4)35. Briefly, spliced/unspliced/ambiguous reads of each

sample were annotated by velocyto.py with CellRanger generating BAM files. RNA velocities were inferred by scVelo and projected

as a field onto the pre-computed UMAP embedding for visualization.

Pseudotime analysis and lineage trajectories construction
The R package Monocle3 (v1.0.0)36 was applied to construct the trajectory of the integrated adult and fetal APG cells, and PIT1 line-

age cells from APGs. The counts matrix and UMAP space were transferred into Monocle3. The trajectories were learned by cluster_

cells and learn_graph functions. The root cells of adult and fetal APG cells were placed at the region of stem cell cluster (Figure S3H).

The root cells of PIT1 lineage cells were located between the THRYO and SOMATO in the Pro.PIT1 cluster (Figure S3C).

The lineage trajectories of integrated human adult and fetal APGs were constructed by Slingshot (v2.2.0)72. The start cluster was

set as Adult.STEM.

The trajectory of cell populations identified in the integrated human adult and fetal APG cells was constructed using the Partition-

based graph abstraction (PAGA) method73 based on the UMAP embedding generated by Scanorama. The trajectory for PIT1 lineage

cells in APGs was inferred by RNA velocity directionality.

scMetabolism analysis
To quantify metabolism activity at the single-cell resolution, scMetabolism51 was applied to the endocrine and SOX2 expressing cells

of APGs and PitNETs. VISION was selected as the quantitative method, and GSEA was chosen to provide metabolism pathways.

Processing bulk RNA-seq data for PitNET samples
The mRNA-seq dataset previously published by Neou et al.39 was downloaded. DESeq2 (v1.34.0)75 was applied for the mRNA-seq

read counts to get a normalized matrix.

Deconvolution analysis
The deconvolution analysis of bulk PitNETs RNA-seq data against each subtype was performed using MuSiC (v0.2.0).53 The

signature gene input was generated by differential gene analysis using Seurat’s one-tailed Wilcoxon rank-sum test. To eliminate

the variants of differentiated expression gene numbers of each subtype, the top 20 signature genes were selected as described

above.
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Survival analysis
The tissue microarray (TMA) dataset (n = 800) was used to evaluate the recurrence predictive performance of well or poorly differ-

entiated genes. Tumors with Ki-67 index R2.0% were defined as high Ki-67 group, and the remaining were low Ki-67 group.

Kaplan–Meier survival curves were created and compared among subgroups using log rank tests, and Cox proportional hazards

models were performed to evaluate the recurrence prediction value of multiple factors, and both methods were implemented in

the R package Survival (v3.2_13). The scan function was used to yield a cutoff where the difference in survival was most significant.

These cutoff levels were then used to generate Kaplan–Meier graphs.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using R package ggpubr (v0.4.0) and tableone (v0.13.0). TheWilcoxon rank-sum test, Spearman’s

correlation test, Fisher exact test, and log rank test were used in this study. Detailed descriptions of statistical tests were specified in

the results section and the figure legends.
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