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Objective: A method to estimate absolute left ventricular (LV) pressure and its maximum

rate of rise (LV dP/dtmax) from epicardial accelerometer data and machine learning

is proposed.

Methods: Five acute experiments were performed on pigs. Custom-made

accelerometers were sutured epicardially onto the right ventricle, LV, and right atrium.

Different pacing configurations and contractility modulations, using isoflurane and

dobutamine infusions, were performed to create a wide variety of hemodynamic

conditions. Automated beat-by-beat analysis was performed on the acceleration

signals to evaluate amplitude, time, and energy-based features. For each sensing

location, bootstrap aggregated classification tree ensembles were trained to estimate

absolute maximum LV pressure (LVPmax) and LV dP/dtmax using amplitude, time, and

energy-based features. After extraction of acceleration and pressure-based features,

location specific, bootstrap aggregated classification ensembles were trained to estimate

absolute values of LVPmax and its maximum rate of rise (LV dP/dtmax) from

acceleration data.

Results: With a dataset of over 6,000 beats, the algorithm narrowed the selection of

17 predefined features to the most suitable 3 for each sensor location. Validation tests

showed the minimal estimation accuracies to be 93% and 86% for LVPmax at estimation

intervals of 20 and 10 mmHg, respectively. Models estimating LV dP/dtmax achieved

an accuracy of minimal 93 and 87% at estimation intervals of 100 and 200 mmHg/s,

respectively. Accuracies were similar for all sensor locations used.

Conclusion: Under pre-clinical conditions, the developed estimation method,

employing epicardial accelerometers in conjunction with machine learning, can reliably

estimate absolute LV pressure and its first derivative.

Keywords: heart sound, hemodynamics, cardiac resynchronization therapy, artificial intelligence, machine

learning, animal, epicardial acceleration
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INTRODUCTION

Heart failure is a major public health concern for healthcare
systems that struggle to treat the∼37 million patients worldwide
(1). The Western world alone experiences more than 1 million
hospitalizations each year, a number that rapidly increases due
to the aging population groups (2–4). Cardiac decompensation
results in more frequent/prolonged hospitalization of patients,
causing treatment costs to increase while reducing the quality
of life and life expectancy (5, 6). Therefore, tools that may
prevent hospitalizations in patients with heart failure would be
beneficial (7).

Continuous hemodynamic monitoring improves the
conventionally static behavior of current treatment methods,
reducing the need for follow-up visits or hospitalization. Several
implantable devices have been developed to optimize therapy
and identify decompensation episodes in an early stage (7, 8).

For this purpose, the measurement of left ventricular pressure
(LVP) or its first derivative would be the first choice. However,
the required invasive intervention and potential complications
like drift, sensor overgrowth, leakage, and embolizationmake this
approach less suitable for chronic applications (9). As a surrogate
for LV function, the ChronicleTM system measures RV pressure.
Clinical studies show promise in reducing readmission rates due
to congestive heart failure (10). Similarly, the CardioMEMSTM

system consists of a small pressure-sensing device that is
implanted directly into the pulmonary artery (11). However,
these systems are expensive, stand-alone devices and it is unclear
how right-sided measurements are related to LV function (10).

An alternative method is the use of accelerometers. These
are small mechano-sensors that can easily be integrated with,
for example, devices and catheters. The best-known example is
currently the Peak Endocardial Acceleration (PEA, later renamed
as SonR) system that uses an accelerometer integrated into an
implantable right atrial or RV pacing lead (12) to measure the
amplitude of the first heart sound (13, 14). The RESPOND-
CRT trial demonstrated that this automatic, SonR sensor-guided
optimization of pacemaker therapy was safe and slightly superior
to the conventional Echo-guided optimization (15). However, the
SonR system does not provide absolute pressures.

In recent years machine learning (ML) has rapidly developed.
ML is a computational discipline focused on building algorithms
that model or recognize (complex) patterns or characteristics
within large amounts of data. It is used increasingly in the
heart failure space either prognostically or as in this article
diagnostically (16). A previous study has indicated successful
classification of heart sounds for valvular diseases via machine
learning-based methods (17). We hypothesized that machine
learning may improve the analysis of accelerometer data to the
extent that also absolute values of hemodynamic parameters can
be estimated.

Abbreviations: AV, atrio-ventricular; BiV, biventricular; DOB, dobutamine;

ECG, electrocardiogram; ISO, isoflurane; LV, left ventricle; LVP (max), left

ventricular (maximal) pressure; LV dP/dtmax, maximum rate of rise of LVP; VV,

intraventricular.

For this purpose, animal experiments were performed, where
gold standard pressure and accelerometer measurements were
recorded under widely varying hemodynamic conditions and at
different cardiac anatomic positions. Automatic accelerometer
classification was facilitated via beat-by-beat segmentation
of accelerometer and pressure signals. After extraction of
acceleration and pressure-based features, a model was trained
using machine learning to estimate absolute values of LVPmax
and its maximum rate of rise (LV dP/dtmax).

METHODOLOGY

Study Overview
A total of five acute open chest (weighing 60–65 kg) experiments
in pigs were performed in accordance with Dutch Law on Animal
Experimentation and the European Directive for the Protection
of Vertebrate Animals used for Experimental andOther Scientific
Purposes. The protocol was approved by the Central Committee
for Animal experiments (CCD) in the Netherlands and the
Animal Experimental Committee of Maastricht University.

Experimental Setup
The animals were premedicated with Zoletil (5–8 mg/kg)
whereafter anesthesia was induced using thiopenthal (5–15
mg/kg IV). Propofol (2.5–10 mg/kg/h), sufentanyl (4-8µg/kg/h),
and rocuronium (0.1 mg/kg/h) were given at regular intervals
to maintain the anesthesia. Heparin was given throughout the
experiment as an anticoagulant to suppress blood clotting.

Data acquired during the experiments consisted of
electrocardiogram (ECG), LVP, and epicardially measured
acceleration signal. An overview of the experiment and the data
analysis are depicted in Figure 1.

ECG measurements were acquired using the limb-leads.
Pressures were measured using 7F catheter-tip manometers
(CD-Leycom, Zoetermeer, the Netherlands). Under fluoroscopic
guidance, pressure catheters were inserted via the carotid artery
and the jugular vein into both the right and left ventricles as well
as the right atrium. In addition, a pressure catheter was placed in
the aorta.

Pacing leads were inserted transvenously into the right atrium
and right ventricle (RV), while an LV lead was placed epicardially
on the LV free wall, using a plunge electrode introduced into the
thorax through a small incision. Pacing thresholds were evaluated
on an individual basis for each electrode.

Radiofrequency ablation of the atrioventricular node was
used to an create atrio-ventricular block (AVB). The process
made use of an ablation catheter (MarinR, Medtronic plc.) and
a radio frequency power generator (Atakr, Medtronic plc.)was
performed under fluoroscopic guidance. After the creation of
AVB, ventricular pacing was initiated for hemodynamic stability.

Mechanical data was acquired via custom-made epicardial
mechano-sensors, designed to facilitate recordings of high
acquisition resolution and sampling rate while keeping the
overall size of the sensor to a minimum dimension of 3.3mm
(X) ∗ 5mm (Y) ∗ 1.6mm (Z). Each sensor package consisted
of 3∗ Hall-effect-based accelerometers, perpendicularly aligned
to each other, sensing at a resolution of 16-bit at a sampling
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FIGURE 1 | Experimental setup as well as the post-processing pipeline used to extract training data for machine learning based estimation models.

rate of 1,000Hz. Each sensor was paired with a single analog
to digital converter (ADC) (a total of 3), allowing synchronous
capture of data. The data were recorded in a range of ±4 g to
accommodate a minimum range of ±3 g when accounting for
gravity with a 16-bit digitization resolution. A custom device was
made to facilitate the simultaneous acquisition of the mechano-
sensors and to allow simple integration into existing systems via
a shared synchronization pulse.

Alignment
Alignment of the datasets recorded from the ECG, pressure and
mechano-sensors was performed via a shared synchronization
pulse that is broadcasted by the acquisition device. Each
system/device connected to the synchronization pulse generated
a tracing on a separate channel and was contained within
each of the datasets at the end of the experiment. Using this
signal, dropped/duplicate samples or mixed sampling frequency
systems can be recognized, and the section of the signal was
resampled automatically.

Embedded in a silicone suturing fixture, the mechano-
sensors were sutured onto the epicardium through a small
thoracic incision. The dimensions of the fixture allowed
only for one-sided mounting of the sensor and enforced
correct/consistent orientation to maintain signal uniformity
between the experiments by aligning the sensor’s Z-axis
perpendicular with the tissue surface. The thorax was partially
closed to minimize the effect on the animal’s hemodynamics after
the placement of the sensors. A small hole was retained for the

cabling without hermetic sealing and therefore the experiments
remained “open chest.”

A total of five sensors were attached to the tissue at the
locations shown in Figure 1, being the LV and RV apex, RV and
LV free wall close to the mitral and tricuspid valves, as well as the
right atrium.

Experimental Protocol
Pacing protocols consisted of RV and biventricular (BiV) pacing
with incrementally increasing atrioventricular (AV) pacing
delays, ranging from 50 to 300ms, and incrementally increasing
interventricular (VV) delays ranging from −150 to +150ms.
The pacing protocol was performed in DDD mode and repeated
under different hemodynamic loading conditions. Dobutamine
(DOB) was used to increase cardiac function and its dose was
adjusted to reach approximately twice the baseline LV dP/dt max
value. After a sufficient weaning period from the dobutamine,
the animals were ventilated with the cardiovascular depressant
isoflurane (ISO) to decrease the baseline LV dP/dt(max) value to
around half of the baseline value. Pacing protocols were repeated
during both dobutamine and isoflurane administration. Each
settingmaintained a 60 s recording time unless the applied pacing
setting appeared detrimental to the animal’s hemodynamic state.

Data Analysis
Please note that more details regarding the data analysis can be
found in the Supplementary Material. The experimental setup
made use of multiple standalone recording devices with different
sampling rates which shared an auxiliary synchronization pulse
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as shown in Figure 1. Matching the pulse between devices
allowed for precise temporal alignment of the ECG, pressure, and
mechanosensory data.

The automated post-processing pipeline segmented the input
signals into individual cardiac cycles. Training features were
extracted from the ECG and acceleration signals, while reference
features were extracted from the LVP signals. A morphological
cross-correlation analysis was performed within each pacing
setting to identify the largest coherent group of cardiac cycles
and remove deviating beats containing artifacts or non-typical
paced beats.

ECG analysis employed a band-pass filter to remove the DC-
offset and the effects of respiration drift. Individual cardiac cycles
were segmented by identification of atrial pacing spikes after
which training features were extracted from the signal.

As acceleration signal’s energy, during occurrences of the heart
sounds, of S1 and S2 was found to be negligible for frequencies
above 250Hz, a (10–250Hz) bandpass filter was used to remove
DC-offset and high-frequency noise.

The atrial pacing spike was used to segment each beat of the
acceleration signal post-alignment. Features reflecting amplitude,
timing, and energy of S1 and S2 were extracted from the signals
for the machine learning process. A selection of the 17 (based
upon literature) predefined training features extracted from the
acceleration signal are shown in Table 1. Figures 2, 3 depict
examples of the features shown in Table 1.

The pressure analysis segmented the pressure signal during
the center of the diastolic phase and extracted the largest,
morphologically coherent, group of beats to account for
morphology changes caused by factors such as respiration, prior
systolic pressures, and independency from the ECG annotation
algorithm. This allowed complete morphological assessment of
the pressure curve during the cross-confirmation stage.

Following the segmentation of each heartbeat, reference
features were extracted from the LV signal being LVP max and
LV dP/dt max.

Only the acceleration-based features from each Z-axis sensor
were retained because this direction is the most reproducible,
being perpendicular to the epicardium, resulting in better
interpretable signals, and reducing computational overhead.

The automated morphological assessment was performed on
all input signals to remove irregular heartbeats. All cardiac
cycles within each pacing configuration were resampled to
match the most reoccurring number of samples per segment to
improve the comparison of the individual beats. For each pacing
configuration, the largest group of beats, providing the greatest
amount of coherence were evaluated using the cross-correlation
coefficient for each beat permutation (18). This comparison
was performed on the ECG, pressure, and acceleration signal
separately to ensure that each beat’s mechanic and electronic
response conform with each other. Beats that displayed large
morphological deviations from the rest of the beats within each
pacing setting were excluded from further processing.

Cardiac Function Modeling
A decision tree (19–22) based machine-learning model was
employed to estimate cardiac function in form of absolute LVP

and/or its first derivative. The model structure consists of a
multi-class classification system facilitated by decision trees. To
reduce the high amount of variance demonstrated by individual
decision trees, a bootstrap aggregated ensemble was used, for
which several subsets of training data were used in the training
of individual trees.

During the training process, acceleration feature-based rules
were generated to allow optimal estimation of the absolute
maximum LVP and/or its derivative. The Gini’s diversity index
(Equation 1) aids in maximizing information gain for each
decision tree by identifying splits in the training data that
reduce the probability of misclassification and hence maximize
estimation performance.

Gini index
(

Dp, f
)

= I
(

Dp

)

−
∑m

j= 1

Nj

N
I(Dj) (1)

Gini index= identifier used to reduce misclassification probability;
f = analyzed feature (subset); Dj = samples at the child node; Dp

= samples of the parent node; I = current node;
Nj = total number of samples available at the current node; N

= total number of samples.
This process iteratively refined each decision tree by

subdividing the training dataset into smaller sub-categories until
themaximumnumber of splits was reached or the remaining data
did not require any more subdivisions.

Feature selection consisted of an iterative process that
generated multiple competing estimation models. Each of
these models was based on a unique permutation of the
available feature sets for their training. This result allowed
investigation into the estimation potential of individual features
and their potential to be complementary with secondary and/or
tertiary features.

To prevent over-fitting, the number of features used in
each permutation was limited to a total of three. To reduce
the number of permutations, the process started with a single
feature and optimized estimation accuracy or loss by selectively
adding and/or replacing features until the maximum potential
was reached.

Performance metrics applied in the model training process
were estimation –accuracy/–loss (Equations 2 and 3). Both
metrics were evaluated during 10 × k-fold cross-validation,
using the mean value of all folds. The mean accuracy evaluates
the number of correctly against incorrectly estimated values.
Alternatively, the K-fold validation loss was used. Validation loss
penalizes larger discrepancies in misclassifications significantly
higher than small discrepancies. While this study primarily
focused on estimation accuracy, estimation loss was used as
validation to confirm model performance.

Loss
(

y, ŷ
)

=
1

N

∑N

i=0

(

y− ŷi
)2

(2)

Validation accuracy =
1

N

∑N

i= 0
yp (3)

N = total number of classification attempts; yp = correctly
estimated classification; Loss(y, ŷ) = validation loss for single
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TABLE 1 | Training features that are extracted from regions of interest (Figure 3) located around S1 & S2 of the acceleration and ECG signals.

Features Code Details

Amplitude Amplitude (max) A1 or A2 The maximum – minimum amplitude of S1 & S2 derived from the acceleration signal.

Differential maxima B1 or B2 The maximum – minimum differential amplitude of S1 & S2 derived from the

acceleration signal.

Envelope C1 or C2 Integral of the heart sound signal.

Energy Shannon energy D1 or D2 Attenuates high amplitude signals and provides higher weight toward low intensity

content. E = −x2 log(x2). (E=Energy||x=Signal).

Shannon energy integral E1 or E2 Integral of Shannon Energy.

Shannon entropy F1 or F2 Emphasizes medium strength amplitudes while attenuating low & high intensity

amplitudes E = −|x| log |x|.

Shannon entropy integral G1 or G2 Integral of Shannon Entropy.

Temporal S1 abs max to S2 max interval H Interval between maximum positive rectified S1 & S2 of the acceleration signal.

S1 & S2 max to Vpace interval I The maximum amplitude location with respect to the left ventricular pacing spike was

measured.

S1 & S2min to Vpace interval J The minimum amplitude (-ve peak) location with respect to the left ventricular pacing

spike was measured. Interval between maximum negative rectified S1 & S2 of the

acceleration signal.

FIGURE 2 | Examples of the training features extracted from the accelerations signal (black) and its rectified version (red). Features depicted are the maximum

amplitude of the signal; its integral and the location time duration between the rectified S1 and S2 maximum of the rectified (negative and positive as positive) signals.

Gray area = region of feature extraction.

sample; N = total number of classification attempts; y = true
classification; ŷ= estimated classification.

Model validation was addressed by using the above described
k-fold validation method in addition to holdout validation, to
address potential issues that may arise from over/underfitting.
In addition, each feature permutation used to generate an
estimation model was limited to a maximum of three to

prevent the chance of overfitting. Before the training of the
estimation model, for the personalized model, 5% of the
dataset was removed for illustrative purposes via holdout
validation of the final model. Depending on the availability
of data in each pressure category, the selection of validation
samples was reduced to retain a robust training dataset. The
model’s performance was evaluated using the average k-fold
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FIGURE 3 | Examples of the recorded baseline acceleration signal (Bi-Ventricular (BIV) pacing, Atrio-Ventricular (AVd): 150ms) and its Shannon energy from which

training features are derived. (Top) acceleration during two cardiac cycles in proximity to the mitral valve. (Center) Shannon energy of the original signal, pronouncing

low intensity amplitudes over high intensity amplitudes. (Bottom) Displays the envelope based on the Shannon energy. Blue line = raw signal; Yellow area = signal

integral; Gray area = region for feature extraction.

validation whose results are shown in Table 2. The “Leave one
out”/generalized method used k-fold validation to find the most
performant model, while one animal was completely removed
from the training set. The model was then validated with holdout
estimation whose results are given in Table 3.

During the modeling process, each feature permutation
underwent k-fold validation which ensured that rules generated
on subsets of data were applicable to the remaining dataset.

Statistics
We have performed a one-way analysis of variance (ANOVA) for
testing significance (p < 0.05) between bin-size (low-medium-
high) as well as between personalized and generalized models in
both accuracy and loss estimations.

RESULTS

Figure 4 displays an example of the acquired signals
during the 3 hemodynamic steady states: baseline,
isoflurane, and dobutamine. The profound negative
and positive effects on hemodynamics can be seen in
isoflurane and dobutamine, respectively. Also, the specific

acceleration signals of the 5 anatomic sensors and their
response to changing hemodynamics are illustrated
in Figure 4.

Post-experiment segmentation processing resulted in a dataset
of over 6,000 cardiac cycles that consisted of a complete
annotated set of training and reference data. The final selection
of the best-performing models is listed in Table 4. Of all
initially proposed features in Table 1, acceleration amplitude
and/or energy-based features proved to correlate best to the
hemodynamic variables; with S1/S2 maximum amplitude and
S1/S2 integral appearing most frequently in the final models. In
contrast, time-based features were widely neglected and only the
feature expressing the duration between themaximum amplitude
of S1 and S2 acceleration signals showed any re-occurrence in
high-performing models.

Examples of the model performances are depicted in
Figure 5 which shows the result of four models tested under
holdout validation with data extracted from the sensor in
the accelerometer in the proximity of the mitral valve. Each
row represents the holdout validation results of two models,
with increasing resolution, estimating LVPmax and LV dP/dt
max, respectively.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 6 May 2022 | Volume 9 | Article 763048

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Westphal et al. Pressure Estimation Using Heart Sounds

TABLE 2 | Accuracies for estimating LVP and LV dP/dtmax at different levels of resolution and for all sensor locations.

Mitral valve (%) LV apex (%) RV apex (%) Right atrium

(%)

Tricuspid valve (%)

Optimization method Acc Loss Acc Loss Acc Loss Acc Loss Acc Loss

Left ventricular absolute maximum pressure (range 60–130 mmHg)

Resolution (Interval)

20 mmHg 96 94 93 93 93 93 94 90 94 91

10 mmHg 87 87 88 87 88 87 87 86 89 87

5 mmHg 81 78 83 79 84 80 82 75 83 82

Left ventricular dP/dt max pressure (range 600–1,600 mmHg/s)

Resolution (Interval)

200 mmHg/s 93 90 94 94 94 89 94 92 96 94

100 mmHg/s 90 90 90 88 88 88 88 88 87 86

50 mmHg/s 86 85 86 85 85 84 86 85 86 84

Optimization methods: (Acc): accuracy optimization || (Loss): loss optimization. All values are evaluated using average 10×k-fold validation results from the respective estimation models.

LV, left ventricular; RV, right ventricular.

TABLE 3 | Accuracy optimization using holdout validation results generated by the “Leave one out” method.

LV dPdt(max)

200 mmHg/s

Mitral valve (%) Left ventricular apex (%) Right ventricular apex (%) Right atrium (%) Tricuspid valve (%)

Leave out

Animal 1

83 81 80 81 82

Leave out

Animal 2

90 85 81 83 87

Leave out

Animal 3

82 79 82 80 82

Leave out

Animal 4

71 69 67 73 74

Leave out

Animal 5

81 84 78 79 77

Each row indicates a model that excludes and was validated on the animal listed in the first column.

Table 2 displays the results obtained for all sensor locations
for both estimation accuracy and loss optimization and three
levels of resolution for LVP and LV dP/dtmax. Accuracies for
LVP with bin-size of 20 mmHg ranged between 90 and 96%,
for bin-size of 10 mmHg between 86 and 89%, and for bin-size
of 5 mmHg between 75 and 83%, with small non-significant
differences between the sensor locations. Similar results were
obtained for LV dP/dtmax using differences of 200, 100, and 50
mmHg/s, wherein accuracy ranges of 89–96%, 86–90%, and 84–
86%, were achieved respectively. An overview of the results is
given in Table 2.

Bin-size significantly (p < 0.001) affected both accuracy
and loss estimations, indicating increased accuracy/loss at
larger bin-size.

An additional investigation was performed using the “Leave
one out” method, which validates estimation models, that are
trained on N-1 participating subjects, against the remaining
subject. Using the lowest estimation resolution for the estimation
of LV dP/dtmax, an average estimation accuracy evaluated

across all sensing locations was 80% with an SD of 5.4%
(Table 3). “As expected, there was a significantly (P< 0.01) lower
estimation accuracy in the “leave-one-out”/generalized model
than the personalized model, comparing both at a bin-size of
200 mmHg/s.”

The holdout validation figures (in Table 3) indicated about
a 15-percentage point lower accuracy than the k-fold validation
results listed in Table 2.

DISCUSSION

This study provides the proof of principle for a novel method
for estimating absolute LVPmax (and LV contractility) using
machine learning analysis of epicardial accelerometer signals.
The majority of features that contributed to our prediction
models were related to the amplitude and energy of the
accelerometer signal and very few related to the timing of them.
Accuracies were similar for all five sensor locations.
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FIGURE 4 | Recorded signals of Left ventricular pressure, ECG and all acceleration recording sites under the influence of cardiovascular modifiers. All signals were

recorded @BIV | AVd = 150ms | VVd = 0. Acceleration signal show the result of the X, Y and Z axis magnitude filtered between 1-150Hz. AVd = atrio-ventricular

delay, VV = intra-ventricular delay.

TABLE 4 | Most relevant features according to their re-occurrence when generating accuracy optimized models.

LV Pressure (max) LV dP/dt (max)

Sensing location Feature 1 Feature 2 Feature 3 Feature 1 Feature 2 Feature 3

Mitral valve C2 B1 C1 G1 C1 C2

Left ventricular apex A1 C1 C2 C2 A1 C1

Right ventricular apex E2 A1 C1 A1 G1 G2

Right atrium C1 G2 A1 G2 H C1

Tricuspid valve C2 C1 A1 A1 C1 C2

Feature explanations are given in Table 1. 1 and 2 designations refer to the acceleration-based equivalent to the occurrences to S1 and S2 heart sounds.

Comparison to Other Studies
These results significantly extend the application of mechano-
sensors in estimating cardiac function, which is so far largely
limited to optimization of pacemaker settings by the SonR
system (15, 23), without the knowledge of absolute values of
pressures. Another study on pigs showed that an epicardially
placed accelerometer can be used to assess changes in preload,
and so filling status, using the frequency of myocardial
acceleration (24). In preclinical studies, Thakur et al. showed
that analysis of S1 and S3 amplitude signals from accelerometers
integrated into an implanted pacemaker device was able
to monitor the change of absolute left atrial pressure over
time (25). While these studies showed the relation between
accelerometer signals and hemodynamic status, this study, to
the best of our knowledge, is the first to show that absolute
LV pressure and contractility levels can be derived from
accelerometers. Moreover, the finding that such estimations can

be obtained from various (atrial, right, and left ventricular)
locations is novel. Potentially, the introduction of additional
features derived from, e.g., frequency components or gyroscopic
signals (easily imbedded in current accelerometer sensors)
may contribute positively to our developed pressure estimation
model (25, 26).

Possible Need for Personalization
Two ways of model development were used, namely, a
personalized model (including all available subjects’ data) and a
generalized model (leave-one subject’s data out). In the former
approach, k-fold validation from all 5 individuals was used
while holdout validation was used for the latter. The approach
clearly shows the proof of concept. However, when applying this
approach to the clinical situation it would require a period of
validation/calibration with a gold-standard measurement before
continuing with the mechano-sensor information only (see
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FIGURE 5 | Confusion matrices that illustrate the correctly and incorrectly estimation results for each given beat via holdout validation from the Mitral valve sensor. The

row of the matrix corresponds to the true class while columns correspond to the predicted class. Diagonal entries correspond to correct estimates while off-diagonal

entries represent incorrect estimates. The beats selected for holdout validation were selected at random. At low prevalence of cardiac cycles in any given category, the

number of selected samples is reduced in favor of the training dataset. Examples are shown for LVPmax [(A,B) Interval bins of 20 and 10 mmHg respectively] and LV

dP/dt(max) (C,D) interval bins of 200 mmHg/s, (D) 100 mmHg/s.

below). Because such an approach may not always be possible or
desirable, the second option shows that using the information of,
in our case four individuals, the mechano-sensor information of
the fifth individual is still quite reliable. In the clinical situation,
such a development-set is likely to be considerably larger than
four, which can be expected to significantly increase the accuracy
of the leave-out approach in the clinical setting. With either
approach, it may also be required to create different prediction
models for the various sensor locations. While accuracy was
comparably high for all sensor locations, the optimal three
features to reach this result differed to some extent. This “location
independence” is reflected in the results wherein differences in
recording locations showed only minute changes in estimation
performance while selecting dissimilar features (see Table 4).

Further Possible Applications/Integration
The proposed method may be used in general hemodynamic
monitoring applications at low-to-moderate resolution (e.g.,
intensive care unit). Secondly, it may be used to track cardiac

function to detect decompensation in an early stage. The
currently developed method allows for simple integration into
embedded software of monitoring and other (e.g., pacemaker,
ICD) devices (27). With respect to the latter, our method may
assist in identifying life-threatening arrhythmias by adding the
hemodynamic analysis on top of the current electrophysiological
analysis in these devices to prevent unnecessary defibrillatory
interventions (28, 29).

While the present study used epicardial sensors, the approach
used in this study may also be applied to less invasive acceleration
measurements, such as heart sounds measured on the skin, or
microphones or accelerometers mounted on or inside implanted
devices or pacing/defibrillation leads. Calibration steps can be
either procedure-related or added to the procedure and can
be either invasive (like in the current study) or non-invasive,
e.g., using a common pressure cuff or finger plethysmography
as shown for CRT patients (30, 31). Different calibration
circumstances can also be envisioned such as rest/exercise/pacing
intervention in case of an implantable pulse generator placement
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used in CRT. Supplementary data of patients, with similar
conditions and equipment setup, can be used to improve the
robustness of the model during implantation or any follow-
up session.

The processing pipeline, used for an automated beat and
feature selection, may be of clinical use. The implemented
method for synchronization of acceleration signals and ECG
accounts for differences in sampling rates and standardizes the
acquisition process before analysis. The prerequisite for this
integration was limited to a single auxiliary recording channel
with a synchronization pulse. This pipeline may also be useful
for the rapid generation of estimation models with new data,
including those in patients during a period of monitoring or
the implantation of pacemakers or other monitoring devices.
Scalability of estimation models allows accommodation of device
constraints such as processing overhead, battery life, and cost.
A tradeoff exists between model complexity and its estimation
accuracy, wherein a reduction in complexity may cause a
reduction in estimation accuracy and vice versa [i.e., the use of
neural networks (17, 32)].

For specific clinical applications, the method of feature
acquisition post-implantation may have to be altered in case
ECG, which is used as the reference signal, is not available.
Alternative sources of reference can be used post-implantation
as long as they include timing information about the cardiac
cycle. Preferred alternatives would be the use of “surrogate
ECG” provided by a defibrillator, EGM feedback, or timed
pacing intervals.

Limitations of the Study
Some limitations of the study should be noted. First of all,
the acquisition of mechanosensory data was performed under
preclinical conditions in normal porcine hearts with an open
chest. Clinical application in patients with compromised heart
function should be considered with caution because several
differences may apply, like differences in cardiac contractile
force, the influence of the open- or closed-chest as well as
differences in sources of noise. These noise sources were kept to a
minimum in the controlled experimental environment, whereas
in the real-life situation, environmental noise and movement
artifacts may be higher because in patients with heart failure
also lung sounds may become stronger. In addition, while
an extensive experimental protocol with a generous variety of
interventions was performed, only five animals of similar weight
and dimensions were used in this trial. This may reduce the signal
variability in comparison to the amount experienced in a clinical
setting. Finally, the personalized model may learn to identify the
animal instead of the pressure-derived estimates, therefore risk
mitigation methods such as k-fold validation and ensembling
are employed. In addition, the numerous (pacing) configurations
provided a considerable range in LV max pressure and LV
dP/dt max values. To further reduce this known phenomenon of
machine learning, it is recommended that future investigations
increase the number and physiological conditions of the subjects
in the training set.

To adhere to the processing limitations of (cardiac) pacing
devices, only features requiring little computational overhead
were used. This limited feature selection to the temporal
domain wherein only amplitude, timing, and energy-based
features was considered. Expansion of potential features
with more complex acquisition processes may further
improve results.

CONCLUSION

The use of epicardial accelerometer data in combination with
a bootstrapped decision tree ensemble algorithm can reliably
estimate absolute hemodynamic statuses, such as intracardiac left
ventricular pressure and its derivative in a controlled preclinical
setting. The algorithm is simple enough to be scaled with low
computational requirements to be used for monitoring cardiac
function by a simple computer, microcontroller, or dedicated
integrated circuitry.
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