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Abstract

Despite decades of methods development for classifying relatives in genetic studies, pairwise relatedness methods’ recalls are above 90%
only for first through third-degree relatives. The top-performing approaches, which leverage identity-by-descent segments, often use only
kinship coefficients, while others, including estimation of recent shared ancestry (ERSA), use the number of segments relatives share. To
quantify the potential for using segment numbers in relatedness inference, we leveraged information theory measures to analyze exact (i.e.
produced by a simulator) identity-by-descent segments from simulated relatives. Over a range of settings, we found that the mutual infor-
mation between the relatives’ degree of relatedness and a tuple of their kinship coefficient and segment number is on average 4.6% larger
than between the degree and the kinship coefficient alone. We further evaluated identity-by-descent segment number utility by building a
Bayes classifier to predict first through sixth-degree relationships using different feature sets. When trained and tested with exact segments,
the inclusion of segment numbers improves the recall by between 0.28% and 3% for second through sixth-degree relatives. However, the
recalls improve by less than 1.8% per degree when using inferred segments, suggesting limitations due to identity-by-descent detection
accuracy. Last, we compared our Bayes classifier that includes segment numbers with both ERSA and IBIS and found comparable recalls,
with the Bayes classifier and ERSA slightly outperforming each other across different degrees. Overall, this study shows that identity-by-
descent segment numbers can improve relatedness inference, but errors from current SNP array-based detection methods yield damp-
ened signals in practice.
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Introduction
Relatedness inference in genetic data often plays a fundamental

role in enabling more accurate genetic analyses—both in studies

that directly leverage relatives and those that prune them to

avoid modeling violations. The need and opportunity to identify

genetic relatives continues to increase as the scale of genetic

datasets increase (Henn et al. 2012; Bycroft et al. 2018). One nota-

ble example is the UK Biobank wherein roughly 30% of genotyped

individuals have a third degree (e.g. first cousin) or closer relative

in the study (Bycroft et al. 2018). Applications that make use of

genetic relatives are numerous and varied and include pedigree

reconstruction (Staples et al. 2014; Jewett et al. 2021), pedigree-

based linkage analysis for disease and trait mapping (Ott et al.

2015), heritability estimation (Zaitlen et al. 2013; Young et al.

2018), forensic genetics (Weir et al. 2006), and genetic genealogy

(Stallard and de Groot 2020)—a popular tool among direct-to-

consumer genetic testing customers. On the other hand, tradi-

tional genome-wide association study tests and many population

genetic models assume that the study samples are unrelated,
and, as such, must exclude inferred relatives to avoid spurious
signals or inaccurate parameter estimates (Voight and Pritchard
2005). All these applications motivate a thorough analysis of the
approaches used for relatedness inference to determine which of
the various features the methods should leverage.

Many relatedness inference methods only utilize kinship coef-
ficients (Manichaikul et al. 2010; Ramstetter et al. 2017;
Dimitromanolakis et al. 2019; Seidman et al. 2020), while some
such as estimation of recent shared ancestry (ERSA) leverage the
number of identity-by-descent (IBD) segments between a pair
(Huff et al. 2011). IBD segments are regions of DNA two or more
relatives coinherit from a common ancestor (Thompson 2013),
and kinship coefficients are a scaled measure of the total IBD
length of a relative pair (Ramstetter et al. 2017). To date, the ques-
tion of whether segment numbers provide information for relat-
edness inference beyond that of kinship coefficients has not been
carefully explored. A recent study benchmarked 12 pairwise re-
latedness inference methods using thousands of real relatives
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(Ramstetter et al. 2017) and highlighted three most accurate
approaches: ERSA and two IBD detection algorithms, GERMLINE
(Gusev et al. 2009) and Refined IBD (Browning and Browning 2013)
(i.e. using kinship coefficients derived from their output).
Although ERSA models the distribution of both the number and
lengths of IBD segments, that evaluation found that it does not
always outperform other methods that only use kinship coeffi-
cients. One possible reason is that estimated segment numbers
from most phase-based IBD detection methods are inflated
due to switch errors that typically break up segments
(Dimitromanolakis et al. 2019; Freyman et al. 2021; Seidman et al.
2020). Alternatively, these results may indicate that IBD segment
numbers and lengths do not capture relatives’ degrees of related-
ness better than kinship coefficients.

To determine whether incorporating the number of IBD seg-
ments in a model with kinship coefficients (or coefficients of re-
latedness) improves relatedness inference, we first performed an
information theory-based analysis. Feature selection based on in-
formation theory is widely used in machine learning and data
mining in fields as diverse as bioinformatics and pattern recogni-
tion (Hoque et al. 2014; Lee and Kim 2015; Qian and Shu 2015). We
applied a commonly used measure—mutual information (MI)—
to quantify the dependency between various features and the
class variable (here the degree of relatedness) and also the depen-
dency among the features themselves. An advantage of this ap-
proach is that MI does not make an assumption of linearity
between the features and can be calculated for both discrete
and continuous variables (Bennasar et al. 2015). In addition, the
MI analysis results do not depend on the specific classifier used
downstream and can capture the relationship between variables
from an information theory perspective that is distinct from
classification.

We further conducted a classification-based analysis to deter-
mine the importance of IBD proportions and segment numbers
for inferring degrees of relatedness. For this purpose, we devel-
oped a Bayes classifier with mathematical underpinnings that
parallel those of MI. Bayes classifiers are a form of generative
learning that seek to minimize the probability of misclassification
by estimating the probability of a given data point being from
each class (Devroye et al. 2013). In this study, we assign a pair of
relatives to the maximum posterior probability degree, in con-
trast to approaches that map estimated kinship coefficients to
degrees of relatedness using a priori fixed ranges of kinship
(Manichaikul et al. 2010; Ramstetter et al. 2017; Seidman et al.
2020). The latter ignores the effect of population structure on IBD
signals—including background IBD segments (Weir et al. 2006).
These effects are important to model since they vary by popula-
tion and can meaningfully influence relatedness classification.
Moreover, bias in the detection of IBD segments can shift the dis-
tributions of both IBD proportions and segment numbers away
from expected ranges. Such biases may especially impact classifi-
cation of more distant relatives as they have smaller ranges of
kinship values that correspond to a given degree. In light of these
concerns, we estimate the probability of the features given the
degree (i.e. the likelihood) using training data simulated using
genotypes from the target population. This implicitly accounts
for the influence of background IBD segments as well as any
errors in IBD segment detection. Researchers with access to data
from a given population can also apply this strategy by using the
available samples as founders in simulated pedigrees (Caballero
et al. 2019).

Finally, we benchmarked the performance of our relatedness
classifier together with ERSA and identical by descent via

identical by state (IBIS) using simulated genotypes. We focus on
these two methods because ERSA leverages IBD segment num-
bers for classification, and because IBIS (whose segments we use
as input to our Bayes classifier) has comparable relatedness in-
ference accuracy to the top-performing Refined IBD and
GERMLINE detectors noted above—i.e. these are state-of-the-art
methods (Ramstetter et al. 2017; Seidman et al. 2020). As our goal
was to understand the impact of including segment numbers as
features for classification—and given prior efforts to compare the
performance of a wide range of relatedness classifiers
(Ramstetter et al. 2017)—we did not include other IBD segment
detectors nor allele frequency-based approaches such as KING
(Manichaikul et al. 2010) and PLINK (Chang et al. 2015) in this
analysis. Overall, we obtained comparable classification results
for the Bayes classifier, ERSA, and IBIS, indicating that the Bayes
classifier is reliable and suggesting that our approach can be
used in practice given appropriate training data resources.
Notably, the Bayes classifier performs similarly to IBIS (which
does not use segment numbers) demonstrating that, in practice,
incorporating segment numbers provides little improvement in
classification rates.

All the analyses in this paper leverage IBD segments from
simulated data, either exact segments produced by the simula-
tor or segments inferred from simulated genetic data. While re-
liably labeled real relatives would be preferable, simulated
relatives produced using both sex-specific genetic maps and
crossover-interference modeling have relatedness measures
that closely mirror those from real data (Caballero et al. 2019).
Using the simulated relatives, we investigated (1) MI quantities
based on exact segments, (2) classification rates using exact seg-
ments, and (3) classification rates from inferred segments. In
this way, the MI analysis quantifies the theoretical information
gain available in the limit of perfect IBD detection. In addition,
the classification analysis using exact segments reveals how
much improvement in relatedness inference is possible by in-
corporating IBD segment numbers at this same limit. Finally,
comparing the classification results using exact vs inferred seg-
ments enables us to localize and quantify the influence of IBD
detection errors.

Methods
We analyzed the potential for using coefficients of relatedness r
(defined below) either alone or both r and n, the number of IBD
segments a pair of relatives share, to infer the pair’s degrees of re-
latedness D.

Mutual information discrete definition and
binning approaches
MI is difficult to calculate for continuously valued variables with-
out a known distribution and whose distribution must therefore
be estimated from finite data. Moreover, estimating the MI be-
tween one continuous and one discrete random variable is in
general nontrivial and multiple approaches exist for this estima-
tion, such as nearest-neighbor (Ross 2014) and binning methods.
To enable our MI calculations [such as I(r; D)], we used a proce-
dure that bins data points of r and avoids biased MI estimates in
our finite but large sample size. In computing MI, we treated the
binned feature vector F

!
(where F

!
has the possibility of being 1D

when representing r or n) and the degree of relatedness D as two
discrete random variables with realizations f and d 2 ½1; 7�, re-
spectively. If we know the probability mass functions (pmfs) of
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the discrete random variables X and Y with realizations x and y,
we can calculate MI using its definition as

IðX ; YÞ ¼
X

x

X
y

pX;Yðx; yÞ log
pX;Yðx; yÞ

pXðxÞpYðyÞ
; (1)

where pX;Y is the joint pmf of X and Y and pX, pY are the marginal
pmfs of X and Y, respectively.

Binning a continuous variable in order to use Equation (1)
introduces the difficulty of picking the right bin size. It has been
shown (Ross 2014) that MI is sensitive to bin size and that its sta-
bility with respect to this variable is dependent on the sample dis-
tribution. Our distributions and sample sizes of r yielded a large
range of bin sizes that have stable MI estimates (see the flat
regions of each curve in Supplementary Fig. 1). Because the nor-
malized MI gain GN is a fraction composed of MI values (Results),
its correct calculation relies on the unbiasedness of the various
MI quantities that form it. At bin sizes smaller than 150 pairs
per bin (ppb), both the means and standard deviations
(Supplementary Fig. 2) of our MI quantities increase rapidly.
Given this, in our calculations of MI, we binned r at 150 ppb. Our
binning converts a continuous value of r to its nearest bin-value
in N=150 evenly spaced numbers from [minð r!Þ; maxð r!Þ], where
N represents all sampled values for the desired feature r, n, or (r, n).
Here and below r! represents all sampled training data points r.

Estimating mutual information
Calculating Equation (1) without access to the entire spaces X
and Y—i.e. estimating MI from sampled data—is contingent on
the estimation of marginal and joint probabilities pX, pY, and pX;Y .
We used a simple counting approach to calculate each probabil-
ity, assigning p̂Fðf Þ ¼ 1

N

PN
i 1ðbinðFiÞ ¼ binðf ÞÞ. Here F

!
is the vec-

tor of realized data points representing all N sampled values for
the desired feature r, n, or (r, n); binðxÞ denotes the function that
takes a continuous realization to its binned value; and 1ðX ¼ YÞ is
the indicator function. By binning r to 150 ppb as noted in the pre-
vious subsection, we were able to use this discrete maximum
likelihood estimator (MLE) approach for calculating every desired
pmf and obtain stable results in MI.

We performed calculations of MI on the exact IBD segment
data restricted to three distribution shapes: A uniform distribu-
tion, a “slow-exponential growth” distribution, and an exponen-
tial growth distribution (see Fig. 1). We accounted for different
distributions of D in the calculations of Ið F

!
; DÞ by decomposing

the joint pmf relating F
!

and D as pFðf ; dÞ ¼ pFðf jdÞpDðdÞ, and also
decomposing the marginal pmf on F

!
(with the law of total proba-

bility pFðf Þ ¼
P

d0 pFðf jd0ÞpDðd0Þ). Equation (1) is then expressed as

Ið F
!

; DÞ ¼
X

f

X
d

pFðf jdÞpDðdÞ log
pFðf jdÞP

d0 pFðf jd0ÞpDðd0Þ
(2)

by canceling the pDðdÞ terms in the numerator and denomina-
tor. pFðf jdÞ is the pmf of realizations of feature F

!
in a given de-

gree, and pDðdÞ is the distribution shape (from Fig. 1). This
approach removes noise associated with calculating the pmfs
p̂F;D for different distribution shapes, which stems in part from
random factors in finite sample sizes (including smaller num-
bers of pairs in the nonuniform distributions). In particular, be-
cause the probabilities of f conditioned on any given degree of
relatedness d are identical across each distribution shape, we
estimated pFð F

!jdÞ once only from the uniform distribution
data. Note too that the differences in MI due to the D

distribution are entirely accounted for in the probabilities

pDðdÞ, and these are exactly calculable given the equation for

each distribution.

Probability density estimation of features
In the context of the Bayes classifier, we estimated the probability

of a feature realization f conditioned on the training data T
!d

in

degree d according to the degree-wise count as

p̂ðf jd; T
!Þ ¼ 1

NT
d

XNT
d

i¼1

1ðbinðTd
i Þ ¼ binðf ÞÞ; (3)

Td
i being a particular realization of the training data T

!d
with total

count NT
d . However, we only had access to the frequencies of real-

izations f that occur at least once in the training data, so

Equation (3) is only calculable for these values. The total training

data T
!

and testing data s! are of dimension equal to their respec-

tive number of data points NT or Ns. To generate posteriors pðDjsiÞ
for realizations in s! at values where there are no training data

points in binðsiÞ, we linearly interpolated the values given by

Equation (3) within the convex hull (see Supplementary Fig. 3)

specified by the bounds of the training data. (Strictly speaking,

these posteriors are then incorrect pmfs with mass greater than

1—however, in practice this is only relevant for a vanishingly

small number of points.) We used the scipy packages interp1d

and griddata for the linear interpolations in 1-dimension (when

F
!

is either r or n) and 2-dimensions (when F
!

is (r, n)),

respectively.
In the case that F

!
is (r, n), the 2D linear interpolation of p̂ðf jT!Þ

values are only well-defined inside of the 2D convex hulls of the

training data. Therefore, we could not assign posteriors to real-

izations of the testing data that lay outside the bounds of the

training data. For these data points (labeled in Supplementary

Fig. 1. Probability mass functions of different distribution shapes for D as
a function of degree of relatedness d. Here uniform¼ 1/7, slow-
exponential growth¼ð1000=15541Þ � 2ðd�1Þ=3, and exponential growth¼
ð160=20320Þ � 2d�1. Total pair counts in the inferred segment data
analysis are 21,000 for uniform, 15,541 for slow-exponential growth, and
20,320 for the exponential growth.
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Fig. 3 as “Unscored under (r, n)”), we assigned probability values
according to the 1D interpolation of pðf j T!

d
Þ values with F

! ¼ r.
The 1D interpolations for F

! ¼ r (or F
! ¼ n) only remained unde-

fined when they occurred outside the interval of training values
½minð r!Þ;maxð r!Þ� (or ½minð n!Þ;maxð n!Þ�), in which case they
remained unclassified in our analysis. In the inferred segment
data, there was only a maximum of one point per degree that
remained unclassified.

Bayes classification

Our classifiers use the posterior probabilities pðDj F!; T
!Þ ¼

p F
!
jD; T
!� �

pðDÞ

p F
!
j T
!� � for the single and multivariate features F

!
to infer D

in the testing data. The priors p(D) are the known shape of the
degree distribution (Fig. 1), and we generated the probability of
our data pð F

!j T!Þ as the sum across degrees according to the law
of total probability pð F

!jT!Þ ¼
P

d pð F
!jd; T

!ÞpðdÞ. We calculated
likelihoods pð F

!jD; T
!Þ according to the estimator in Equation (3).

To classify a testing pair si to a certain degree, we calculated
log pðDjsiÞ for each degree and classified the pair as the maxi-
mum a posteriori degree:

DP
i ¼ argmax

d02D
log pðD ¼ d0jsiÞ; (4)

where DP
i is the predicted degree, and D is the set of possible

degrees f1; . . . ; 7g. The recall of a particular classifier for degree d

is 1
Ns

d

PNs
d

i
1ðDP

i ¼ dÞ.

The classifier takes input IBIS segments and calculates the
IBD proportion and segment numbers for all pairs of individuals
with at least one detected IBD segment. It classifies any pair with
r < 2�15=2 [a common lower bound for seventh-degree classifica-
tion (Manichaikul et al. 2010; Ramstetter et al. 2017)] as unrelated,
and, for all other pairs, predicts their degree using Equation 4.

Simulated data
For the exact IBD segment data, we used Ped-sim (Caballero et al.
2019) to simulate relative pairs of 13 relationship types from
seven degrees of relatedness (Table 1) (replicated 80 times for the
MI analysis and once for the classification-based analysis) and
leveraged the IBD segments this tool prints. Thus these segments
are free of error and we refer to them throughout as exact. We
used both sex-specific genetic maps (Bh�erer et al. 2017) and cross-
over interference modeling (Housworth and Stahl 2003) for these
simulations.

For each degree, we simulated an equal number of pairs from
each of two relationship types. The one exception is first-degree
relatives where we only considered full sibling pairs since parent-

child pairs always have r¼ 0.5 and are trivial to identify. We
doubled the number of full sibling pairs (to the total number
assigned from the distribution shape) so that the first-degree rel-
atives included the full number of pairs. We calculated the IBD
proportion by adding the lengths of all outputted IBD segments
and dividing by the total length of the sex averaged genetic
map—halving the length of IBD1 segments (see the equation for r
in Results). We calculated the segment number by counting the
number of outputted IBD segments from either Ped-sim (exact) or
IBIS (inferred, as described next).

To simulate relatives with genetic data, we used autosomal
genotypes from participants in the UK Biobank (Bycroft et al.
2018) as founders in Ped-sim runs. We used the phased data dis-
tributed by the UK Biobank (Bycroft et al. 2018) and, before simu-
lating, filtered the samples to include the white British ancestry
subjects. To filter out close relatives, we first performed SNP
quality control filtering on the UK Biobank unphased genotypes
[filtering SNPs with minor allele frequency less than 2%, missing
data rate greater than 1%, and retaining only SNPs used for phas-
ing in the original analysis (Bycroft et al. 2018)]. Next we ran IBIS
v1.20.8 on the filtered genotypes with the -maxDist 0.12 option
and with IBD2 segment detection enabled. This provided kinship
coefficients that we then input to PRIMUS (Staples et al. 2014),
running it with –no_PR [which corresponds to not reconstructing
pedigrees: executing only IMUS (Staples et al. 2013)] and
–rel_threshold 0.022 to filter out relatives with a kinship coeffi-
cient greater than 0.022 [i.e. retaining only pairs no more closely
related than fifth degree (Manichaikul et al. 2010)]. We ran Ped-
sim as described above (using sex-specific genetic maps and
crossover interference modeling) and otherwise used default
options (including genotyping error and missing data rates of
10�3). Finally, we used IBIS v1.20.7 (enabling IBD2 detection
with -2 and otherwise using default options) to detect IBD seg-
ments between these simulated relatives. Note that IBIS’s default
minimum segment length is 7 cM—meaningfully longer than is
typical for phase-based IBD detectors (Seidman et al. 2020).

Running ERSA
To get relatedness estimates from ERSA (Huff et al. 2011), we first
ran GERMLINE (Gusev et al. 2009) v1.5.1 with -err_het¼ 1
-err_hom¼ 2 -min_m 2.5 and -bits 64 on the simulated Ped-sim
haplotypes [these are the options PADRE uses (Staples et al. 2016)
and detect segments � 2.5 cM long]. That is, we provided ERSA
perfectly phased data output by the simulator. We then ran ERSA
with default options (including a minimum IBD segment length
of –min_cm¼ 2.5) on the resulting GERMLINE segments.

Runtimes
To collect runtimes, we ran both ERSA and our Bayes classifier on
a machine with four Intel Xeon e7 4830 v3 2.0 GHz processors and
512GB of RAM. We supplied 16 GB of RAM to ERSA and 8 GB to
our Bayes classifier. Both methods are single threaded.

Results
To begin, we quantified the inherent dependency between the
IBD segment features and D by analyzing MI between the fea-
tures and D. MI is a quantification of the information obtained
about one random variable through observing another; in this
case, we analyzed the information gained about D through ob-
serving the variables r, n, or (r, n). We compared our analysis of
these MI quantities with the corresponding Bayes classification
results; the conclusions we form about the classification

Table 1. Simulated relationship types for each degree of
relatedness.

Degree Relationships

1 Full siblings
2 Avuncular, Half-siblings
3 First cousins, Half avuncular
4 First cousins once removed, Half first cousins
5 Second cousins, Half first cousins once removed
6 Second cousins once removed, Half second cousins
7 Third cousins, Half second cousin once removed

Half relatives share only 1 common ancestor while other types have two
common ancestors.
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effectiveness of different feature sets are therefore based on both
the MI and classification recall.

Throughout, we refer to IBD regions that two individuals share
on only one haplotype copy as IBD1, and those the individuals
share IBD on both chromosomes as IBD2.

Mutual information analysis
We used thousands of relative pairs to estimate mutual information
Ið F
!

; DÞ between different IBD features F
!

and the degree of related-
ness D of each pair (Methods, “Estimating mutual information”).
Specifically, we compared MI values of Iðn ; DÞ; Iðr ; DÞ, and
Iððr; nÞ ; DÞ calculated using units of bits. Let kð1Þij and kð2Þij denote the
proportion of their genomes that individuals i and j share IBD1 and
IBD2, respectively—i.e. the sums of genetic lengths of all IBD1 or
IBD2 segments divided by the total genetic length of the genome
analyzed. We calculate r as twice the kinship coefficient or r ¼
k1

ij

2 þ kð2Þij (Ramstetter et al. 2017).
The first analysis uses exact IBD segments from pairs of indi-

viduals that each have one of 13 genetic relationships (Table 1).
To reduce the influences of randomness, we replicated this
analysis by performing 80 independent simulations. We also ana-
lyzed three different distributions of numbers of pairs per degree
D: uniform, exponential growth, or a slow-exponential growth
function where the number of pairs increases exponentially with
degree for both the exponential growth and slow-exponential
growth distributions (Fig. 1). The exponential growth function is
potentially a more realistic distribution of relatives than the uni-
form, while the slow-exponential growth is intermediate between
the two.

Figure 2a shows the average MI of the simulated pairs
computed over all 80 runs (Methods, “Simulated data”). For each
distribution shape, the MI between the multivariate feature (r, n)
and univariate D is the greatest, followed by Iðr ; DÞ and Iðn ; DÞ.
To quantify the relative increase in MI when including both n and
r, we used a normalized MI gain GNðxÞ � Iððr;nÞ ; DÞ�Iðx ; DÞ

Iððr;nÞ ; DÞ where

x 2 fr; ng. The normalized MI gain GNðrÞ (the increase in
information gained from using (r, n) beyond that of only using
using r) is 0.030 for the uniform distribution, 0.040 for the slow-
exponential growth, and 0.068 for the exponential growth.
Greater MI indicates a stronger dependency between the features
and D, and therefore classifying D based on features with greater
MI should yield greater recall. At GNðrÞ of 0.068 for the exponen-
tial growth distribution, we expect that incorporating numbers of
perfectly detected segments could meaningfully improve classifi-
cation of degrees of relatedness compared to using r alone, espe-
cially for higher order degree pairs. In turn, the normalized gain
over using segment number alone, GNðnÞ, is 0.15 for the uniform
distribution, 0.14 for the slow-exponential growth, and 0.13 for
the exponential growth, consistent with the use of r dramatically
improving classification rates compared to only using n, regard-
less of the distribution of D.

Across all three feature sets, the MI is maximal for the uni-
form D distribution and decreases as the distribution becomes
more exponential. By construction, the exponential growth distri-
butions have a higher proportion of high-degree relative pairs
compared to the uniform distribution. Therefore, the IBD features
from higher degree pairs share less information with D than
lower degree pairs. This is consistent with observations from
classification analyses that show that the recall of degree infer-
ence decreases as the degree increases (Ramstetter et al. 2017).

To better understand how r and n relate to each other as well
as to D, we calculated MI between these two features using the
exact IBD segments and conditioned on the degree of relatedness
(Fig. 2b). The amount of shared information between features r
and n monotonically increases with degree of relatedness, mean-
ing that in higher degree pairs r and n have increased redun-
dancy. Therefore, using both features has less benefit for
classification in higher degrees. Nevertheless, both r and n indi-
vidually become less informative about D with increasing degree,
so any additional information can be useful.

(a) (b)

Fig. 2. Mutual information between relative pairs calculated using exact IBD segments. MI between (a) various IBD feature sets and D for each D
distribution shape and (b) r and n conditioned on the relatives’ degree of relatedness. All MI quantities are averaged over 80 independent runs, and the
values in (b) are calculated using the uniform distribution with 33,000 pairs per degree. Error bars indicate one standard error and are barely visible in
(a) (all are of order 10�3).
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Bayes classification and statistical tests of exact
and inferred IBD segments
As MI quantities from exact IBD segments suggest the potential
for sizeable improvements by using (r, n) to determine D, we
sought to understand whether parallel results arise from explicit
relatedness classification. To that end, we simulated another
210,000 pairs of relatives for training, this time producing genetic
data for them using genotypes from UK Biobank unrelated sam-
ples as pedigree founders (Methods, “Simulated data”). We
detected IBD segments in these samples with IBIS and used the
resulting r and n quantities to train Bayes classifiers. For compari-
son, we further trained a separate set of classifiers using the ex-
act IBD segments from the same simulated pairs (Methods,
“Bayes classification”). Using Bayes classification allowed us to in-
corporate our prior knowledge of the distribution of D to better
determine the pairs’ degrees, and also more closely mirrors the
mathematical basis of MI. For both the inferred and exact statis-
tics, we generated a set of three classifiers, one trained only on
the coefficient of relatedness r, one on the IBD segment number
n, and a third on the vector (r, n). We tested both the exact and in-
ferred segment classifiers on 80 independent simulated datasets
containing 3,000 simulated relative pairs per degree, again infer-
ring segments with IBIS. (Genetic data for testing pairs was pro-
duced identically to the training pairs, as noted above.)

Figure 3 shows the recalls of these classifiers as a function of
degree and also shows the recall differences between classifiers
trained on (r, n) and r. We also show the proportions and types of
misclassifications in the inferred and exact datasets in
Supplementary Figs. 4 and 5. Almost all misclassified pairs are in-
ferred as an adjacent degree of relatedness compared to the truth
(i.e. one degree closer or more distant). Note that we do not report
accuracy results for seventh-degree relatives as these pairs act as

an “unrelated” class that provide bounds on sixth-degree related-
ness classification.

Overall, recalls for all three classifiers decrease monotoni-
cally as a function of the degree of relatedness. For first and
second-degree pairs, the classifiers trained on r and (r, n) both
have nearly perfect recall values of over 0.99. For higher degree
pairs from third through sixth degree, the recalls of the r and (r,
n)-trained classifiers fall from over 0.93 (third degree) to below
0.55. This is consistent with previous observations from real
relatives (Ramstetter et al. 2017), and aligns well with our
results based on MI: The features of higher degree pairs share
less information with D, meaning that the IBD signals of higher
degree pairs tell the classifier less about their true D (see mis-
classification rates in Supplementary Figs. 4 and 5). The classi-
fier trained on n alone performs poorly in all but degree one:
For second-degree relatives, the classifier trained on inferred
segments has a recall of only 0.86, and in third through sixth-
degree relatives its recall is 0.06 to 0.27 units lower than those
of the classifier trained on r. The results for the classifier
trained on exact segments are qualitatively similar to those of
the inferred-segment classifier.

In general, when using either exact or inferred IBD seg-
ments, the classifiers trained on (r, n) outperform those trained
on r for every degree. One exception is in the inferred IBD seg-
ments for sixth-degree pairs, where the classifier trained on r
has a recall of 0.54 while the classifier trained on (r, n) has a re-
call of 0.53. This decrease in recall is counter-intuitive because
the (r, n) classifier is trained on a strictly larger feature set and
so has more information than the r classifier. In addition to
general stochasticity introduced by segment detection for
these distant relatives, it may be that this decrease is caused
by the distributions of segment numbers inferred by IBIS

(a) (b)

Fig. 3. Recalls of Bayes classifiers for first through sixth-degree relatives. Results are from classifiers trained on (a) exact and (b) inferred segments with
features n, r, or (r, n). The recalls for both (a) and (b) are calculated using the uniform distribution of 3,000 pairs per degree and averaged over 80
independent runs. For each degree, the lower subplot shows the corresponding significant (P < 10�4) change in recall between classifiers (r, n) and r
[positive values have greater recall in the (r, n) classifier]. Error bars indicate one standard error.
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(Supplementary Figs. 6 and 7): IBIS does not detect segments

smaller than 7 cM and so the distribution of numbers of

detected segments for fifth and sixth-degree pairs have lower

means than those of the exact segments and are more similar

to each other.
We ran two-sided independent sample t-tests on the recalls

from the (r, n) and r classifiers trained on the inferred IBD seg-

ments. Except for the first degree relatives, in which all three

classifiers have recalls of nearly 1.0, and the second-degree

pairs, in which the two classifiers containing r have above 0.99

recall, the differences in recall between the (r, n) and r classi-

fiers are significant (P < 10�7) but small in magnitude. These

differences range from –0.00756 to 0.0179 in third through

sixth-degree pairs. In turn, for the classifiers trained on exact

IBD segments, the (r, n) classifier has significantly greater recall

than the r classifier in third through sixth-degree relatives

(P < 10�4). In this case, the improvement in recall ranges from

0.0029 to 0.031, suggesting that better IBD segment inference

would meaningfully benefit classification with (r, n) (Fig. 3).

Comparison with IBIS and ERSA
To put these results in the context of existing methods, we com-
pared our Bayes classifier with IBIS’s built-in relative classifier
and with ERSA, another method that models relatedness using
IBD segment number (as well as with segment length). This
analysis uses for testing another independent set of 3,000 pairs
per degree, again simulated from UK Biobank individuals. Our
Bayes classifier remained trained on the same 210,000 pairs as
above.

In general, all three methods performed comparably (see
recalls in Fig. 4). The accuracy of the Bayes classifier closely
tracks that of IBIS, which may be because the Bayes method
takes IBIS segments as input. At the two extremes of relatedness
we considered, all three methods have similar recalls for first and
sixth degree relatives, with differences smaller than 0.01. The
Bayes classifier has nearly identical recall to IBIS in second and
third degree pairs (the differences are bounded above by 0.004),
whereas ERSA’s recalls for these degrees are 0.06 and 0.02 units
smaller, respectively. An analysis with real relatives also found

Fig. 4. Confusion matrix of recalls of ERSA, IBIS, and our Bayes classifier trained on (r, n).
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that ERSA’s second-degree classification rates are reduced com-
pared to other approaches (Ramstetter et al. 2017). For fourth-de-
gree relatives, ERSA has a recall 0.01 units higher than the Bayes
classifier, and 0.035 units higher than IBIS. ERSA also outper-
formed the Bayes classifier and IBIS on fifth-degree pairs by 0.067
and 0.054 units, respectively. ERSA’s improved performance com-
pared to the other two methods maybe because of its use of � 2.5
cM segments (instead of � 7 cM segments from IBIS). Consistent
with this, simulated fourth and fifth-degree relatives have a non-
trivial proportion of 3–7 cM segments (Supplementary Fig. 8)—
suggesting that these undetected IBD segments may lead to more
erroneous calculations by IBIS and the Bayes classifier. Another
factor benefiting ERSA is its population model that accounts for
background relatedness, which may help it in this and other
datasets. Additionally, we used perfectly phased data as input to
GERMLINE (Gusev et al. 2009), and we supplied the resulting seg-
ment calls to ERSA (Methods, “Simulated data”). Notably, ERSA’s
higher recalls for fourth and fifth-degree pairs are close to the
range of the Bayes classifier’s recalls using exact IBD segments
(in fact, ERSA outperforms the exact Bayes classifier in these
degrees by 0.012 and 0.0031, respectively). Finally, considering
run time, the Bayes classifier is efficient, taking on average 1 min
40 s to analyze the test data and 7 s to train on the 210,000 train-
ing pairs. In contrast, ERSA takes more than 3.5 CPU days to clas-
sify the testing pairs.

Discussion
In this study, we sought to examine how much incorporating the
number of IBD segments together with the coefficient of related-
ness of a relative pair improves degree of relatedness inference.
We thus provided both a theoretical MI analysis using simulated
exact IBD segments and a machine learning-based classification
analysis using exact and inferred segments. The results using ex-
act segments show that including IBD segment numbers can
nontrivially enhance related inference quality, especially for dis-
tant relatives. However, the analyses using inferred segments re-
veal that IBD detection errors—including false negatives for
segments shorter than 7 cM—meaningfully limit this improve-
ment. Indeed, the performance of our machine learning classifier
is almost indistinguishable from IBIS (Fig. 4), which does not use
segment numbers. With the potential development of more accu-
rate IBD detection tools in the future—including for whole-ge-
nome sequencing data—use of IBD segment numbers in
relatedness inference models may be worth considering.

We introduced a machine learning-based classifier and dem-
onstrated that it has comparable accuracy to two state-of-the-art
methods and is computationally efficient. Because we fit the clas-
sifier to population-specific training data [instead of using fixed
kinship thresholds for each degree (Ramstetter et al. 2017;
Seidman et al. 2020)], it implicitly accounts for background IBD
sharing and erroneous IBD signals. This approach differs from
model-based methods such as ERSA in that it makes no assump-
tions about the distributions of IBD segment lengths or numbers
with respect to relatedness degrees. Those assumptions can be
violated in populations with small effective size or a historical
founder effect (Huff et al. 2011). Our trials of this machine learn-
ing method suggest that even without large numbers of (labeled)
real relatives, simulating relatives is a way to enable this data-
driven approach to relatedness inference. In addition, both the

machine learning classifier and the MI analyses can be easily ex-
tended to include other IBD features such as the minimum or
maximum IBD segment length between a pair.

An important factor in attempting to utilize IBD segment
numbers is their accurate detection. Switch errors profoundly in-
fluence segment number estimates when using phase-based IBD
detectors (Dimitromanolakis et al. 2019; Freyman et al. 2021;
Seidman et al. 2020; Naseri et al. 2021). Our use of IBIS segments
in our classifier was motivated by IBIS’s ability to call IBD seg-
ments in unphased data—one of only a few methods to do so
(Dimitromanolakis et al. 2019)—which is key to avoiding biased
segment number estimates (Seidman et al. 2020). ERSA takes in-
ferred IBD segments from the phase-based IBD detector
GERMLINE. To exclude the possibility of phasing errors impacting
ERSA’s performance, the phased data we provided GERMLINE
was that generated by the simulator, thus being perfect up to the
limit of the haplotypes input to Ped-sim. In particular, these hap-
lotypes do not contain switch errors in IBD segments between the
simulated relatives. It is possible that ERSA’s superior perfor-
mance in classifying fifth-degree relatives is enhanced by its seg-
ment detection in these data.

In general, our analyses are consistent with prior work show-
ing that relatedness inference can achieve high recall for up to
third-degree relatives. However, two recent studies have focused
on distinguishing relationship types of the same degree, espe-
cially three types of second-degree relatives (Williams et al. 2020;
Qiao et al. 2021). In this setting, IBD segment numbers can provide
useful information, such as for distinguishing avuncular from
grandparent-grandchild pairs (Henn et al. 2012). Still, for degree
of relatedness inference, even when using exact IBD segments,
the classification recalls for distant relatives—i.e. those beyond
fourth degree—are limited (Fig. 3a). This suggests that pairwise
IBD information might not be sufficient to reliably infer distant
relatives, regardless of segment quality. Approaches that lever-
age multiway IBD signals to infer more distant relatives can
achieve considerably higher accuracy than those of pairwise
methods (Staples et al. 2016; Ramstetter et al. 2018). Even so, these
multiway methods are built on pairwise classifiers, so under-
standing and improving pairwise relatedness classification
remains an important fundamental problem for relatedness in-
ference.

Data availability
Data for exact segments were generated using the open source
Ped-sim simulator and it is possible to generate data with the
same expected summary statistics given the pedigree definition
(def) files from this study. Genetic data were simulated using
Ped-sim based on input UK Biobank haplotypes. The latter is
available to qualified researchers from the UK Biobank. Ped-sim
def files and the code we used to calculate mutual information
and perform Bayes classification are available from https://
github.com/jeshaitan/mutual-information-relatedness-inference
(last accessed February 07, 2022).

Supplemental material is available at G3 online.
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