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Abstract: BRCA mutation, one of the most common types of mutations in breast and ovarian
cancer, has been suggested to be synthetically lethal with depletion of RAD52. Pharmacologically
inhibiting RAD52 specifically eradicates BRCA-deficient cancer cells. In this study, we demonstrated
that curcumin, a plant polyphenol, sensitizes BRCA2-deficient cells to CPT-11 by impairing RAD52
recombinase in MCF7 cells. More specifically, in MCF7-siBRCA2 cells, curcumin reduced homologous
recombination, resulting in tumor growth suppression. Furthermore, a BRCA2-deficient cell line,
Capan1, became resistant to CPT-11 when BRCA2 was reintroduced. In vivo, xenograft model
studies showed that curcumin combined with CPT-11 reduced the growth of BRCA2-knockout
MCF7 tumors but not MCF7 tumors. In conclusion, our data indicate that curcumin, which has
RAD52 inhibitor activity, is a promising candidate for sensitizing BRCA2-deficient cells to DNA
damage-based cancer therapies.

Keywords: DNA repair; curcumin; RAD52 inhibitor; synthetic lethal; BRCA-deficient

1. Introduction

Double-strand breaks (DSBs) are the most severe type of DNA damage. Chromosome
rearrangement and cell death are thought to be consequences of a failure to accurately
repair DSBs [1]. The repair of DSBs is mediated via the homologous recombination (HR)
or nonhomologous end joining (NHEJ) pathway. NHEJ occurs mainly in the G1 phase
of the cell cycle, while HR is the major DNA repair mechanism occurring in the S and
G2/M phases. Since most normal cells stop dividing in the G1 phase and cancer cells
are more often in the S phase, the HR pathway is more frequently used to repair DNA
damage [2]. HR-mediated repair begins with the recognition and binding of DSB ends by
the MRN complex, which consists of the MRE11, RAD50, and NBS1 proteins. The DSB
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is then resected by MRE11 and the 5′-3′ exonuclease EXO1 to generate single-stranded
DNA via a process called DNA end resection. Subsequent binding of the RPA protein to
single-stranded DNA (RPA-ssDNA) attracts additional repair proteins such as BRCA1 and
BRCA2. BRCA1 and BRCA2 help load RAD51 onto the RPA–ssDNA complex to identify
homologous sequences of sister chromatids and initiate HR repair [3–5].

Chemotherapy and radiation therapy have been reported to induce a large number of
DSBs. Activation of cell death in cancer cells due to unrepaired damage suggests that it is
possible to improve the efficacy of these therapies by enhancing the sensitivity of cancer
cells to DSBs [6,7]. Combining chemotherapy or radiation therapy with targeted inhibitors
of the DNA repair pathway was shown to increase treatment efficacy [8,9]. Since most
cancers have different defects in their response to DNA damage [10], the use of targeted
inhibitors of the DNA repair pathway is a specific method to target only cancer cells
without affecting healthy cells [11]. PARP inhibitors (PARPis) are the most extensively used
anticancer agents that suppress the growth of BRCA-deficient cancer cells and increase their
sensitivity to chemotherapy drugs [7,12]. Indeed, a clinical study has shown that triple-
negative breast cancer (TNBC), especially carrying BRCA mutations, has a higher response
to PARP inhibitors. This result indicated that targeting HR repair is a promising means
to sensitize BRCA-mutated TCNB cells [13]. The development of PARPis has resulted in
revitalized research interest regarding other constituents of the HR pathway. In terms of
the HR pathway, RAD52 has been proposed as another target to sensitize BRCA-deficient
cancer cells.

RAD52 is known to play a major role in DNA repair in yeast, and yeast cells deficient in
RAD52 are unable to repair DNA damage, resulting in cell death [14]. However, deletion of
RAD52 does not produce a phenotype in human cells or other mammalian cells [15]. New
findings that RAD52 is essential for cell viability in BRCA1-, PALB2-, BRCA2- and RAD51
paralog-deficient cells but not in normal cells have suggested that RAD52 may represent
an attractive therapeutic target for killing breast cancer and ovarian cancer cells [11]. Cells
with either BRCA2 deficiency or RAD52 deletion survived, suggesting that Rad52 function
may overlap with that of BRCA2, while simultaneous deletion of both genes was lethal [16].
These data suggested that in addition to PARP inhibitors, RAD52 inhibitors may be another
choice for the treatment of cancer in the future [15,17].

There have been numerous clinical trials with successful outcomes in which PARPi
showed synthetic lethality with “BRCAness” cancer [18]. Hence, the concept of synthetic
lethality induced by pharmaceuticals is a promising approach for personalized therapy.
However, drug resistance to PARPi may occur. Thus, novel strategies/components to treat
cancer are urgently needed to kill cancer cells rapidly before mechanisms of resistance
develop. Recently, RAD52 has emerged as a precision therapy for BRCA-deficient cells.
In BRCA2-deficient cells, RAD52 plays a backup role that stabilizes the RAD51 filament.
Targeting RAD52 could be a potential personalized therapy for BRCA2-deficient cancer [19].
Furthermore, a novel strategy called “dual synthetic lethality” has been proposed to target
two different repair pathways [15]. Studies have shown that simultaneously targeting
RAD52 while treating patients with PARPis specifically eradicates BRCA-deficient cells
without damaging agents [11]. This indicates that the development of RAD52i could be
used for the treatment of BRCA-deficient cancer cells or as a dual synthetically lethal agent.

Curcumin is one of the main components of turmeric (Curcuma longa) and has been
shown to have a synergistic effect with chemotherapeutic drugs such as irinotecan (CPT-11)
or radiation therapy [20,21]. However, the mechanism remains unclear. CPT-11, a cytotoxic
plant alkaloid, has been reported to inhibit DNA topoisomerase I and induce DSBs in
cells [22,23]. CPT-11 has been clinically used as an anticancer drug for the treatment of
colorectal cancer, cervical cancer, ovarian cancer, and breast cancer [24]. A number of
groups, including ours, previously showed that curcumin increased the sensitivity of
cancer cells to DNA damage by inhibiting the DNA damage response (DDR) [25,26]. We
were also the first to report that curcumin increased the sensitivity of yeast to DSBs by
suppressing the expression of RAD52 protein [27].
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Our study showed that curcumin, a RAD52 inhibitor, effectively inhibited the HR
repair pathway and the proliferation of BRCA2-deficient cells. Curcumin also increased the
sensitivity of BRCA2-deficient cells to DNA-damaging drugs. In contrast, curcumin failed
to inhibit the growth of BRCA2-overexpressing cells, thereby increasing the resistance of
BRCA2-overexpressing cells to DNA-damaging drugs. Furthermore, curcumin reduced
tumor growth in BRCA2-deficient cells following CPT-11 treatment. Our results suggested
that curcumin suppressed the growth of BRCA2-deficient cells by inhibiting the expression
of RAD52 and increasing the sensitivity of BRCA2-deficient cells to DNA-damaging drugs.

2. Results
2.1. Curcumin Impaired the Expression and Foci Formation of RAD52 Induced by CPT-11 in
MCF7 Cells

We have previously shown that curcumin increases DNA damage sensitivity by in-
hibiting the expression of RAD52 in budding yeast [27]. Here, we first analyzed whether
curcumin inhibited RAD52 in the breast tumor cell line MCF7 following DNA-damaging
agent treatment. MCF7 cells were treated with 0.2 µM CPT-11 with or without various
concentrations of curcumin. On the basis of immunoblot analysis, we found curcumin to im-
pair the CPT-11-induced upregulation of RAD52 expression in a dose- and time-dependent
manner, whereas the expression of MRE11 was not affected by curcumin (Figure 1A,B).
Furthermore, we determined the effect of curcumin on the ability of MCF7 cells to form
nuclear repair foci in response to CPT-11 by immunofluorescence with antibodies against
RAD52, an important enzyme in HR [17]. RAD52-containing repair foci were visible in
MCF7 cells following CPT-11 treatment. However, the combination of CPT-11 and cur-
cumin evoked significant decreases in RAD52 foci formation (Figure 1C). Hence, curcumin
decreased the expression and foci formation of RAD52 in response to CPT-11.

2.2. Curcumin Inhibited the Expression of RAD52 Recombinase Following CPT-11 Treatment

We next investigated whether curcumin affects the transcript level of RAD52 following
CPT-11 treatment. The mRNA levels of RAD52 were analyzed by RT-PCR and RT-QPCR.
As shown in Figure 2A,B, the induced mRNA levels of RAD52 were downregulated
with 40 µM curcumin treatment in MCF7 cells. Thus, curcumin treatment decreased the
transcript levels of RAD52 in response to CPT-11. In our previous study, we demonstrated
that curcumin could impair RAD52 protein expression through proteasome-mediated
proteolysis [27]. To further investigate whether proteasome-mediated degradation of
RAD52 is elicited by curcumin in MCF7 cells, MG132, a 26 S proteasome inhibitor, was
added to MCF7 cells treated with both CPT-11 and curcumin. We found that MG132
treatment attenuated the decrease in RAD52 in cells cotreated with CPT-11 and curcumin
(Figure 2C). To further evaluate the posttranslational decreases in RAD52, we conducted
molecular docking analysis. The docking results were displayed by Discover Studio, and
the crystal structure of the RAD52 protein (PDB id: 1kn0) was docked with curcumin.
The docking analysis showed docking potential with the N-terminus of RAD52. On the
basis of the bonding type, bonding distance, and position of the curcumin structure, we
selected possible results (Figure 2D). Curcumin showed hydrogen bonds that crossed
the different monomers of PHE26 in the ring structure of RAD52, which could lead to a
conformational change in RAD52 (Figure 2E). These results indicated that as a RAD52
inhibitor, curcumin transcriptionally and post-translationally decreases RAD52 expression
in response to CPT-11.
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Figure 1. Curcumin inhibited the protein expression and recruitment of RAD52 recombinase fol-
lowing CPT-11 treatment in MCF7 cells. (A) Left: MCF7 cells were treated with 0.2 μM CPT-11 
combined with different concentrations of curcumin. After 6 h, cells were processed for Western 
blot analysis using RAD52, MRE11, and β-actin antibodies. Right: quantification of the immunob-
lotting result. (B) Left: MCF7 cells were treated with 0.2 μM CPT-11 combined with or without 20 
μM curcumin at different time points. Cells were then processed for Western blot analysis using 
RAD52 and β-actin antibodies. Right: quantification of the immunoblotting result. Asterisks (*) 
indicate significant differences between CPT-11-treated and CPT-11 + curcumin-treated cells (* p < 
0.05; ** p < 0.01). (C) MCF7 cells were treated with 0.2 μM CPT-11 combined with or without 20 
μM curcumin. After 6 h, cells were processed for immunofluorescence analysis using RAD52 anti-
body to identify foci. Nuclear staining was performed with DAPI. 

Figure 1. Curcumin inhibited the protein expression and recruitment of RAD52 recombinase follow-
ing CPT-11 treatment in MCF7 cells. (A) Left: MCF7 cells were treated with 0.2 µM CPT-11 combined
with different concentrations of curcumin. After 6 h, cells were processed for Western blot analysis
using RAD52, MRE11, and β-actin antibodies. Right: quantification of the immunoblotting result.
(B) Left: MCF7 cells were treated with 0.2 µM CPT-11 combined with or without 20 µM curcumin at
different time points. Cells were then processed for Western blot analysis using RAD52 and β-actin
antibodies. Right: quantification of the immunoblotting result. Asterisks (*) indicate significant
differences between CPT-11-treated and CPT-11 + curcumin-treated cells (* p < 0.05; ** p < 0.01).
(C) MCF7 cells were treated with 0.2 µM CPT-11 combined with or without 20 µM curcumin. After
6 h, cells were processed for immunofluorescence analysis using RAD52 antibody to identify foci.
Nuclear staining was performed with DAPI.
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Figure 2. Curcumin translationally and post-translationally regulated RAD52 recombinase follow-
ing CPT-11 treatment in MCF7 cells. (A) MCF7 cells were treated with 0.2 μM CPT-11 combined 
with different concentrations of curcumin. After 6 h, total RNA was processed for reverse tran-
scription to generate cDNA and analyzed with PCR and (B) qPCR. (C) MCF7 cells were cotreated 
with various concentrations of curcumin and 0.2 μM CPT-11 in the presence of MG132. After 6 h, 
whole-cell extracts were collected for Western blot analysis. Bottom: quantification of the im-
munoblotting result. (D) A docking model of curcumin in the N-terminal domain of RAD52 
shown as a ribbon (PDB ID: 1kn0). (E) Ligand–protein interactions with the binding residues of 
RAD52 and curcumin. The green dashed lines indicate hydrogen bonds, and the pink dashed lines 
indicate π interactions. Two-dimensional diagram showing the conventional hydrogen bond to 
Phe26 (2.05 Å), the carbon–hydrogen bond to Gln28 (2.43 Å) and to Phe26 (2.66 Å and 2.57 Å), and 
the π–alkyl interaction to Cys25 (5.24 Å). Asterisks (*) indicate significant differences between 
CPT-11 and combined CPT-11 and curcumin cells (* p < 0.05, ** p < 0.01). 

  

Figure 2. Curcumin translationally and post-translationally regulated RAD52 recombinase following
CPT-11 treatment in MCF7 cells. (A) MCF7 cells were treated with 0.2 µM CPT-11 combined with
different concentrations of curcumin. After 6 h, total RNA was processed for reverse transcription to
generate cDNA and analyzed with PCR and (B) qPCR. (C) MCF7 cells were cotreated with various
concentrations of curcumin and 0.2 µM CPT-11 in the presence of MG132. After 6 h, whole-cell
extracts were collected for Western blot analysis. Bottom: quantification of the immunoblotting
result. (D) A docking model of curcumin in the N-terminal domain of RAD52 shown as a ribbon
(PDB ID: 1kn0). (E) Ligand–protein interactions with the binding residues of RAD52 and curcumin.
The green dashed lines indicate hydrogen bonds, and the pink dashed lines indicate π interactions.
Two-dimensional diagram showing the conventional hydrogen bond to Phe26 (2.05 Å), the carbon–
hydrogen bond to Gln28 (2.43 Å) and to Phe26 (2.66 Å and 2.57 Å), and the π–alkyl interaction to
Cys25 (5.24 Å). Asterisks (*) indicate significant differences between CPT-11 and combined CPT-11
and curcumin cells (* p < 0.05, ** p < 0.01).
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2.3. Curcumin Specifically Sensitized BRCA2-Deficient Cells to CPT-11

Rad52 is known to play a major role in DSB repair in yeast. Yeast cells deficient
in Rad52 are unable to repair DSBs, resulting in cell death [14]. Although deletion of
RAD52 does not produce a phenotype in human cells or other mammalian cells [15],
previous studies have suggested that Rad52 inactivation in BRCA2-deficient cells results in
synthetic lethality [16]; this suggests that RAD52 is a potential target for the treatment of
BRCA2-deficient tumors. Therefore, we proposed that the inhibition of Rad52 by curcumin
could show synthetic lethality in BRCA2-deficient cells; furthermore, we hypothesized
that curcumin could specifically sensitize BRCA2-deficient cells to CPT-11. To determine
whether BRCA2-deficient cells are more sensitive to curcumin than BRCA2-wild-type
cells, we performed clonogenic survival assays on MCF7-siControl and MCF7-siBRAC2
cells (Figure 3A,B). After transfection, siBRCA2-2 significantly decreased the expression
of BRCA2; therefore, siBRAC2-2 was used for BRCA2 knockdown in further experiments
(Figure S1). Without CPT-11 treatment, MCF7-siBRAC2 cells were more sensitive to
curcumin treatment than MCF7-siControl cells (Figure 3C). Moreover, the inhibition of
Rad52 by curcumin specifically sensitized MCF7-siBRAC2 cells but not BRCA2-wild-type
cells to CPT-11, indicating that curcumin significantly sensitized MCF7-siBRAC2 cells to
CPT-11 (Figure 3D,E).
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Figure 3. Curcumin specifically sensitized BRCA2-deficient cells to CPT. (A,B) Clonogenic assay.
Transfected cells were grown for 10–14 days before fixation and staining with crystal violet. The
detailed procedures are described in the Materials and Methods section. (C) MCF7-siBRCA2 cells
were more sensitive to curcumin treatment than MCF7-siControl cells. Quantification of colony
numbers from the first columns of Figures 3A,B. (D,E) Curcumin sensitized BRCA2-deficient cells to
CPT-11 treatment. Quantification of colony numbers from A and B. Asterisks (*) indicate significant
differences between CPT-11 and combined CPT-11 and curcumin cells (* p < 0.05).

2.4. Curcumin Impaired the Repair System of BRCA2-Deficient Cells, Resulting in
Genomic Instability

To further investigate whether curcumin sensitizes MCF7-siBRAC2 cells to CPT-11 by
impairing the repair of damaged DNA, we performed a single-cell gel electrophoresis assay
(or comet assay) to detect DNA damage persisting after recovery from CPT-11 treatment.
MCF7-siBRAC2 cells had more unrepaired DSBs than MCF7-siControl cells, as indicated
by the longer comet tail in MCF7-siBRAC2 cells following curcumin treatment (Figure 4A).
The relative extent of unrepaired DSBs was quantified by calculating the average tail
moment, which is a measure of the amount of DNA present in the comet tail (Figure 4B).
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These results suggest that curcumin contributed to the inhibition of DSB repair, and as a
consequence, MCF7-siBRAC2 cells were more sensitive to CPT-11 than MCF7-siControl
cells following curcumin treatment.
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Figure 4. Curcumin reduced HR to sensitize BRCA2-deficient cells to chemotherapy. Curcumin
inhibited DNA repair following CPT-11 treatment in MCF7-siBRCA2 cells. (A) The cells were treated
with CPT-11 to induce DSBs for 1 h; then, CPT-11 was washed out, and the cells were allowed
to recover in media containing curcumin for 4 h. The samples were analyzed by comet assay.
(B) Quantification of the tail moment of over 50 cells from A by open comet. Error bars represent
the standard deviations of at least 3 independent experiments. Asterisks (*) indicate significant
differences between CPT-11 and combined CPT-11 and curcumin cells (* p < 0.05).

2.5. Curcumin Inhibited HR to Sensitize BRCA2-Deficient Cells

To maintain genome integrity, cells initiate repair systems in response to DNA damage.
In HR repair, BRCA2/RAD52 plays an important role in loading RAD51 onto ssDNA,
facilitating strain invasion. When the cells have defects in both BRCA2 and RAD52, their
repair system is impaired, which generates unrepaired damage in the cell, eventually
leading to cell cycle arrest. RAD52 has been reported to have a key role in HR when
BRCA2 is inactive [16]. To determine whether the inhibition of RAD52 by curcumin can
dramatically impair HR in BRCA2-deficient cells, we utilized the pDR-GFP recombination
reporter assay. In brief, a DSB is introduced into a truncated GFP gene by expressing SceI
endonuclease, and repair of the break by HR restores the expression of the GFP gene, which
can be measured by flow cytometry (Figure 5A). The expression of BRCA2 protein level
was assayed by immunoblotting (Figure 5B). MCF7-shBRAC2 cells demonstrated a lower
HR rate (2.64%) than MCF7-shControl cells (3.51%) following curcumin treatment, which
reduced RAD52 expression (Figure 5C,D). These data suggest that curcumin dramatically
impaired HR in BRCA2-deficient cells.
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Figure 5. Curcumin decreased the sensitivity to CPT-11 in Capan1 cells that overexpress exogenous
BRCA2. (A) The scheme illustrates the consequences of I-SceI-induced DSBs in DR-GFP. pSceI-GFP is
a truncated GFP coding region that contains an I-SceI cutting site (blue box). The cleavage of the I-SceI
cutting site can be repaired by homologous combination with a downstream GFP donor (red box)
and results in GFP-positive cells (green box). (B) Immunoblot analysis of BRCA2 was performed to
confirm knockdown. Bottom: quantification of the immunoblotting result. (C) Curcumin decreased
HR in the MCF7-shBRCA2 cell line. MCF7-shRNA cells were cotransfected with I-SceI and DR-
GFP plus with or without 20 µM curcumin. Forty-eight hours later, the cells were analyzed by
flow cytometry to determine the percentage of GFP-positive cells. (D) The bar graph shows the
mean percentage of GFP-positive cells. All values are moralized to cells that were transfected
with control shRNA or shBRCA2 without curcumin treatment. (E) BRCA2-deficient Capan1 cells
were transfected with pcDNA or pcDNA-BRCA2 plasmid. Cell samples were taken and processed
for immunoblot analysis using a BRCA2 antibody. Bottom: quantification of the immunoblotting
result. (F,G) Quantification of colony numbers from the clonogenic assay (data not shown). After
transfection with the pcDNA or pcDNA-BRCA2 plasmid, Capan1 cells were seeded in six-well
plates and then grown in media containing CPT-11 alone or combined with curcumin for 10-14 days.
The detailed procedures are described in the Materials and Methods section. Asterisks (*) indicate
significant differences between CPT-11 and combined CPT-11 and curcumin cells (* p < 0.05).
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2.6. Curcumin Decreased the Sensitivity to CPT-11 in Capan1 Cells That Overexpress
Exogenous BRCA2

Next, we further confirmed that the inhibition of RAD52 by curcumin sensitized
BRCA2-deficient cells to CPT-11. We proposed that overexpression of BRCA2 may coun-
teract the sensitization of BRCA-deficient cancer cells to CPT-11-induced DNA damage
after curcumin treatment. To explore this question, we employed pancreatic adenocarci-
noma Capan1 cells with mutations in the BRCA2 gene. To restore BRCA2 function, we
transfected Capan1 cells with BRCA2 or empty vector. Transfection with BRCA2 resulted
in a significant increase in BRCA2 protein expression in Capan1 cells (Figure 5E). Through
clonogenic survival assays, we found that curcumin increased the sensitivity of Capan1
cells to CPT-11 (Figure 5F), which is consistent with previous results that curcumin sen-
sitizes BRCA2-deficient cancer cells to DNA damaging drugs (Figure 3). Furthermore,
the sensitization of Capan1 cells to curcumin was counteracted in Capan1-BRCA2 cells
(Figure 5G). These data strengthen our hypothesis that curcumin selectively sensitizes
BRCA2-deficient cells to chemotherapy.

2.7. Curcumin Sensitized BRCA2-Knockout MCF7 Cells to Chemotherapy In Vivo

To further investigate the cellular and molecular findings that curcumin sensitizes
BRCA2-deficient cells described above, we examined the therapeutic efficacy in terms
of tumor size in tumor xenograft mice. Thus, the flanks of nude mice were subcuta-
neously injected with 2 × 106 MCF7 or BRCA2-knockout (BRCA2 KO) MCF7 cells, while
tumors reached approximately 100 mm3. Mice were intraperitoneally injected with vehicle,
curcumin (55 mg/kg), CPT-11 (10 mg/kg), or a combination of curcumin and CPT-11
(Figure 6A). Capan1 is a BRCA2-deficient pancreatic cancer cell line as a negative control.
The protein level of BRCA2 was verified by Western blot. (Figure 6B). Furthermore, the
BRCA2 KO cell line did not exhibit changes in cell proliferation (Figure S2). As shown
in Figure 6C,F, the body weight revealed that none of the dosages and treatments in this
study had pernicious effects on mice. Tumor growth was significantly decreased following
curcumin, CPT-11, and combined treatment compared to the vehicle control in the MCF7
xenograft model at day 16. However, the growth of tumors did not show a difference be-
tween CPT-11 and combined treatment (Figure 6D,E). Furthermore, we observed the same
effect on the BRCA2 KO xenograft model in which curcumin and CPT-11 reduced tumor
growth at day 16. Interestingly, combining CPT-11 with curcumin markedly reduced tumor
growth, indicating that curcumin sensitized BRAC2-deficient cells to CPT-11 treatment
(Figure 6G,H). To determine the in vivo effect of curcumin on RAD52 expression, we sub-
jected tumor sections to immunohistochemistry (IHC). RAD52 expression was decreased
following curcumin treatment, and IHC data showed that the expression of RAD52 follow-
ing curcumin treatment was lower than that following vehicle or CPT-11 treatment alone
(Figure 6I), which is consistent with an in vitro study showing that curcumin decreased
the RAD52 expression level (Figure 1). In conclusion, curcumin, as a RAD52 inhibitor, was
able to sensitize BRCA2-deficient cells to CPT-11.
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BRCA2 expression levels were evaluated by Western blot using anti-BRCA2 and anti-actin anti-
bodies. Bottom: quantification of the immunoblotting result. (C) The body weight of the MCF7 
xenograft model was recorded every 2 days. (D) The tumor growth and volume of the MCF7 xen-
ograft model were recorded every 2 days, and (E) representative images of the MCF7 tumor from 
each group are shown. Asterisks (*) indicate significant differences between the vehicle and other 
groups (* p < 0.05). (F) The body weight of the BRCA2 KO MCF7 xenograft model was recorded 
every 2 days. (G) The tumor growth and volume of the BRCA2 KO MCF7 xenograft model were 
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(†) indicates significant differences between the CPT-11 and combined groups († p < 0.05). (I) 

Figure 6. Curcumin sensitized BRCA2 KO MCF7 cells to chemotherapy in vivo. (A) Experimental
procedure for subcutaneous implantation of MCF7 or BRCA2 KO MCF7 cells into the right flank
of nude mice. The mice were then treated with vehicle, CPT-11 (i.p., 10 mg/kg), curcumin (i.p.,
55 mg/kg), or their combination every other day for 16 days (n = 5). Tumor growth was monitored
every 2 days, and the volume was calculated with the formula: volume = (width)2 × length/2.
(B) BRCA2 expression levels were evaluated by Western blot using anti-BRCA2 and anti-actin
antibodies. Bottom: quantification of the immunoblotting result. (C) The body weight of the MCF7
xenograft model was recorded every 2 days. (D) The tumor growth and volume of the MCF7
xenograft model were recorded every 2 days, and (E) representative images of the MCF7 tumor
from each group are shown. Asterisks (*) indicate significant differences between the vehicle and
other groups (* p < 0.05). (F) The body weight of the BRCA2 KO MCF7 xenograft model was
recorded every 2 days. (G) The tumor growth and volume of the BRCA2 KO MCF7 xenograft
model were recorded every 2 days. (H) Representative images of BRCA2 KO MCF7 tumors from
each group. Asterisks (*) indicate significant differences between the vehicle and other groups
(* p < 0.05, ** p < 0.01). (†) indicates significant differences between the CPT-11 and combined groups
(† p < 0.05). (I) Immunohistochemistry (IHC) for RAD52 in the xenograft mouse model of BRCA2 KO
MCF7 tumors.
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3. Discussion

We noticed that curcumin per se did not affect MCF siCcontrol cells in the clonogenic
assay at low concentrations (the IC50 of curcumin is 54.7 uM, Figure S3); however, curcumin
per se still reduced tumor growth in mice. Previous studies showed that curcumin inhibits
tumor formation among the dosages from 40 to 300 mg/kg in mice [28–30]. We were not
surprised that curcumin per se inhibits tumor load at the dosage of 55mg/kg according to
references. Although we may have used a lower dosage, we intended to emphasize that a
relatively low dosage of curcumin and CPT-11 could additively impair tumor load in mice.
Indeed, the data showed that combining CPT-11 with curcumin markedly reduced tumor
growth (Figure 6).

Previous studies have shown that inactivating RAD52 predominantly suppresses
the growth of BRCA-deficient cells [16]. We demonstrated that curcumin increased DNA
damage sensitivity by impairing RAD52 in BRCA2-deficient cells (Figure 3A,B). Moreover,
exogenous BRCA2 expression in Capan1 cells reversed the sensitivity to CPT-11-induced
DNA damage with curcumin treatment (Figure 5G). These data support our idea that
curcumin exerts a growth inhibitory effect against BRCA2-deficient cells by impairing
RAD52. In this study, the dosage that we used only partially inactivated RAD52 in Capan1
cells (Figure S4), and BRCA2 knockdown was incomplete in MCF7-siBRCA2 cells. The
effect of synthetic lethality may not have been as eminent as in previous studies. However,
these data did show the promising characteristic that curcumin is a novel RAD52 inhibitor
that can be used as an alternative treatment. Furthermore, we used RNA interference to
knockdown BRCA2 expression to increase DNA damage sensitivity in response to cur-
cumin treatment. However, the BRCA2 functional defect in cancer cells could be truncation,
mutation, or secondary mutation [3,31]. Therefore, the type of BRCA dysfunction that
could lead to DNA damage sensitivity by curcumin needs to be further evaluated.

Our data demonstrated that RAD52 expression decreased at the transcriptional and
posttranslational levels following curcumin treatment (Figure 2). In previous studies, it
has been shown that curcumin inhibits the activity of the GATA-2, GATA-3, and ZIC2
transcription factors, which in turn decreases the transcription level of RAD52 [32–35].
Furthermore, the data shown in Figure 2E confirm that curcumin docked with the N-
terminus of RAD52, possibly causing a conformational change that blocks the dsDNA
and ssDNA binding properties of RAD52. Furthermore, the N-terminus of RAD52 is
involved in sumoylation triggered by the MRE11–Rad50–Mrx2 complex and N-terminal
simulation, allowing Rad52 to protect against proteasomal degradation [36,37]. Curcumin
may block the sumoylation of RAD52, presuming that RAD52 could lead to proteasomal
degradation. To conclude, the docking results and previous studies might explain why
curcumin decreased RAD52 expression at the posttranslational and transcriptional levels
in our study (Figure 2C).

The heptameric ring of RAD52 has been extensively studied, and each domain has
been elucidated recently. The RAD52 monomer, in order to exert its function, is released
to the cytoplasm and the region of the N-terminal response for oligomerization to form
the ring structure, being responsible for DNA/RNA binding [38,39]. In contrast, the C-
terminal domain encompasses the area that interacts with replication protein A (RPA),
RAD51 recombinase is responsible for HR, and the nuclear localization signal (NLS) yields
RAD52 oligomer transport to the nucleus [15,40–42]. Previous studies have shown that cells
deficient in BRCA rely on RAD52 for robust DNA repair and that RAD52 is synthetically
lethal with BRCA1, BRCA2, RAD51 paralogs, and PALB2 [14,16]. Hence, RAD52 has
emerged as a promising target for personalized anticancer treatment [15]. Seven kinds
of RAD52i have been proposed, and some of these compounds are approved by the
FDA [43], indicating that RAD52i is an attractive approach for BRCA1-, BRCA2-, RAD51
paralog-, and PALB2-deficient cancer [3,14]. A previous study confirmed that BRCA1/2-
deficient leukemia cells were inhibited by the RAD52 inhibitor F79, which interferes with
the DNA binding of RAD52 [44]. F79 treatment showed a synergistic effect with imatinib
in BRCA1/2-deficient breast, ovarian, and pancreatic cancer. The compound 6-OH-dopa
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disrupts RAD52 heptameter formation, leading to inhibition of Rad52 recruitment to
damage sites [45]. Huang et al. identified that D-I03 reduces the level of SSA repair and
suppresses the proliferation of BRCA-deficient cells following cisplatin treatment [46].
Compound F779-0434 was designed with a high affinity for RAD52 and interacts with
residue Lys152 on RAD52, which plays a pivotal role in ssDNA binding [47]. Furthermore,
the FDA-approved RAD52 inhibitor A5MP can hamper ssDNA binding and halt BRCA1-
deficient cell proliferation [43]. Another compound, ZMP, which is known to emulate the
function of A5 MP, disrupts RAD52-ssDNA foci in BRCA1-deficient cells [15]. RAD52,
which is redundant with BRCA2, specifically targets BRCA-deficient cells with limited
effects on normal tissues. Thus, RAD52i is a promising therapeutic approach for BRCA-
deficient cancer. In this study, the docking data showed that the binding of curcumin was
required to link the different dimers of RAD52, indicating that curcumin only disrupts the
heptameric ring of RAD52. Curcumin docked to the N-terminus of RAD52 could impair
ssDNA/RNA binding, which is one of the main functions of RAD52. In addition, compared
to other RAD52i cells, curcumin has malignant cell growth inhibitory characteristics, is
nontoxic to normal tissues, and has anti-inflammatory properties.

In conclusion, curcumin—a main ingredient in turmeric that has been incorporated
into the human diet for thousands of years—has recently been proposed to have anti-
cancer properties. However, the RAD52 inhibition property of curcumin has not yet
been elucidated, except with our previous findings in yeast. In this study, we revealed
that curcumin is a potential RAD52 inhibitor that increases DNA damage sensitivity in
BRCA2-deficient cancer.

4. Materials and Methods
4.1. Drugs, Chemicals, and Plasmids

Curcumin (≥94% curcuminoid content) and irinotecan (CPT-11) were purchased from
Sigma-Aldrich. MG132 was obtained from Santa Cruz. All of these drugs were dissolved
in dimethyl sulfoxide (DMSO). pcDNA3 236HSC WT (BRCA2) was a gift from Mien-Chie
Hung (Addgene plasmid # 16246; http://n2t.net/addgene:16246; RRID: Addgene_16246).
pDRGFP was a gift from Maria Jasin (Addgene plasmid # 26475; http://n2t.net/addgene:
26475; RRID: Addgene_26475). pcBASceI was a gift from Maria Jasin (Addgene plasmid #
26477; http://n2t.net/addgene:26477; RRID: Addgene_26477).

4.2. Cell Culture and Reagents

MCF7 and Capan-1 cells were provided by Dr. Shu-Hei Wang and Dr. Pei-Hsin Huang,
respectively (National Taiwan University). Cells were cultured in Dulbecco’s modified
Eagle’s medium (Invitrogen, CA, USA) supplemented with 10% fetal bovine serum (Gibco,
NY, USA) and 1% penicillin/streptomycin (Invitrogen) at 37 ◦C with 5% CO2. Cell lines
used in this study have been tested as mycoplasma-free and authenticated.

4.3. BRCA2-Knockdown Cell Line Generation

To generate the BRCA2-knockout MCF7 cell line, we conducted CRISPR/Cas9 to
target the BRCA2 gene (Santa Cruz Biotechnology sc-400700, CA, USA). The transfected
cells were seeded onto 96-well plates and selected with puromycin (4 mg/mL). Full-length
BRCA2 was detected in puromycin-selected clones by Western blotting, and the BRCA2
KO MCF7 cell line was generated.

4.4. BRCA2 Transfection

For transient depletion of BRCA2 in MCF7 cells, we purchased siRNA against BRCA2
(sc-29825) and control (sc-37007) from Santa Cruz Biotech (CA, USA). For stable knockdown,
we transfected MCF7 cells with plasmid constitutively expressing shRNA, which was selected
with puromycin for at least 2 weeks. All transfections were performed with Lipofectamine
2000 (Invitrogen, CA, USA). pLKO-shBRCA2 (TRCN0000009825) was obtained from the
RNAi Core Facility, Academia Sinica (Taipei, Taiwan). pLKO-shLacZ, pLKO-shLuc, and
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pc-DNA were gifts from Dr. Szu-Hua Pan (National Taiwan University), and pCIN BRCA2
WT was a gift from Dr. Mien-Chie Hung (Addgene plasmid #16245, USA).

4.5. Homologous Recombination Reporter Assay

After treatment with drugs for 4 h, MCF7-shRNA cells were co-transfected with pDR-
GFP and pCBASceI for 2 days using Lipofectamine (Invitrogen, CA, USA). The percentage
of GFP-positive cells was determined by flow cytometry on a BD FACSC Alibur flow
cytometer, and FlowJo software was used for analysis. pDRGFP was a gift from Maria
Jasin (Addgene plasmid # 26475; http://n2t.net/addgene:26475; RRID:Addgene_26475)
andpCBASceI was a gift from Maria Jasin (Addgene plasmid # 26477; http://n2t.net/
addgene:26477; RRID:Addgene_26477). All values are moralized to cells that transfected
with control shRNA or shBRCA2 without curcumin treatment.

4.6. Clonogenic Assay

MCF7 cells were transfected with siRNA for 24 h and then seeded in 6-well plates
in triplicate at the desired cell density (500 to 1000 cells) for 16 h. The cells were then
treated with CPT-11 to induce DNA breaks and combined with curcumin for 1 hour. Next,
CPT-11 was removed, and cells were cultured in media containing curcumin for 10–14 days
at 37 ◦C to allow colonies to form. Colonies were stained with 0.5% crystal violet/25%
methanol and counted. To define the colony size and number, we used the OpenCFU
software to calculate colonies.

4.7. Immunoblot Analysis

Cell extracts were processed in Laemmli buffer (125 mM Tris-HCl (pH 6.8), 20% glyc-
erol, 4% SDS). The samples were resolved by electrophoresis on a 10% SDS-polyacrylamide
gel. The following primary antibodies were used for immunoblotting at a 1:1000 dilu-
tion: anti-RAD52 (5H9) was purchased from GeneTex, anti-BRCA2 (234403, CA, USA)
was purchased from R&D Systems, anti-Mre11 (C-16) was purchased from Santa Cruz
Biotechnology, anti-β-Actin (AC-15, CA, USA) was purchased from Sigma-Aldrich, and
anti-mouse (A9044, MO, USA) and anti-goat (A5420, MO, USA) HRP-linked secondary
antibodies were purchased from Sigma-Aldrich and used at a 1:10,000 dilution. Images
were acquired with a Wealtac KETA-CL.

4.8. Immunofluorescence

In brief, MCF7 cells were seeded onto poly-L-lysine-coated coverslips at a density
of 3 × 105 cells and incubated overnight. After treatment with drugs for 12 h, the cells
were fixed with 4% formaldehyde (w/v) in PBS for 15 min. Coverslips were washed with
PBS and then immunostained with primary antibodies against RAD52 (Cell Signaling
#3425). Appropriate Alexa Fluor-594 (red)-conjugated secondary antibody (1:200) was
purchased from Thermo Scientific. Slides were viewed with a Nikon ECLIPSE Ni-U plus
fluorescence microscope.

4.9. Comet Assay

MCF7-siRNA cells were treated with CPT-11 for 1 h before being collected for the
assay. Cell gel electrophoresis under alkaline conditions was performed for approximately
20 min at 25 V. Samples stained with DAPI (Abcam, ab104139, UK) were observed using a
Nikon ECLIPSE Ni-U plus fluorescence microscope. Images were analyzed using Open
Comet software.

4.10. Apoptosis Assay

For annexin V/PI assays, cells were stained with annexin V–FITC and PI and evaluated
for apoptosis by flow cytometry according to the manufacturer’s protocol (Molecular
Probes apoptosis assay kit,Thermo Fisher, V13241, MA, USA). Briefly, 5 × 105 cells were
washed once with PBS and stained with 2 µL annexin V–FITC and 5 µL of PI (5 mg/mL) in

http://n2t.net/addgene:26475
http://n2t.net/addgene:26477
http://n2t.net/addgene:26477


Int. J. Mol. Sci. 2021, 22, 4422 14 of 16

1 × binding buffer (10 mM HEPES (pH 7.4), 140 mM NaCl, 2.5 mM CaCl2) for 20 min at
room temperature in the dark. Apoptotic cells were determined using a BD FACSCalibur.
Both early apoptotic (annexin V-positive, PI-negative) and late (annexin V-positive, PI-
positive) apoptotic cells were included in cell death determinations.

4.11. Xenograft Tumor

The experimental protocol was approved by the Institutional Animal Care and Use
Committee of Chang Gung University (IACUC protocol no. CGU108-138). Nude mice
(5 weeks of age) were provided by the National Laboratory Animal Center (NLAC), NAR
Labs, Taiwan. Mice were held for 7 days for acclimation before the experiment was
conducted and subcutaneously implanted with 2 × 106 MCF7 or BRCA2-knockout MCF7
cells in serum-free medium into the dorsal flank region. All mice were housed in individual
cages and maintained at room temperature at 23 ± 1 ◦C with a 12-h dark/light cycle.
When the size of the tumor reached approximately 100 mm3, the mice were randomized
into groups for the following treatment. CPT-11 and curcumin were dissolved in saline
containing 10% DMSO, and mice bearing tumors received vehicle intraperitoneally at 10%
DMSO, CTP-11 at 10 mg/kg, curcumin at 55 mg/kg, or a combination of CPT-11 and
curcumin every 2 days. Tumor size was measured and calculated every 2 days on the
basis of the following formula: tumor volume (length width2)/2. After 16 days, the mice
were euthanized with CO2 inhalation for 5 min following the secondary (confirmatory)
method of cervical dislocation, and xenograft tumors were resected for the following
experiment. The tumors were diced and fixed with 4% paraformaldehyde or flash frozen
in liquid nitrogen for immunohistochemistry and immunoblotting, respectively. RAD52
immunohistochemistry was performed using FFPE tissue sections of tumors. Slides were
first incubated for 1 h at 65 ◦C and then deparaffinized in xylene, rehydrated in graded
ethanol solutions, and finally boiled in Trilogy reagent (Cell Marque, Rocklin, CA, USA) for
10 min for antigen retrieval. The slides were immersed in 3% hydrogen peroxide for 10 min
after washing with 1 × PBS. After triple rinsing with 1 × PBS, the sections were exposed to
the anti-RAD52 antibody and incubated with slides (1:100) for 1 h at room temperature.
Sides were rinsed with 1 × PBS 3 times and then incubated with a biotinylated secondary
antibody (Dako, Glostrup, Denmark) for 25 min. After rinsing with 1 × PBS, the slides
were treated with horseradish peroxidase-conjugated streptavidin for 25 min at room
temperature. The peroxidase activity was developed with 3,30-diaminobenzidine (DAB,
Dako), followed by counterstaining with hematoxylin.

4.12. Cell Viability Assay

Cell viability assay was performed as previously described [47]. Cell viability assay
was carried out by plating 5000 cells per well into 96-well plates. In the following day, cells
were treated with various concentrations of curcumin and incubated for 24 h. Cell viability
was measured using MTT assay. For MTT assay, 5 µL of MTT (4 mg/mL) solution was
added to the cells in each well containing 200 µL of medium. After incubating at 37 ◦C for
3 h, the supernatant was removed and 100 µL of DMSO was added to the cells. The MTT
color reaction was examined using a microplate reader set at A560 nm.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22094422/s1.
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