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Abstract

The application of umbilical cord blood (UCB) as an important source of hematopoietic stem and progenitor cells (HSPCs) for hematopoietic reconsti-
tution in the clinical context has steadily grown worldwide in the past 30 years. UCB has advantages that include rapid availability of donors, less strict
HLA-matching demands, and low rates of graft-versus-host disease (GVHD) versus bone marrow (BM) and mobilized peripheral blood (PB). However,
the limited number of HSPCs within a single UCB unit often leads to delayed hematopoietic engraftment, increased risk of transplant-related infection
and mortality, and proneness to graft failure, thus hindering wide clinical application. Many strategies have been developed to improve UCB engraft-
ment, most of which are based on 2 approaches: increasing the HSPC number ex vivo before transplantation and enhancing HSPC homing to the
recipient BM niche after transplantation. Recently, several methods have shown promising progress in UCB engraftment improvement. Here, we
review the current situations of UCB manipulation in preclinical and clinical settings and discuss challenges and future directions.
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Significance Statement

reviews.

Many strategies have been developed to improve UCB engraftment, most of which are based on 2 approaches: increasing the HSPC
number ex vivo before transplantation and enhancing HSPC homing to the recipient BM niche after transplantation. Recently, several
methods have shown promising progress in UCB engraftment improvement. This article summarizes clinical trials on UCB transplantation
improvement from the earliest to the latest publications, covering ex vivo expansion and promotion of homing. The latest preclinical
studies on UCB engraftment improvement by various approaches are also discussed, which are not available in other recently published

Introduction

Hematopoietic stem cells (HSCs) are a type of adult stem cell
that can provide a steady lifelong pool of various hematopoi-
etic and immune cells.! HSC transplantation (HSCT) has been
applied clinically to treat more than 80 diseases, including he-
matological malignancies and disorders.>* There are approxi-
mately 70000 cases of HSCT worldwide annually.* The most
commonly used HSC sources are mobilized peripheral blood
(PB) and to a lesser extent bone marrow (BM).* Nevertheless,
wide application of PB- and BM-based HSCT has been
hindered by the strict demand for HLA matching and severe
GVHD.® Umbilical cord blood (UCB), with less stringent
HLA-matching demand, ready availability, and lower risk of
graft-versus-host disease (GVHD), has become an alternative
source for HSCT.”

UCB HSCT has been developed for 30 years, and it is
estimated that the total number of UCB HSCT cases world-
wide exceeds 45000,” and the number of cases of UCB
HSCT is still growing. Overall, approximately 800000 and
4000000 UCB units have been stored in public and private
banks, respectively.® However, limitations of UCB HSCT are
that a relatively low number of HSPCs in a single UCB unit
cannot meet the demand for adult HSCT and that hemato-
poietic and immune recovery after UCB HSCT is delayed,
resulting in a high risk of infection and mortality; in addi-
tion, UCB HSCT is more prone to graft failure than BM or
mobilized PB transplantation.” Although double UCB units
and improved healthcare might alleviate such problems, the
cost can be prohibitive. Indeed, the acquisition cost of a single
UCB is $30000-60 000, not including inpatient costs.'*!!

To date, there have been many efforts to improve UCB
engraftment, with mainly 2 approaches: expanding the
UCB HSPC number via ex vivo expansion and improving
HSC homing to the recipient’s BM after transplantation.
Both strategies are based on the insight of HSC self-re-
newal regulators and niche factors identified to affect HSC
behaviors, which have been discussed in detail in previous
reviews.'>* These factors exert their functions by converging
cues at the regulatory core of HSC self-renewal and differen-
tiation (Fig. 1).'%'¢ This review focuses on the latest clinical
trials of UCB transplantation and discusses the progress of
preclinical studies, hoping to inspire future improvements in
UCB engraftment.

Clinical Trials on UCB Engraftment Improvement

Clinical trials on UCB engraftment improvement are usually
based on preclinical studies showing benefits for engraftment
after certain manipulations. As HSC markers have yet to be
defined, these studies have regarded CD34* cells or CD133*
cells, a heterogeneous population containing long-term
repopulating HSCs, as putative HSCs.'2° Therefore, func-
tional assessment of these cells after manipulation is of great

importance. In preclinical studies, limiting dilution assay
(LDA) in transplantation models is used to count the number
of HSCs among input cells, whereby long-term HSCs are able
to reconstitute in irradiated immunodeficient recipient NOD/
SCID mice (or subsequent adaptations of this mouse strain,
for instance, NSG and NOG mice) for more than 24 weeks,
with both lymphoid and myeloid repopulation.?! In general,
UCB engraftment kinetics in patient recipients are slow in the
absence of manipulation. The median time to neutrophil and
platelet recovery after double UCB transplantation (UCBT)
is approximately 27 and 48 days, respectively, twice that of
BM and mobilized PB HSCT.?>?* Therefore, the most impor-
tant aim of UCB manipulation is to shorten the median time
to engraftment. Tables 1 and 2 summarize clinical trials on
UCBT improvement.

Expansion of UCB

Cytokine-based Expansion

Early work that aimed at enhancing UCB engraftment fo-
cused on the cytokines that promote HSPC survival and
self-renewal.’**" In these settings, UCB was cultured ex vivo
in growth medium containing a combination of cytokines,
often including stem cell factor (SCF), thrombopoietin (TPO),
FMS-related tyrosine kinase 3 ligand (FL), interleukin-3 (IL-
3), interleukin-6 (IL-6), granulocyte colony-stimulating factor
(G-CSF) and granulocyte-macrophage colony-stimulating
factor (GM-CSF), to allow for proliferation of HSCs.*'*** The
challenge with this strategy is that it is difficult to control
the concentration and time-window of individual cytokines in
real time; as a result, differentiation was promoted, and trans-
plantable HSCs did not increase in number. In a clinical trial*
in which UCB was expanded for 10 days with a combination
of SCF, G-CSF and megakaryocyte growth and development
factor (MGDF), 56.0- and 4.0-fold increases in total cell and
CD34+ cell numbers, respectively, were achieved. However,
there was no improvement in neutrophil and platelet re-
covery. Besides, higher rates of acute (66.7%) and chronic
(74.0%) GVHD were observed in the patients than those of
contemporary studies,?* reflecting a change in HSPC biology
after expansion.

Copper Chelator-mediated Expansion

One clinical trial was based on the observation that supple-
mentation with tetraethylenepentamine (TEPA), a copper
chelator, reduced differentiation and increased engraftment
of UCB CD34* cells in NOD/SCID mice.* In this trial,> UCB
was split into 2 portions, one in which CD133* cells were
selected and subsequently expanded with growth medium
containing TEPA, SCEF, FL, IL-6, TPO for 21 days; the other
portion was not manipulated. With this regimen, patients
received an unmanipulated portion and subsequently ex-
panded portions. The fold expansion of CD34* cells was 6.0,
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Figure 1. Extrinsic and intrinsic factors that regulate HSC self-renewal and differentiation. Various extrinsic and intrinsic factors have been identified

to regulate human HSC self-renewal and differentiation; however, the regulatory core for HSC self-renewal and differentiation remains incompletely
understood. This picture highlights selected but not all regulators of human HSC self-renewal and differentiation. In brief, extracellular stimuli act on the
surface receptor; the signals are passaged by a series of effectors to the core regulator, where extrinsic and intrinsic signals converge. The cell fate is
then determined depending on the strength of the supposed self-renewal regulatory core and differentiation regulatory core (as shown in the Tai Chi

diagram in the figure).

and the median time to neutrophil and platelet recovery was
30 and 48 days, respectively. Since this trial, 2 other phase
I/ trials (NCT00469729 and NCT01484470) have been
completed in multiple centers. For 101 patients who re-
ceived TEPA-expanded UCB units, faster median neutrophil
(21 days vs 28 days) and platelet (54 days vs 105 days) re-
covery was achieved compared with 295 patients receiving
unmanipulated double UCB units (NCT00469729).2° There
was also an advantage in 100-day survival for TEPA group
compared with unmanipulated group (84.2% vs 74.6%). In
this case, acute and chronic GVHD rates were similar be-
tween both groups. Notably, in this trial, an amazing 77.0-
fold increase in CD34* number was reported for a 21-day
culture, but the cause for the difference from the previous
phase I trial (6.0-fold increase) was not clear.

Notch-mediated Expansion

Activation of Notch signaling via surface Notch receptors
promotes HSC self-renewal.*>*” In a preclinical study,* it was
found that among various Notch ligands, an immobilized
form of DLL1 (DLL1e%%S) performed best at UCB HSC ex-
pansion. A clinical trial?® in which UCB units were cultivated
with DLL1¢%C for 16 days reported a 164.0-fold increase
in CD34* cell number. After receiving one unmanipulated
and one DLL1""%-expanded UCB unit, patients showed a
markedly shortened median time to engraftment (16 days).
Rapid myeloid recovery in recipients of DLL1"s¢-expanded

UCB units also occurred in the early period, at 7 days post-
UCBT. Nevertheless, only one of 10 patients exhibited
an expanded cell population in the engraftment at 1 year
posttransplantation, indicating a lack of long-term HSCs after
DLL1**8%-mediated expansion.*’ In addition, all patients ex-
perienced grade I GVHD, a significantly higher rates than
those of conventional studies.

Nicotinamide-mediated Expansion

Nicotinamide is a precursor to nicotinamide adenine dinucle-
otide (NAD) and inhibits SIRT1 activity,* and addition of nic-
otinamide prevents UCB CD34+ cells from differentiating.*’ A
clinical product, NiCord, has been developed and applied in
phase I and II trials. A pilot study® with 11 participants found
that the median time to neutrophil and platelet recovery was
shortened to 13 and 33 days, respectively, when using NiCord
and unmanipulated UCB units. Only 5 patients experienced
grade I GVHD in this trial. Moreover, one patient had mixed
chimerism at 3 years posttransplantation, suggesting the ex-
istence of long-term HSCs in the Nicord portion. Based on
this observation, another trial** evaluated the effect of a
single NiCord infusion on UCBT. Among 36 participants, 34
showed engraftment, and the median time to neutrophil and
platelet recovery was markedly shortened (11.5 and 34 days,
respectively). Importantly, lower rates of acute (44% versus
56%) GVHD were observed in patients with NiCord infusion
than those in comparator cohort.
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SR-1-medieated Expansion

SR-1 is a purine derivative identified by a high-throughput
screen to promote human HSC expansion via inhibition of
aryl hydrogen receptor (AhR) signaling.’® A clinical trial®
based on a double UCB platform with one SR-1-expanded
and one unmanipulated UCB unit was recently completed
(NCT01474681). In this trial, UCB CD34* cells were isolated
and cultured with SR-1, SCF, TPO, and FL for 15 days and
then infused into recipients together with CD34- potion and
an unmanipulated UCB unit. This strategy resulted in HSC ex-
pansion on a large scale, with an 854.0-fold increase in total
nucleated cells and 330.0 in CD34* cells. In all 17 patients,
engraftment occurred, with a significant improvement in the
median time to neutrophil (15 days) and platelet (49 days)
recovery. In terms of GVHD, the rates of acute and chronic
GVHD in SR-1 group were similar to historical cohorts.

MD Anderson Cancer Center, Houston, Texas, US

Locations

UM171-mediated Expansion

UM171 is a pyrimidoindole derivative that promotes UCB
long-term HSC expansion independent of AhR signaling.’!
The presence of UM171 leads to inhibition of erythroid and
megakaryocyte expression.’! Mechanistic studies demonstrate
that UM171 effectively targets RCOR1, LSD1, and HDAC2
through CRL3/KBTBD4 complex by proteasomal degrada-
tion, which further re-establishes H3K4me2 and H3K27ac
epigenetic marks to prevent HSC attrition during in vitro cul-
ture.’? It has also been reported that UM171 treatment se-
lectively increases EPCR* or ITGA3* cell populations, which
possess higher long-term repopulation ability than the EPCR-
or ITGA3- component.”®*% In a recently completed trial,?”
22 patients who received a single 7-day UM171-expanded
UCB unit experienced a marked shortening of the median
time to neutrophil (18 days) and platelet (42 days) recovery.
Notably, patients infused with UM171-expanded UCB also
had less GVHD occurrence than those infused with double
unmanipulated UCB units. In light of this observation, many
more UM171-related trials have begun in multiple centers.

Phase II; Recruiting

Status

Clinical Trials.gov

identifier
NCT03096782

Mesenchymal Stromal Cell (MSC)-mediated
Expansion

To mimic the BM niche that supports HSC self-renewal,
researchers have cultured UCB CD34* cells on STRO-3*
MSCs supplemented with SCE, TPO, FL, and G-CSE?* In
this clinical trial (NCT00498316), total nucleated cell and
CD34+ cell numbers were increased 12.2- and 30.1-fold, re-
spectively, at 14 days postculture. Participants received one
cocultured and one unmanipulated UCB unit successively,
and 23 of the 24 recipients showed mixed chimeras, with a
markedly shortened median time to recovery of neutrophils
(15 days) and platelets (42 days). The rate of acute GVHD
was 55%, comparable to that of historical cohorts. However,
unmanipulated UCB units prevailed in all patients’ chimera
at 1-year posttransplantation, suggesting that the engrafting
ability was impaired in cocultured UCB units.

Hematologic malignancies

Conditions

Double UCB; one expanded on MSC
and then fucosylated; the other is

unmanipulated

Strategy

UCB Homing Promotion

Prostaglandin-mediated Homing

A long-activating derivative of prostaglandin  E2,
16,16-dimethyl-PGE2 (dmPGE2), has been identified as
increasing the long-term HSC number in zebrafish, mice,
and humans via enhancement of Wnt signaling and pro-
motion of survival; dmPGE2 also upregulates expression of

MSC and
fucosylation

Abbreviations: C3a, completement 3a fragment; IBMT, intrabone marrow transplant; MSC, mesenchymal stromal cell; NA, not applicable; SR-1, stem-regenin 1; PGE2, prostaglandin E2; TEPA,

tetraethylenepentamine; UCB, umbilical cord blood.

Table 1. Continued

Manipulation
Combination



, 2022, Vol. 11, No. 9

Icine,

Stem Cells Translational Med,

918

UOIIBIIUDIAY
-11p onkdokrexedaw

pue proyqi&ro P T s3I3[0 0T X 8'8T €D ¥'$€ WPEAD Td
jo uoniquyuy P 81 ss[rydommnaN T VN $,01 X T6'C ONL VN VNONLL PL  ‘OdLHYOS ‘TZ1AN e TLTNN
LAY
JO uoneziuogeiue
£q uonenuaray P 6% s19[38]d OT X781 HbEAD 01 X 0°SLL HbEAD O X0 P€dD  0°0€€ vEdD 9-11
-J1p jo vonIqryul 'p ST ssyrydommaN LT/ILT $,0T X070 *ONL £,01 %0705 *ONL %01 %007 *ONL 0'+S8ONL PST  “Td‘OdL490S ‘1-9S o T-4S
Surwoy
SIJEII[IO'Y YOTYM 9s0onj a1eydsoydip
fSu1dA[as-J pue - p §€ swpIRld SO1 X 4T HpedD 01 X 6°0 ¥€dD SOT X TT 5HP€dD soynuIw autsouens TA
jo Surpuiq paseasdu| P L1 ss[rydommaN T/0T $01 X 9T¥ ONLL L0181 DNLL %01 X 97 ONLL VN 0¢  -oserdysuen£soong scuone[dsoon,
9se[£39083p 1 1IS
Suniqryur £q uonen P +€ s19p3e]d 501 X €9 Hy€dD 0°€€ “PEAD Sdd ‘9-11 ‘OdL
-USI3J1p paseatdn P S'IT ss[rydomnaN 19143 VN L01 % 6% ONLL VN VN:ONL PIT  {DS OprueunodiN pePILIBULIODIN
9se[£39083p [ 1IS
Suniqryur £q uonen p €€ s1pIR]d 501 X §°¢ Ly edD 0T X 9°0 #€AD 0'CL *¥€AD Sdd ‘9-11 ‘OdL
-UQISJIp Paseardaq 'p €1 ssjrydonnaN T1/0T VN %01 % §TONL %01 % 97 ONLL 0'98%*DNLL PIT  {DS OprueunodiN ¢OPIUBUROdIN
Surwoy sanIey VN :s1[a3e[d 01 X 0T HpEdD
gIYM SIXE $IDXD-T
-4 2y suayduang P 1 ss[rydonmaN LVILY VN L0147 ONLL VN VN VN undr3eing uonIqyut $4J4d
Surwoy VN :s39]23e[d 01 X 9°L p€dD SO1 X TE HpedD SO X ¥°€ Hp€dD
SaNI[Ide} YOIYMm sanurw
“PADXD JO UOLEBANIY 'p £ ss[rydommaN 67/1C L0T %X 0% ONLL $0T % ST ONLL $0T % "7 ONL VN ST 1%} resurutid ecn
Surwoy pue Jurpeusdrs P € s319]938[d y0T X 0°L +HEAD yOT X 0°9 H€AD
Jup padueyuyg P §£1 ss[rydomnaN 101 VN L0T % 8T DNLL $01 X L1 ONL VN qyc TADdwp  Sunund ggHdwp
uonenud
-IopIp syuaA21d Yargm P T swpPIRld s01 X TT 5HpedD 50T X 0T 5¥€dD yOT X 0% 5H€AD 1°0€ “¥€dD dSD-D
1-4dS jo uonaidxag P §1 ssrydommaN ¥T/€T L01 % €8 DNLL %01 % 86 DNLL L01 % €7 ONL TTIONL Pyl “14 ‘Od.L “10S 62IMI[MD03 DSIN
[EMAUAI-]as sPonpUI 9-TL ‘-l “Td “Od.L
yorgMm “Surfeusts VN :s39]23%]d yOT X 0°€09 “¥€dD 0L X 0P HPEAD 09T HEAD DS ‘undsuoIqLy
U2I0N] JO UOHBAIIY P 91 s[rydommaN 01/L VN S01 %X 9% DNLL S01 % €°¢ DNL 0'C9S*DONLL Pl ‘o [ BIRA scPUESI[ 210N
AMolIEW dUoq P 9¢ is19[38[d +01 X 0°0T SH€dD +01 X 00T ¥€AD
03 Surwoy pasearduy 'p €2 ssprydonmanN 87/8T %01 X 9T ONL VYN %01 X 9T ONL YN VN YN o LINGI
P +S s19p38]d 01 X TH6 +HEAD 0T X 8°€T ¥€dD 0°LL *+¥€AD OdL‘9
Teapun) 'p 1T s[iydonnaN 101/S8 VN %01 % 6°0 *ONLL L0147 ONLL 0°00% *ONLL PIT 1714 408 ‘VddL or103e[RY Taddony
P 8t :s39[938[d vOT X 1°S9 HHE€AD yOT X §°S 5y €dD 0'9 “¥€AD OdL9
Tedppupn P 0¢ ss[rydommaN 01/6 VN 50T X ¥ 2ONL $01 % LT DONLL 0617 ONL p1c =11 14 908 ‘VdA.L s¢ioreRyd 1addony
UONEIIUINJIP JO
uonuaadid pue [emou P 907 :s39[938[d yOT X $°0T =HEAD YOI X 4L p€dD 0y =HEAD
-91-§[98 JO UOROWOI] 'p 8T ss[rydommaN 0€/0€ L0101 ONLL VN S0T X TTONL 0°9S ‘ONL POl JAD ASO-D UDS 4SPUD[0IAD)
(syuoned
Jo oquinu) [elor, parendiuey parendiuewiun
JuounyeIsus P10} porad
WISIUBYIIW J[qISSO] juounjeidud jo Aeq  ondtodoreway (1ySrom 3udtdar Sy/s[[ad) asop [[PD uorsuedxy  aumn) Istuody juduIedIy,

‘uone|ndiuew goM 4O BIEP [BL [BOIUID JO AlBWIWNG *Z d|qeL



Stem Cells Translational Medicine, 2022, Vol. 11, No. 9 919

£ , o = CXCR4, which is a homing receptor of HSCs to the BM
2 2 2 g niche.’**% In a pilot study,®® 12 participants who received
g 2 & 2J 8 > .
£ < = L% one dmPGE2-pulsed UCB unit and one unmanipulated UCB
g °r g i ;3’ unit displayed promising improvement in hemgtopmetlc en-
= 2.2 S5 — raftment, and the median time to neutrophil (17.5 days)
) o g m s 8 g .
2 5 3 =T 2 and platelet (43 days) recovery was shortened. Interestingly,
g 58z | #2° p y y :
= 73 ;ELZ) 10 of the 12 patients showed 100% engraftment with
S &k dmPGE2-pulsed UCB units, suggesting a functional boost
g . Eae of HSC engraftment ability with dmPGE2 treatment. In
£ - =z terms of GVHD, only 4 patients experienced mild GVHD
< 0 < g P
= w3 =R symptom.
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kS o5 Sgw C3a-mediated Homing
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g %é“ £ 8 C3a is a component of the completement system. C3a can
o i" 8 o be produced by BM stromal cells.’” It was found that C3a
g Wy is able to promote CD34* cell migration toward SDF-1 via
2B« =R p R ) .
2 g2 5 B the surface C3a receptor in vitro, acting through the SDF-
= £ .2 2 - SE2 1-CXCR4 axis to facilitate HSC homing to BM.*>¢ In one
g & § - %EE clinical trial,>* the UCB unit was primed with C3a for 15
T e Eal Sk minutes and then infused into participants along with one
~2 5 cd o participants along
B unmanipulated UCB unit. Strikingly, the median time to neu-
ZE P : g Y.
g2 - trophil recovery with C3a priming was 7 days. However,
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E,-EAE ward C3a-primed units, suggesting that C3a priming may
== act on short-term repopulating cells rather than long-term
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= | 5 < NEw HSCs.
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2 5 52 DPP4-mediated Homing
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:'L:Q: fra g % Dipeptidyl peptidase-4 (DPP4) cleaves SDF-1 at the
0 s a5g N-terminus to generate a truncated form that competi-
& % gET tively blocks the binding of wild-type SDF-1 to CXCR4,
2| & §_§[: thus impairing HSC homing.®' Sitagliptin is an oral drug
= g 2 "é G that inhibits DPP4 activity and enhances HSC engraftment
g S Eﬂ% in mouse models.®? In a clinical trial,*? participants received
= REE: 600 mg sitagliptin once a day before UCBT until 2 days af-
O | 5EE terward. However, the outcome was not exciting, with only
Qo C [iige] . . . .
= Teg modest improvement in the median time to neutrophil re-
2 2o 3 covery (21 days). Anyway, the incidence of GVHD was rare
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2 St can augment P-selectin and E-selectin binding of HSCs and
:#g - § ?5 E thereby enhance homing to BM.®*** In a clinical trial,*® UCB
SIS zZ %‘g@g units were incubated with fucosyl-transferase VI in vitro
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Hyperbaric Oxygen Therapy (HBT)

UCB CD34* cells display an impaired ability to migrate to
the BM niche after exposure to erythropoietin (EPO),*” but
lowering the EPO concentration by HBT can facilitate UCB
HSC homing to the BM niche in a mouse model.®” In a clinical
trial,*® patients received HBT before single- unit UCBT, and
the median time to neutrophil (15.0 days) and platelet (36.5
days) recovery was significantly improved. However, overall
survival did not differ from that of conventionally treated
patients.

Recent Progress in Preclinical Studies on UCB
Engraftment

In a normal physiological environment, self-renewal of HSPCs
is regulated by complex regulatory networks of intrinsic
factors (such as transcription factors, cell cycle regulators,
and various metabolic pathways) as well as external cues.®
Supportive cells in the BM niche can produce a variety of cell
growth factors, such as SCE, TPO, TGF-f1, and G-CSF, and
provide cell-cell contact signals to affect HSC behavior.!>'¢ In
general, these extrinsic signals are transmitted by surface or
intracellular receptors and adaptors and converge to a regu-
latory core comprising key transcription factors (Fig. 1). The
delicate balance between self-renewal and differentiation is
determined by these core regulators. Numerous studies have
sought to promote HSC self-renewal versus differentiation
via certain stimuli. Recent progress in preclinical studies
may help to improve UCB engraftment in the clinical setting
(summarized in Table 3).

Epigenetic Modifiers

De novo transcription of genes is regulated by local chromatin
accessibility through epigenetic modification, which has been
demonstrated to play a key role in cell fate determination in
various cell types.”>”® A recent study reported that after 9
days of culture, the DNA methyltransferase inhibitors 5azaD
and TSA increased the number of SCID-repopulating cells
(SRC) among UCB CD34* cells by 7.0-fold.® Additionally,
the mechanistic study found a marked decrease in methyla-
tion levels at HSC self-renewal gene loci after SazaD and TSA
treatment. Surprisingly, another agent, the HDAC3 inhibitor
VPA, led to SRC number maintenance but not increase, which
seems contradictory to other reports.®>”° This result may have
been caused by certain substances in serum that blocked the
function of VPA, as serum-free culture of UCB CD34+ cells
with VPA increased the SRC number by 36.0-fold after 7
days.” Moreover, VPA was found to upregulate expression of
the homing receptor CXCR4 and activity of ALDH in HSCs.
In addition to HDAC3 inhibition, HDACS inhibition has been
shown to improve UCB engraftment with the SRC number
increasing 6.0-fold after 16 hours of treatment with the
HDACS inhibitor LMK233, an effect that might be mediated
by enhanced NF-kB activity and upregulated CXCR4 ex-
pression.”! Interestingly, a recent report’? demonstrated that
UM171 was involved in epigenetic regulation of HSCs by
targeting the components of CoREST complex (RCOR1,
LSD1, HDAC2) for degradation. In this study, the HDAC
inhibitor panobinostat selectively expanded CD34*EPCR*
HSCs after 4-day culture. Despite lacking of function assay,
this study highlights the role of epigenetic regulation to or-
chestrate HSC activity. Other epigenetic modulators, such as
histone acetyltransferase (HAT) and the bromodomain and

Stem Cells Translational Medicine, 2022, Vol. 11, No. 9

extraterminal domain (BET) family, have also been reported
to participate in HSC self-renewal. Garcinol, an inhibitor
of HATs, caused a 2.5-fold increase in SRC number,”> and
CPI-203, a BET inhibitor, enhanced UCB HSC engraftment
by promoting megakaryocyte differentiation, possibly with
an effect on megakaryocyte fate-primed HSCs which are at
the top of the hematopoietic hierarchy.”? Overall, epigenetic
modifiers play vital roles in HSC engrafting ability by selec-
tively adjusting transcription factor activity on the self-re-
newal or differentiation network.

MAPK Superfamily

The mitogen-activated protein kinase (MAPK) superfamily
is heavily involved in proliferation and various physiological
processes, classified into the p38 MAPK, ¢-Jun N-terminal ki-
nase (JNK) and extracellular signal-regulated kinase (ERK)
signaling pathways.”* SB203580, a p38 inhibitor, led to
modest enhancement in the case of UCB CD133* cell en-
graftment.”* A more recent study screened out a structure-
modified molecule named C7, causing a 2.0-fold increase in
SRC number in UCB mononuclear cells.” Furthermore, JNK
has recently been proven to participate in HSC stemness and
self-renewal regulation.”>””The inhibition of JNK activity by
JNK-IN-8 increases the SRC number among UCB CD34* cells
by 3.9 folds at 10 days post-culture.”® Moreover, a greater
increase in SRC number was achieved by shortening the cul-
ture period to 24 hours and increasing the JNK-IN-8 concen-
tration.”” Interestingly, the presence of a JNK inhibitor during
HSC collection was also found to enhance long-term HSC
recovery from UCB units.”” Mechanistically, JNK inhibition
promotes self-renewal gene expression and prevents meta-
bolic activation in HSCs.””

Metabolic Regulation

It has been observed frequently that long-term HSCs are
more metabolically inactive than are short-term HSCs.”>*7
Low-level metabolic activity can reduce metabolite-related
reactive oxygen species (ROS) accumulation and endo-
plasmic reticulum (ER) stress, thus maintaining HSC survival
and stemness.”®” In recent years, there have been various
attempts to target metabolic regulation, including glycol-
ysis and lipid metabolism. Resveratrol is a nonflavonoid
polyphenol that activates SIRT1, which plays an essential
antioxidative role.!” Activated SIRT1 in turn upregulates
FOXO3a and then degrades cellular ROS.' A recent study”
found that addition of resveratrol enhances serial engraft-
ment of UCB CD34* cells after 9 days of culture, with a
comparable effect to SR-1. However, the specific number of
SRCs was not calculated. Another study® reported an im-
portant role for lipid metabolism in HSC self-renewal regu-
lation. DEGS1 is a sphingolipid enzyme with low expression
in long-term HSCs but high expression in differentiating
progenitors.® It was observed that DEGS1 expression in UCB
CD34+ cells was rapidly upregulated upon culture in vitro,
with the SRC number increasing by 2.5-fold in the presence
of the DEGS1 inhibitor N-(4-hydroxyphenyl) retinamide
(4HPR).% Such enhancement of HSC engraftment may result
from ER stress alleviation, autophagy promotion and ROS
reduction. Notably, a greater increase in SRC number can
be achieved by combining 4HPR with UM171 and SR-1.%°
In the case of glycolysis modulation, the PPARY inhibitor
GW9662 achieved a 5.0-fold increase in SRC number by
enhancing glycolysis and suppressing lipid metabolism.®!
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These observations suggest that promoting quiescence is
beneficial for HSC stemness preservation. Other agents, for
instance, angiogenin, promote HSC quiescence by enhancing
tiRNA production in HSCs,*> and NOV/CCN3 is reported to
increase the HSC number via cell cycle inhibition and meta-
bolic suppression.$3

Extracellular Matrix

The ECM is an important component that provides signals
to regulate HSC behavior. Indeed, the ECM has a signif-
icant effect on biological processes such as cell differentia-
tion, proliferation, adhesion, morphogenesis, and phenotypic
expression.*’

BM-derived MSCs have been demonstrated to provide cer-
tain signals for HSCs to proliferate and self-renew in both
clinical trials*® and preclinical studies.®>'°! Nevertheless,
MSCs are not easily produced on large scales, and there are
difficulties in quality control. Therefore, a more defined cul-
ture method is needed to facilitate translation to the clinic.
Many biomaterials have been tested for their ability to en-
hance HSC self-renewal, but most of them have failed.'* Even
the most efficient methods, such as 3D fibrin/collagen/PCL
scaffolds® and PES nanofibers,® led to only a modest increase
in short-term engraftment. However, strikingly, a recent re-
port®” indicated that zwitterionic hydrogel markedly increased
the SRC number among UCB CD34+ cells by 78.0-fold after a
24-day 3D culture via multiple signaling pathways, including
reduced metabolic activity and avoiding ROS production and
p38a, mTORC and p16INK activation. This study suggested
that fine-tuned orchestration of diverse cues is important to
achieve better regulation of the HSC core network.

Discussion

Clinical trials have demonstrated the promising translational
potential of ex vivo manipulation of UCB to improve HSC
engraftment. Regardless, more endeavors are needed to ex-
plore more efficient strategies, as many methods still rely on
double UCB platforms, except for NiCord and UM171, the
clinical benefit of which requires further evaluation. Despite
many positive results using preclinical mouse models, there
is low translational efficiency to human counterparts of
proposed protocols. In general, regulation of human HSCs
differs in some aspects from mouse HSCs,*>'?? and even
HSCs from different sources show different transcriptional
profiles.!?1%* Additionally, it is challenging to sophistically
control the agent concentration and time-window of ex vivo
manipulation.® In fact, the regulatory core of HSC self-re-
newal remains unclear. RNA-seq and proteomic analysis may
help identify novel regulators.®®?:1% At present, the combina-
tion of different methods might help to maximize the HSC
engraftment potential by orchestrating multiple cues.’%%!
Overall, much work is needed to optimize UCB engraftment.
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