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Abstract: Arabidopsis thaliana MYB43 (AtMYB43) is suggested to be involved in cell wall lignification.
PtrMYB152, the Populus orthologue of AtMYB43, is a transcriptional activator of lignin biosynthesis
and vessel wall deposition. In this research, MYB43 genes from Brassica napus (rapeseed) and its
parental species B. rapa and B. oleracea were molecularly characterized, which were dominantly
expressed in stem and other vascular organs and showed responsiveness to Sclerotinia sclerotiorum
infection. The BnMYB43 family was silenced by RNAi, and the transgenic rapeseed lines showed
retardation in growth and development with smaller organs, reduced lodging resistance, fewer
silique number and lower yield potential. The thickness of the xylem layer decreased by 28%;
the numbers of sclerenchymatous cells, vessels, interfascicular fibers, sieve tubes and pith cells
in the whole cross section of the stem decreased by 28%, 59%, 48%, 34% and 21% in these lines,
respectively. The contents of cellulose and lignin decreased by 17.49% and 16.21% respectively, while
the pectin content increased by 71.92% in stems of RNAi lines. When inoculated with S. sclerotiorum,
the lesion length was drastically decreased by 52.10% in the stems of transgenic plants compared
with WT, implying great increase in disease resistance. Correspondingly, changes in the gene
expression patterns of lignin biosynthesis, cellulose biosynthesis, pectin biosynthesis, cell cycle, SA-
and JA-signals, and defensive pathways were in accordance with above phenotypic modifications.
These results show that BnMYB43, being a growth-defense trade-off participant, positively regulates
vascular lignification, plant morphology and yield potential, but negatively affects resistance to
S. sclerotiorum. Moreover, this lignification activator influences cell biogenesis of both lignified and
non-lignified tissues of the whole vascular organ.

Keywords: oilseed rape (Brassica napus); MYB43; xylem; vessel; interfascicular fiber; plant morphology;
lodging; yield potential; resistance; Sclerotinia sclerotiorum

Genes 2020, 11, 581; doi:10.3390/genes11050581 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
http://dx.doi.org/10.3390/genes11050581
http://www.mdpi.com/journal/genes
https://www.mdpi.com/2073-4425/11/5/581?type=check_update&version=2


Genes 2020, 11, 581 2 of 23

1. Introduction

There are approximately 375,000 species of vascular plants globally that generate over 90%
of terrestrial productivity [1]. Plant vascular tissues evolved as early as the Silurian period some
430 million years ago. The evolution of vascular tissues connected the leaves and other parts of the
shoot with the roots and solved the problem of long-distance transport of water, nutrients and signaling
molecules, thus enabled early vascular plants to gradually colonize the land [2–4]. The plant cell wall
plays a dual role in the structure and function at the levels of the cell and the whole plant; it represents
key determinants of cell division, differentiation and expansion, overall plant form, plant growth and
development, as well as a variety of biotic and abiotic stress responses [5,6]. Among them, the plant cell
wall is the physical barrier against pathogens. The majority of pathogens need to degrade the cell wall
components to invade the host tissue, so the integrity of the cell wall greatly affects the sensitivity of
plants to pathogens [7–9]. The cell walls of vascular bundles deposit a large amount of cellulose, lignin
and pectin, which are closely related to the support and resistance of plants. Cellulose is the skeleton of
vascular bundles and one of the main structural polymers of the cell wall, which significantly endows
plants with mechanical strength [10,11], and many researchers have shown that the content of cellulose
is inverse to the ability of plants to resist pathogens [10,12–14]. Lignin plays an important role in plant
growth and development, lodging resistance and structural support. Its deposition, and the deposition
of unpolymerized lignin monomers, are considered to be a physical barrier to prevent infection in the
interaction between plant and pathogen, and its metabolism can also be actively involved in plant
lodging resistance and in response to various environmental stresses [10,15,16]. Pectin influences
the porosity of the cell wall, growth and expansion of cells, cell-to-cell adhesion and responses to
pathogens [17]; its cleavage fragment oligogalacturonides (OGA) has been proven to cause a variety
of defense responses and regulate growth and development in the process of interaction between
plant and pathogen [18]. In summary, plant vascular tissues, cell wall or cellulose, lignin and pectin in
the cell wall all not only play a crucial role in the transport of essential substances required for plant
growth and development, but also provide physical structure, support and resistance/adaptability to
plant bodies.

MYB transcription factors compose one of the largest family of transcription factors in plants [19].
It has been a hotspot in the study of the plant transcription factor’s function because of its large number
of genes, functions and different types. Considering the significant progress in research, a large number
of MYB transcription factors have been identified in all kinds of plants. The MYB transcription factor
is named for its conserved DNA-binding domain (MYB domain) at its N-terminus [20,21]. The MYB
domain is typically composed of 1–4 incomplete repeats (R), each R consisting of about 51–52 amino
acid residues. Each R is folded into a helix–turn–helix (HTH) spatial structure that binds to the ditch
of the target DNA, thereby adjusting the opening of the target gene promoter. MYB proteins can be
divided into the following four main classes: 1R (R1/2, R3-MYB), 2R (R2R3-MYB), 3R (R1R2R3-MYB),
and 4R (R1/R2-like repeats) depending on the number of R [20,22–24]. MYB43 belongs to R2R3-MYB,
and most of the MYB genes in plants are R2R3-MYB. According to published literatures, there are
138 R2R3-MYB genes in the model plant Arabidopsis thaliana, 222 in apple (Malus domestica), 118 in
grapevine (Vitis vinifera), 192 in poplar (Populus trichocarpa), 61 in moss (Physcomitrella patens), 126
in rice (Oryza sativa), 244 in soybean (Glycine max), 134 in sesame (Sesamum indicum), 256 in Chinese
cabbage (Brassica rapa) and 424 in oilseed rape (Brassica napus) [20,25–31]. MYB transcription factors
are involved in regulating almost all aspects of plant growth, development and metabolism during
the whole of the plant’s life. They mainly regulate plant responses to biotic and abiotic stresses, cell
proliferation and differentiation, histomorphogenesis, organ formation and the contents and types of
primary and secondary metabolites of plant metabolic pathways [19,20,32–36]. Although members of
the MYB superfamily have been annotated in A. thaliana and many other plants, most of them have not
been functionally characterized.

The R2R3-MYB gene family in A. thaliana was categorized into 25 subgroups (SGs) (S1 to S25) on
the basis that conserved amino-acid sequence motifs present carboxyterminal to the MYB domain,
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with some SGs unnamed (including the SG containing MYB43) [20,25,37]. As more and more plant
genomes were sequenced and annotated, a comprehensive comparative genomic study of R2R3-MYB
proteins from multiple plant species led to the identification of ten new subgroups, namely, SAt35,
SAt46, SAt47, SAt59, SAt71, SAt85, SAt88, SAt91, SAt103 and SAt125, among which the subgroup SAt85
contained MYB20, MYB40, MYB42, MYB43, MYB85 and MYB99 [38,39]. In these recent phylogenetic
analyses, subgroups S13, SAtM46, SAtM103, S16 and SAtM85 form an independent branch, indicating
similar structural features and similar or related functional relationships among these subgroups.
Actually, MYB26 from S13, MYB46 and MYB83 from SAtM46, MYB103 from SAtM103 and MYB85 from
SAtM85 have been identified as positive regulators of biogenesis or deposition of the secondary cell wall
by stimulating the biosynthesis of lignin, cellulose and other secondary cell wall ingredients in vascular
tissues, the anther wall or pollen coat [23,40]. Geng et al. found that MYB20, MYB42, MYB43 and MYB85,
which belong to the subgroup SAtM85, redundantly activate lignin biosynthesis by researching double
mutants myb20/43 and myb42/85 and quadruple mutant myb20/42/43/85 [41]. Zhong et al. demonstrated
that AtMYB43 is the direct target gene of AtMYB46, which is a gatekeeper involved in vascular bundle
formation and secondary wall development [42–44]. Ehlting et al. proposed that AtMYB43 was a
possible candidate transcription factor of fiber development [45]. The function of AtMYB43 is still in the
speculative stage; therefore, we do not know its systemic real function in A. thaliana yet. Poplar MYB152
is a homologue gene of AtMYB43. After overexpressing PtrMYB152 in poplar or A. thaliana, PtrMYB152
increased xylem thickness, secondary cell wall thickness, the content of lignin and expression of the
genes related to lignin biosynthesis pathway in the stem of transgenic plants. These results suggest that
PtrMYB152 is a specific transcriptional activator in poplar or Arabidopsis lignin biosynthesis [46,47].

Brassica napus (rapeseed or rape, AC genome, n = 19) is a recent allotetraploid species that was
formed as a result of spontaneous interspecific hybridization between B. rapa (A genome, n = 10) and
B. oleracea (C genome, n = 9) [48,49]. B. napus, which belongs to the Brassicaceae family, is an important
oilseed crop globally. Its production is limited by a variety of biotic and abiotic stresses, especially for
lodging and Sclerotinia sclerotiorum stem rot. Lodging has been shown to result in a yield reduction of
as much as 46% [50], and S. sclerotiorum could cause 10%–80% yield loss in oilseed rape [51]. Therefore,
it is very important to breed novel varieties with strong resistance to lodging and S. sclerotiorum. This is
the core goal of contemporary oilseed rape breeding.

In this study, the MYB43 gene families of B. napus and its parental species B. rapa and B. oleracea
were cloned, and the BnMYB43 gene family was silenced by RNA interference in B. napus. The plant
morphology, yield potential, vascular lignification, xylem thickness and cell numbers were drastically
inhibited, the lodging resistance was considerably weakened, but the resistance to S. sclerotiorum was
greatly enhanced accompanied with great increase in pectin content, after suppression of the BnMYB43
gene family in oilseed rape. Consistently, the expression of genes related to cell wall biogenesis, cell
cycle and plant-pathogen interactions had the similar changes as the above results. This is consistent
with the general belief that there is an antagonistic relationship between plant growth and defense [52].
It shows that BnMYB43 is located on the node of plant growth-defense trade-offs. These results
are also beneficial to contemporary oilseed rape breeding or others crops. As of now, it is not well
clear about the regulatory mechanisms among vascular bundle formation, biochemical composition
changes of secondary xylem, plant morphogenesis and plant disease resistance, or the occurrence and
transmission of defense signals in plant growth and development. Therefore, the research based on the
special regulatory node of BnMYB43 is very necessary.

2. Materials and Methods

2.1. Plant Materials and Growth Conditions

B. napus cv. Zhongyou 821 (ZY821), B. rapa ssp. oleifera and B. oleracea var. acephala were used for
gene cloning and expression characterization. B. napus cv. Zhongshuang 10 (ZS10) was used for genetic
transformation. All materials were planted in growth chambers, green houses or cages of Chongqing
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Oilseed Rape Engineering Technology Research Center (CRTRC, Beibei, Chongqing, China (29◦48′50”
N, 106◦24′28” E)) under normal agronomic procedures. For gene cloning and organ-specificity
characterization, samples of the root, leaf, stem, flower and seed (ca. 30 days after flowering) of ZY821
were collected. For stem tissue-specificity characterization, the following ZY821 samples were collected:
Growth cone tip, main-stem primordium, initially lignified main-stem, semi-lignified main-stem,
completely lignified main-stem, semi-mature stem, mature stem, pith, xylem and bark (remaining
tissues except pith and xylem in the mature stem, mainly containing phloem, cortex and epidermis).
Stems of transgenic and non-transgenic control materials were also collected.

2.2. Fungi Strains and Growth Conditions

The strain of S. sclerotiorum used in this experiment was isolated and preserved by CRTRC.
S. sclerotiorum was activated and cultured with potato media (PDA) at 22 ◦C with 85% humidity.

2.3. Nucleic Acid Isolation

Total RNA was isolated from samples using EASYspin plant RNA rapid extraction kit (Biomed,
China). Total DNA was extracted from leaves using a traditional hexadecyltrimethylammonium
bromide method (CTAB) [53]. The quality and quantity of nucleic acids were detected by agarose
gel electrophoresis and ultraviolet spectrophotometer (NanoDrop 2000c, Thermo Fisher, Waltham,
MA, USA).

2.4. Gene Cloning

The 5′RACE and 3′RACE-specific primers of BnMYB43 were designed based on multiple
alignments of the MYB43 sequence of Brassicaceae. According to the SMARTer RACE Amplification
Kit (Clontech, Mountain View, CA, USA), 1 µg of equally proportioned (w/w) mixture of total RNA of
each organ of the roots, leaves, stems, flowers and seeds of ZS10 was used as the template to perform
the reverse-transcription to synthesize first-strand total cDNA of 5′- and 3′-RACE, respectively.

The primer pairs RBnMYB43-51 + LUPM and RBnMYB43-52 + NUP (Table S1) were used for
the primary amplification and the nested amplification of the 5′-RACE of the BnMYB43 gene family,
while primer pairs FBnMYB43-31 + LUPM and FBnMYB43-32 + NUP (Table S1) were used for the
primary amplification and the nested amplification of the 3′-RACE of the BnMYB43 gene family,
respectively. Electrophoresis of PCR products, gel recovery, TA cloning, Escherichia coli transformation,
colony culture and other experiments were performed using conventional methods.

A comprehensive analysis of the results of RACE cloning and in-silico cloning (Brassica MYB43
chromosome regions, annotated mRNAs, ESTs and TSAs) indicated that there were four MYB43 genes
from B. napus and two MYB43 genes from each parental species. End-to-end primer pairs FBrMYB43-1
+ RBrMYB43-1, FBoMYB43-1 + RBoMYB43-1, FBrMYB43-2 + RBrMYB43-2 and FBoMYB43-2 +

RBoMYB43-2 (Table S1) were designed to amplify the full-length cDNA and gDNA sequences of
BnMYB43-1/BrMYB43-1, BnMYB43-2/BoMYB43-1, BnMYB43-3/BrMYB43-2, BnMYB43-4/BoMYB43-2,
using mixed cDNA of various organs and total DNA of leaves of each species as templates,
respectively. The GenBank accession numbers for them are as follows: gBnMYB43-1: MN508342;
cBnMYB43-1: MN508343; gBnMYB43-2: MN508344; cBnMYB43-2: MN508345; gBnMYB43-3:
MN508340; cBnMYB43-3: MN508341; gBnMYB43-4: MN508346; cBnMYB43-4: MN508347; gBrMYB43-1:
MN508352; cBrMYB43-1: MN508353; gBrMYB43-2: MN508354; cBrMYB43-2: MN508355; gBoMYB43-1:
MN508348; cBoMYB43-1: MN508349; gBoMYB43-2: MN508350; cBoMYB43-2: MN508351.

2.5. Quantitative RT-PCR (qRT-PCR) Analysis of Gene Expression

The total RNA of each organ/tissue sample was reverse-transcribed using PrimeScript™ 1st Strand
cDNA Synthesis Kit (TaKaRa, Dalian, China) to obtain the corresponding first-strand total cDNA. All
cDNA samples were diluted 30-fold in sterile water for the qRT-PCR reaction. Gene-specific primers
for qRT-PCR detection of overall and member-specific expression of B. napus, B. rapa and B. oleracea
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MYB43 families are listed in Table S1, and 25SrRNA gene was detected as the internal standard.
qRT-PCR analysis was performed on the CFX Connect™ Real-Time PCR Detection System (Bio-Rad,
Berkeley, CA, USA) with FastStart Universal SYBR Green Master reagents (Roche, Basel, Switzerland).
The program was 95 ◦C for 10 min, followed by 45 cycles of amplification (95 ◦C for 10, 58–64 ◦C for
30 s). After the PCR was completed, the temperature was raised from 65 to 95 ◦C, and the melting curve
was detected to confirm the specificity of the amplification. Three replicates were performed. All data
were analyzed by using CFX Manager 3.1 (Bio-Rad, Berkeley, CA, USA) with the 2-∆∆CT method.

2.6. Subcellular Localization

The coding sequence of BnMYB43-1 was amplified by primer pair FBMYB43SL + RBMYB43SL
(Table S1), cloned and named as BnMYB43SL, which was subcloned into pEGAD using EcoRI + BamHI
double-digestion, and Enhanced Green Fluorescent Protein (EGFP) was fused at the N-terminus to
form subcellular localization expression vector pEGAD-BMYB43SL (Figure S1). The expression vector
was transformed into tobacco leaves by Agrobacterium tumefaciens, cultured at 28 ◦C for two days and
photographed with a confocal microscope (LSM 800, ZEISS, Jena, Germany).

2.7. RNAi Vector Construction

A 481-bp C-terminus coding region cDNA of BnMYB43 family was amplified from the cDNA
library using the primer pair FBnMYB43I + RBnMYB43I (Table S1), cloned and named as BnMYB43I
(Figure S2a). This cDNA fragment had a >86.7% identity match with all BnMYB43 genes, and no identity
match was found with other sequences by BLASTing the whole B. napus genome (http://www.ncbi.nlm.
nih.gov/genome/?term=Brassica+napus). At the 5′ end, primer FBnMYB43I contained BamHI and AatII
restriction sites, and primer RBnMYB43I contained XbaI and NcoI restriction sites. An antisense fragment
of BnMYB43I (BnMYB43IA) was subcloned into pFGC5941M using NcoI+AatII double-digestion to
generate intermediate vector pFGC5941M-BnMYB43IA. A sense fragment of BnMYB43I (BnMYB43IS)
was subcloned into pFGC5941M-BnMYB43IA using BamHI+XbaI double-digestion to generate RNAi
vector pFGC5941M-BnMYB43I (Figure S2b). BnMYB43I was driven by the CaMV35S promoter.
pFGC5941M-BnMYB43I plasmids were introduced into A. tumefaciens strain LBA4404 by conventional
freeze–thaw transformation method to generate engineering strain.

2.8. Plant Transformation

Agrobacterium tumefaciens LBA4404 engineering strain harboring pFGC5941M-BnMYB43I was
used to transform hypocotyl segments of B. napus cv. ZS10 using the method described by Cardoza
and Stewart [54] with several modifications. The seeds were surface-sterilized for 1 min with 95%
ethanol, sterilized for 10 min with 0.1% HgCl2, then were washed thoroughly with sterile distilled
water, and finally germinated on MSg medium with 2.2 g/l MS (Murashige and Skoog) powder
(Duchefa, Haarlem, The Nethelands) and 30 g/l sucrose, solidified with 3 g/l Gellan Gum (Zhejiang
Zhongken, China), at 25 ◦C and 16 h light/8 h dark for 6–10 days. Hypocotyl segments of 0.5–cm length
were preconditioned on MSp medium with 4.41 g/l MS, 1 mg/l 2,4-D (2,4-dichlorophenoxy acetic acid),
1 mg/l 6-BA (6-Benzylaminopurine) and 30 g/l sucrose, solidified with 3 g/l Gellan Gum, at 25 ◦C
and 16 h light/8 h dark for two days. The LBA4404 strain was activated and subcultured to OD600 =

0.5 in liquid LB + Kan medium, pelleted and re-suspended in MSm medium with 4.41 g/l MS, 30 g/l
sucrose, 1 mg/l 2,4-D, 1 mg/l 6-BA and 100 µmol/L AS (acetosyringone). The preconditioned hypocotyl
segments were dipped in LBA4404+MSm solution for 5–10 min. After removing excess liquid with
sterilized filter paper, the segments were co-cultured on MSc medium with 4.41 g/l MS, 30 g/l sucrose,
1 mg/l 2,4-D, 1 mg/l 6-BA and 100 µmol/L AS, solidified with 3 g/l Gellan Gum, at 25 ◦C for two days in
dark. Then they were transferred to MSi medium with 4.41 g/l MS, 30 g/l sucrose, 1 mg/l 2,4-D, 1 mg/l
6-BA, 500 mg/l Cef and 30 mg/l Basta, solidified with 3 g/l Gellan Gum, at 25 ◦C and 16 h light/8 h
dark until resistant calli were induced (ca. 2 months). The explants with calli were moved to MSd
medium with 4.41 g/l MS, 30 g/l sucrose, 4 mg/l 6-BA, 2 mg/l trans-ZT, 5 mg/l AgNO3, 500 mg/l Cef and

http://www.ncbi.nlm.nih.gov/genome/?term=Brassica+napus
http://www.ncbi.nlm.nih.gov/genome/?term=Brassica+napus
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30 mg/l Basta, solidified with 3 g/l Gellan Gum, at 25 ◦C and 16 h light/8 h dark for callus differentiation
(one to several months). The differentiated calli on explants were transferred to MSs medium with
4.41 g/l MS, 30 g/l sucrose, 3 mg/l 6-BA, 2 mg/l trans-ZT, 500 mg/l Cef and 10 mg/l Basta, solidified
with 3 g/l Gellan Gum, at 25 ◦C and 16 h light/8 h dark until the buds were formed (shooting, one to
several months). The buds were transferred to MSe medium with 4.41 g/l MS, 30 g/l sucrose, 0.005 mg/l
6-BA, 500 mg/l Cef and 5 mg/l Basta, solidified with 3 g/l Gellan Gum, at 25 ◦C and 16 h light/8 h dark
until proper shoot elongation. The elongated shoots were transferred to MSr medium with 4.41 g/l
MS, 30 g/l sucrose and 0.5 mg/l NAA, solidified with 3 g/l Gellan Gum, at 25 ◦C and 16 h light/8 h
dark to promote rooting. The regenerated plants were transplanted in pots in growth chamber and
were primarily screened by dipping with 200 mg/L Basta solution on the leaves. The Basta-resistant
plants were identified by PCR detection of the leaf DNA using primer pairs F35S3N + RBnPAP2I2 and
FBnPAP2I2 + ROCST5N (Table S1). Subsequently, the RNA of positive transgenic plants was extracted,
and the elite plants were screened out by qRT-PCR detection for subsequent analysis (Figure S3). T2

and T3 transgenic plants without segregation represent homozygous lines. Homozygous T2 and T3

transgenic plants were used for functional and mechanism analyses, and non-transgenic plants were
used as control (WT).

2.9. Assessment of Resistance to S. sclerotiorum

The method of leaf inoculation was based on the description of Godoy et al. [55] with several
modifications. The third or fourth leaf, which was numbered from the top to the bottom, was excised
from each plant at the 9- to 12-leaf stage, with at least 6 leaves per line. The leaves were placed into
a plastic basket with wet filter-paper. The PDA discs (7 mm in diameter) containing S. sclerotiorum
hypha were inoculated at the center of the left and right leaf abdomens, and the ends of the petioles
were wrapped with wet tissue to prevent the leaves from losing water. Finally, the basket was covered
with cling film and kept at 22 ◦C. After 48 h of incubation, the long diameter (a) and the short diameter
(b) of the lesion were measured. The lesion area was calculated as S = (π × a × b) / 4. The method of
stem inoculation was based on the description by Mei et al. [56] with several modifications. The stems
were inoculated at the full-bloom stage, 6 plants per line. About 45 cm-long stem fragments were
cut off at 20 cm from the ground, and both ends were wrapped with cling film to prevent water loss.
The PDA discs (7 mm in diameter) containing S. sclerotiorum hypha were inoculated at two points with
an interval of 10 cm on the stem segment. Lesion lengths were measured at 96 h after inoculation.

2.10. Histological Analysis and Microscopic Observation

Mäule staining and Phloroglucinol-HCl staining of lignin were performed using methods of
the literatures [57,58]. Cellulose staining by Fast Green FCF and pectin staining by Hydroxylamine
method (Leagene, Beijing, China) were also performed. Stained sections were observed with the stereo
light microscope (Olympus SZX2-FOA, Tokyo, Japan) and the fluorescence microscope (Nikon Eclipse
E600W, Tokyo, Japan).

2.11. Determination of Cell Wall Composition

At the harvest stage, the mid-region fragments of mature stems were sampled and incubated at
70 ◦C to constant weight. Then, they were powdered by the universal grinder, and the powders were
screened by a 100-mesh sieve. The cellulose, lignin and pectin from the cell walls of transgenic and
control plants were extracted and determined. The extraction and determination of cellulose and lignin
followed the method of Foster et al. [59], while extraction and quantification of pectin followed the
method of Blumenkrantz and Asboe-Hansen [60]. The absorbance of cellulose, lignin and pectin was
determined using an Infinite M200 Pro Microplate Reader (Tecan, Männedorf, Switzerland). There is
no study on the lignin extinction coefficient of B. napus, therefore the value 23.35 g−1 L cm−1 at 280 nm
from the model-plant and relative species A. thaliana [61] was used for lignin content calculation.
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2.12. Statistical Analysis

In this research, at least three biological replications (n ≥ 3) were designed for each experiment.
All values are means ± standard deviation (SD). Asterisks indicate significant or extremely significant
differences from the control (* for 0.01 ≤ p < 0.05, and ** for p < 0.01) using one-way ANOVA.

3. Results

3.1. Cloning and Characterization of the MYB43 Gene Families from B. napus and Its Parental Species B. rapa
and B. oleracea

In order to isolate MYB43 gene family from B. napus, we designed conservative primers (Table S1)
for 5′RACE and 3′RACE amplifications. Using end-to-end primer pairs, the full-length gDNA and
cDNA sequences of MYB43 gene family from B. napus, B. rapa and B. oleracea were cloned. There are four
members in the BnMYB43 gene family, namely BnMYB43-1, BnMYB43-2, BnMYB43-3 and BnMYB43-4,
with gene length of 2293, 2252, 2237 and 2256 bp, mRNA length of 1235, 1236, 1199 and 1217 bp,
encoding polypeptides of 319, 304, 313 and 313 aa, respectively. There are two members in both the
BrMYB43 and BoMYB43 gene family, named BrMYB43-1, BrMYB43-2, BoMYB43-1 and BoMYB43-2,
with gene length of 2295, 2240, 2259 and 2258 bp, mRNA length of 1235, 1202, 1242 and 1215 bp,
encoding polypeptides of 319, 313, 329 and 313 aa, respectively. According to 5′RACE, 3′RACE and
in-silico cloning results, BnMYB43-1, BnMYB43-2, BnMYB43-3 and BnMYB43-4 have a longest 5′UTR of
93, 95, 81 and 109 bp with 3 (G1, G86 and G113), 3 (G1, C48 and G86), 1 (C1) and 2 (A1 and G99) alternative
transcription start sites, and a longest 3′UTR of 182, 226, 176 and 166 bp with 3 (G2264, T2283 and T2293),
3 (T2202, G2236 and G2252), 2 (C2088 and C2237) and 2 (T2212 and C2256) alternative poly A tailing sites,
respectively. On gene level, BnMYB43-1, BnMYB43-2, BnMYB43-3 and BnMYB43-4 have 99.7%, 97.6%,
99.6% and 95.5% of identities to parental-species donor genes BrMYB43-1, BoMYB43-1, BrMYB43-2 and
BoMYB43-2, respectively; these Brassica MYB43 genes show 71.8% to 74.0% identities to AtMYB43 gene
(Figure S4a). Like AtMYB43, they contain three exons and two introns (Figure S4b), and their proteins
show motif patterns similar to AtMYB43. BnMYB43-1, BnMYB43-2, BnMYB43-3 and BnMYB43-4
proteins share identities/positives of 99.4%/99.4%, 94.4%/95.7%, 99.4%/99.7% and 99.4%/99.4% to
BrMYB43-1, BrMYB43-2, BoMYB43-1 and BoMYB43-2, respectively; these Brassica MYB43 proteins
show 71.9%–78.7% of identities and 76.0%–83.8% of positives to AtMYB43 (Figure S4c). Phylogenetic
analysis indicated short distances among Brassica MYB43 proteins, and they were clustered together
with AtMYB43 (Figure S4d). These results clearly demonstrate that all the Brassica MYB43 genes
isolated here are orthologues of AtMYB43.

3.2. The BnMYB43 Gene Family was Dominantly Expressed in the Xylem of the Mature Stem

According to qRT-PCR results, BnMYB43 overall expression could be detected in all organs of
B. napus but varied greatly among organs; it was highest in stem, moderate in the root and flower, low
in the leaf and lowest in the seed (Figure 1a). It is clear that the BnMYB43 gene family is generally
dominantly expressed in vascular organs such as stem and root. Knowing that it is dominantly
expressed in vascular organ stem, we further detected its tissue-specificity. The main stem of oilseed
rape ZY821 at early bolting stage (ca. 5–6 cm in height) was divided into 7 developmental segments:
growth cone tip, main-stem primordium, initially lignified main-stem, semi-lignified main-stem,
completely lignified main-stem, semi-mature stem and mature stem. The qRT-PCR result shows that
BnMYB43 is expressed in all parts along the main stem regardless of vascularization degree but is
significantly higher in the vascularized stem than in the non-vascularized stem (Figure 1b). Furthermore,
the mature stem was dissected into pith, xylem and bark for qRT-PCR detection, which indicated
that BnMYB43 gene family expression is dominant in xylem, distinct in bark and non-existent in pith
(Figure 1c). This implies that the BnMYB43 gene family may be mainly involved in vascular bundle
formation or xylem development.
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expression was downregulated at 3 to 9 h, distinctly upregulated at 24 h, and returned to a slightly 
higher than basal level at 48 h, showing a dynamic as if influenced by struggling between B. napus 
and S. sclerotiorum (Figure 1d). This implies that the BnMYB43 gene family may be involved in the 
process of interaction with S. sclerotiorum in oilseed rape. 

3.4. BnMYB43 is Localized to the Nucleus 

In consistence with the bioinformatics prediction and its predicted role as a transcription factor, 
Enhanced Green Fluorescent Protein (EGFP)-tagged BnMYB43-1 was shown to be localized in the 
nucleus when expressed in tobacco leaf (Figure 1e). 

3.5. The Silencing of BnMYB43 Changed the Plant Morphology, Physiology and Yield Factors 

Figure 1. Expression pattern of BnMYB43 gene family in oilseed rape and subcellular localization
of BnMYB43-1 in Nicotiana benthamiana. (a) Expression analysis of BnMYB43 gene family in organs
of B. napus. (b) Expression analysis of BnMYB43 gene family in stems of B. napus. (c) Expression
analysis of BnMYB43 gene family in stem tissues of B. napus. (d) Expression analysis of BnMYB43 gene
family after inoculation by S. sclerotiorum. (e) Subcellular localization of BnMYB43-1 in the nucleus.
The expression levels were relative to stem (a), S7 (b), Xy (c) and 0 h (d), which were set to 1. Expression
level of 25SrRNA was used as a control reference gene. Ro, root; Le, leaf; St, stem; Fl, flower; Se,
seed (30 DAP); S1, growth cone tip; S2, main-stem primordium; S3, initially lignified main-stem; S4,
semi-lignified main-stem; S5, completely lignified main-stem; S6, semi-mature stem; S7, mature stem;
Ba, bark; Xy, xylem; Pi, pith; Bars, 50 µm (e). Values are means ± SD (standard deviation) from three
biologically independent repeats.

3.3. BnMYB43 Can Be Quickly Induced by S. sclerotiorum Infection

In order to confirm the BnMYB43 response to S. sclerotiorum infection in oilseed rape, S sclerotiorum
was inoculated on oilseed rape leaf. After S. sclerotiorum inoculation, BnMYB43 expression was
downregulated at 3 to 9 h, distinctly upregulated at 24 h, and returned to a slightly higher than basal
level at 48 h, showing a dynamic as if influenced by struggling between B. napus and S. sclerotiorum
(Figure 1d). This implies that the BnMYB43 gene family may be involved in the process of interaction
with S. sclerotiorum in oilseed rape.

3.4. BnMYB43 is Localized to the Nucleus

In consistence with the bioinformatics prediction and its predicted role as a transcription factor,
Enhanced Green Fluorescent Protein (EGFP)-tagged BnMYB43-1 was shown to be localized in the
nucleus when expressed in tobacco leaf (Figure 1e).
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3.5. The Silencing of BnMYB43 Changed the Plant Morphology, Physiology and Yield Factors

After PCR genotyping (Figure S3), three elite transgenic lines of independent transformation
events with BnMYB43 RNA interference were used for subsequent investigation. Compared with
non-transgenic control plants (WT), the transgenic plants were smaller in morphology, the root system
and the leaf (Figure S5), the stem diameter was reduced by 6% to 16% along development stages, and the
number of primary branches decreased by 19.05% (Figure 2c); however, the number of secondary
branches increased by 66.67% (Figure 2e). The plant height of transgenic plants showed little difference
at seedling stage, but from bolting stage to harvest stage it became 17% to 46% shorter than WT
(Figure 2a). The tested dry matter of transgenic plants at early bolting stage, full bloom stage and
harvest stage decreased by 26.86%, 45.69% and 50.22%, respectively (Figure 2b). The root/shoot ratio of
transgenic plants at early bolting stage, full bloom stage and harvest stage decreased by 27.17%, 3.61%
and 29.52%, respectively (Figure 2d). Corresponding to growth impairment, yield factors of transgenic
plants were also significantly influenced, with 17.50% decrease in silique number per plant, 25.29%
decrease in seed number per silique and 5.29% decrease in 1000-seed weight, and 42.43% decrease in
seed yield per plant (Figure 2f–i; Figure S5g).
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Figure 2. Phenotypic changes of BnMYB43I transgenic plants. (a) The development dynamic of the
plant height. (b) The dry matter of plant. (c) The development dynamic of the main stem diameter.
(d) The root/shoot radio. (e) Number of branches. (f) Number of silique at the mature stage (191D).
(g) Number of seed per silique. (h) The weight of 1000-grain of oilseed rape. (i) The weight of the seed
yield per plant. Values are means ± SD from three biologically independent repeats. Asterisks indicate
significant or extremely significant differences from the control (*, 0.01 ≤ p < 0.05; **, p < 0.01) using
one-way ANOVA.

3.6. The Silencing of BnMYB43 Impaired Xylem, Especially Interfascicular Fiber Biogenesis and Stem Strength

BnMYB43 is dominantly expressed in vascular organs, especially in xylem, and the BnMYB43-RNAi
plants mainly showed phenotypes associated with retardation of vascular organs, therefore anatomical
and histochemical microscopic observations were carried out on the middle part of the stem at harvest
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stage. The areas of pith and xylem in the transgenic plants were decreased compared with WT plants.
The number of vascular bundles did not change significantly, while the single vascular bundle became
smaller and the xylem layer became thinner in the transgenic plants than in WT plants (Figure 3a,f,k).
Stained areas of lignin, cellulose and pectin were all significantly reduced, but the staining was deeper
in the transgenic plants than in WT plants (Figure 3b–d, g–i). Statistical analysis showed that the cell
number of pith in the whole cross section of stem in the transgenic plants decreased significantly by
21%, although there was no significant change in cell size and cell number per unit area (Table 1).
The thickness of the xylem layer decreased by 28% (Figure 3a,f,k), the numbers of sclerenchymatous
cell and vessel in the whole cross section of stem decreased by 28% and 59%, and the numbers of
sclerenchymatous cell and vessel in a single vascular bundle of stem decreased by 24% and 56%,
respectively, in the transgenic plants (Figure 3b–e,g–j; Table 1). More significantly, the number of
interfascicular fibers in the whole cross section of stem in the transgenic plants decreased by 48%,
and the number of interfascicular fibers between two vascular bundles of stem in the transgenic
plants decreased by 45% (Table 1). In addition, the number of sieve tubes in the whole cross section
and per vascular bundle of stem in the transgenic plants decreased by 34% and 30%, respectively
(Table 1). An unexpected finding was that under microscope observation, the cell wall thickness
of all lignified and non-lignified cells of the whole section did not show a reduction, and perhaps
showed a small increase, which we can be speculated due to the somewhat denser histochemical
staining of the transgenic plants. The results indicate that the silencing of BnMYB43 mainly decreases
transverse diameters of vascular organs solely by reducing cell numbers, not by reducing cell size and
cell wall thickness.
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Table 1. Number of cells of pith, sclerenchyma, vessels, interfascicular fibers and sieve tubes of stems of BnMYB43I transgenic plants.

Genotype Pith Cells Sclerenchyma Cells Vessels Interfascicular Fibers Sieve Tubes

Cross Section Unit Area Cross Section Vascular
Bundle Cross Section Vascular

Bundle Cross Section Vascular
Bundle Cross Section Vascular

Bundle

WT 7695.48 ± 664.97 74.15 ± 4.95 74279.47 ± 4344.94 516.93 ± 21.64 6090.73 ± 595.54 42.33 ± 2.64 5137.67 ± 791.03 35.67 ± 4.36 3477.65 ± 335.67 24.21 ± 1.62
BnMYB43I 6083.83 ± 676.89 * 73.25 ± 5.17 53039.80 ± 8160.15 * 389.47 ± 49.32 * 2490.80 ± 395.41 ** 18.27± 2.14 ** 2670.73 ± 337.29 ** 19.60 ± 1.64 ** 2288.52 ± 251.67 ** 16.83 ± 1.72 **

WT: wild type. Values are means ± SD from nine biologically independent repeats. Asterisks indicate significant or extremely significant differences from the control (*, 0.01 ≤ p < 0.05; **, p
< 0.01) using one-way ANOVA.
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Subsequently, we adopted a plant stem strength tester to test the effect of above tissue changes
on stem strength, which is crucial for plant morphology and lodging resistance in cultivation [62].
The results showed that the breaking-resistance strength of the upper, middle and lower stems of
transgenic plants was decreased by 62.30%, 44.71% and 46.69%, respectively, with an average value of
49.59% for the whole stem (Figure 3l), implying a decrease in lodging resistance.
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decreased by 5.60 percent points (31.54% vs. 37.14%), the S-lignin proportion was increased by 5.79 
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Figure 3. The phenotypes of morphologies, ingredients and properties of the stem in the oilseed
rape at mature stage. (a–e) The cross sections of the stem in WT at mature stage. (f–j) The cross
sections of the stem in the BnMYB43I lines at mature stage. (a,f) Mäule staining of lignin in whole cross
sections. (b,g) Phloroglucinol-HCl staining of lignin in partial cross sections. (c,h) Fast Green FCF
staining of cellulose in partial cross sections. (d,i) Hydroxylammonium staining of pectin in partial
cross sections. (e,j) The morphologies of vessel and interfascicular fibers. (k) The thickness of xylem.
(l) The breaking-resistance strength of stem. (m) Determination of the content of cellulose, lignin and
pectin. Lengths of the I-line in (a) and (f) are the lengths of each vascular bundle, and the average of
them is the thickness of xylem. Pi, pith; Xy, xylem; Ph, phloem; Ve, vessel; Sc, sclerenchymatous cell;
If, interfascicular fibers; ST, sieve tube; Bar, 2 mm (a,j), 500 µm (b,g), 250 µm (c–d, h–i), 100 µm (e,j).
Values are means ± SD from nine biologically independent repeats. Asterisks indicate significant or
extremely significant differences from the control (*, 0.01 ≤ p < 0.05; **, p < 0.01) using one-way ANOVA.

3.7. The Silencing of BnMYB43 Profoundly Remolded Cell Wall Ingredients

To investigate the biochemical basis underlying the above-mentioned phenotypic and anatomical
changes, the cellulose, lignin and pectin of stems at the harvest stage were extracted and quantified
by spectrophotometry. In stems of transgenic plants, the contents of cellulose and lignin decreased
significantly by 17.49% and 16.21%, respectively, while the pectin content increased significantly by
71.92% when compared with WT (Figure 3m; Table S2). In addition, the lignin monomers of the same
samples were extracted and determined, showing a 19.18% reduction in lignin total content and a
decrease in H-, G- and S-type lignin content by 31.64%, 31.86% and 11.21% respectively. However,
changes of the proportions among the three lignin types were subtle. As H-lignin proportion decreased
by 0.19 percent points (1.15% vs. 1.34%) and G-lignin proportion decreased by 5.60 percent points
(31.54% vs. 37.14%), the S-lignin proportion was increased by 5.79 percent points (67.31% vs. 61.52%),
and the S/G ratio was increased by 0.48 (2.14 vs. 1.66), implying that inhibition of G- and H-lignin
biosynthesis was stronger than inhibition of S-lignin biosynthesis (Table S3). These results indicate
that the silencing of BnMYB43 significantly reduced deposition of secondary cell wall ingredients such
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as lignin and cellulose, but greatly increased the content of cell-surface wall ingredient pectin (only
existing in primary cell wall), and lignin reduction was stronger in G- and H-types than in S-type.

3.8. The Silencing of BnMYB43 Enhanced Resistance to S. sclerotiorum Stem Rot

As BnMYB43 expression is responsive to S. sclerotiorum infection as described above (Figure 1d),
BnMYB43-silenced plants were identified for S. sclerotiorum resistance. In stem-inoculation identification,
lesion length was drastically decreased by 52.10% in the transgenic plants compared to WT, implying
a great increase in resistance to S. sclerotiorum stem rot disease (Figure 4a,b). Leaf-inoculation
identification results showed a non-significant enhancement in resistance to S. sclerotiorum in transgenic
plants (Figure 4c,d). It is clear that the suppression of BnMYB43 greatly but solely enhanced the
resistance to S. sclerotiorum in vascular organs in which innate BnMYB43 is dominantly expressed.
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Figure 4. Phenotypic and lesion size of detached stems and leaves after inoculation with S. sclerotiorum.
(a,c) The phenotypes of detached stems and leaves after inoculation with S. sclerotiorum, respectively.
(b) The length of lesions in stem after inoculation with S. sclerotiorum for 96 h. (d) The area of lesions in
leaf after inoculation with S. sclerotiorum for 48 h. Bars, 15 mm (a) and 30 mm (c). Values are means ±
SD (n = 3 biological replicates). Asterisks indicate significant differences from the control (*, 0.01 ≤ p <

0.05; **, p < 0.01) using one-way ANOVA.

3.9. The Silencing of BnMYB43 Affected Gene Expression Related to Cell Wall Biogenesis, Cell Cycle and
Plant-Pathogen Interactions

In order to understand the relationship between gene expression differences and phenotypic
changes, the upper part of stems was sampled for qRT-PCR at the end of bolting stage. In transgenic
plants, the genes CESA1, CESA2, CESA4, CESA6, CESA7, CESA8, CSLE1 and CSLA02, which are related
to cellulose biosynthesis, were significantly down-regulated (Figure 5a); lignin biosynthesis related
genes PAL1, PAL4, C4H, 4CL1, 4CL2, CCR1, F5H1, COMT, CAD4, CAD5 and CAD6 were down-regulated
(Figure 5b); pectin biosynthesis related genes GAE1 and GAE6 were significantly down-regulated,
but ARAD1 was significantly up-regulated. Additionally, the pectin methylesterase genes PME2
and PME35, and pectin methylesterase inhibitor genes PMEI, PMEI9 and PMEI11, were significantly
down-regulated (Figure 5c); the cell cycle related genes CAK1AT, CDKB1;1, CDKB2;1, CDT1A, CYCA2;3,
DEL1, E2F1 and ICK6 were also significantly down-regulated (Figure 6). These results are consistent
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with the results of stem cell wall ingredients (Figure 3m), the determination of stem-breaking resistance
(Figure 3l), and the statistical results of the number of cells (Table 1) in the stems of transgenic plants.
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Figure 5. The expression patterns of genes related to cellulose (a), lignin (b) and pectin (c) in the stem
of oilseed rape after silencing BnMYB43 gene family. Expression level of each gene in WT was set as
1 (a–c). Expression level of 25SrRNA was used as control reference. Values are means ± SD (n = 3
biological replicates). Asterisks indicate significant or extremely significant differences from the control
(*, 0.01 ≤ p < 0.05; **, p < 0.01) using one-way ANOVA.
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Figure 6. The expression patterns of genes related to cell cycle in the stem of oilseed rape after silencing
BnMYB43 gene family. Expression level of each gene in WT was set as 1. Expression level of 25SrRNA
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one-way ANOVA.

In addition, the stems were sampled and analyzed by qRT-PCR at different times after inoculation
with S. sclerotiorum. First, there were changes in expression of known genes of SA- or JA-mediated
defense pathways. SA-pathway gene WRKY18 was sharply up-regulated by inoculation in WT,
but before inoculation its expression in transgenic plants was already up-regulated by 32 folds
compared to WT. Though it showed down-regulation in transgenic plants during infection, its
expression level was higher than in WT for the first 24 h (Figure 7a). The expression of WRKY70
and JAZ9 in transgenic plants was higher than in WT during the whole infection process, and was
highly expressed at the early stage of infection (Figure 7b,c). WRKY70 was associated with both SA-
and JA-pathways and was not distinctly influenced by BnMYB43 silencing before inoculation, while
JAZ9 was associated with JA-pathway and was distinctly upregulated by BnMYB43 silencing before
inoculation. There were some changes in other known defense genes. PAD4 was significantly increased
by 262 folds before inoculation in transgenic plants compared with WT plants. In WT, PAD4 expression
was sharply up-regulated by 150-fold at 6 h after inoculation. Both transgenic and WT plants showed a
down-regulation of PAD4 along the infection process, but the expression was still higher in transgenic
plants than in WT (Figure 7d). The expression of PR1 showed an up-regulation trend during infection
in transgenic plants but a down-regulation trend in WT plants along the infection process (Figure 7e).
There were also expression changes in known genes of S. sclerotiorum resistance or susceptibility.
During infection, the expression of MAPK4 was decreased in transgenic plants while increased in WT
plants, WRKY28 showed decrease in both transgenic and WT plants, while WRKY75 and WRKY33
showed increase in both transgenic and WT plants (Figure 7f–i). These results showed that the reason
for the increased resistance to S. sclerotiorum in BnMYB43I plants was caused by multiple related
effects brought by BnMYB43 silencing, and different defensive mechanisms responded differentially to
BnMYB43 silencing.
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(n = 3 biological replicates). Asterisks indicate significant or extremely significant differences from the
control (*, 0.01 ≤ p < 0.05; **, p < 0.01) using one-way ANOVA.

4. Discussion

4.1. BnMYB43 is a Pivotal Regulator of the Biogenesis of Lignified Cells in Vascular Organs

The xylem, which is a long-distance transport system, belongs to vascular tissues [63]. The xylem
is composed of conductive tracheary elements and non-conductive elements. The conducting tracheary
elements are vessels in angiosperms or tracheids in gymnosperms. The non-conductive elements are
xylary parenchyma cells and xylary fibers [64]. The xylem can transport and store water, nutrients
and hormones, provide mechanical support for the plant body, and play a very important role in the
growth and development of plants. Most of the water transport is provided by vessel cells and most
of the mechanical support is provided by fiber cells in angiosperms [65]. The interfascicular fibers
are composed of three to four layers of fiber cells, which are mainly responsible for the mechanical
strength of mature stems [66,67]. Therefore, the size and number of vessels and fiber cells are important
parameters for the study of long-distance water transport, plant mechanical support, xylem adaptations
or pathology of the xylem [68].

In this study, BnMYB43 was dominantly expressed in the xylem of mature stems (Figure 1); then,
the xylem of the stem became thinner by silencing the expression of the MYB43 gene family in B. napus
(Figure 3a,f,k), and the number of vessels, interfascicular fibers and other sclerenchyma cells decreased
significantly in the stem (Figure 3b–e, g–j; Table 1). Innate BnMYB43 was also expressed with certain
level in the bark, and its silencing also decreased phloem cell numbers (Table 1). We determined the
biochemical components of the stem cell wall of transgenic BnMYB43-silenced plants. The results
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showed that the content of cellulose and lignin decreased significantly, while the content of pectin
increased significantly (Figure 3m). Consistently, cellulose and lignin biosynthesis related genes were
down-regulated, pectin biosynthesis related genes were up-regulated and several pectin methylesterase
and pectin methylesterase inhibitor genes were down-regulated (Figure 5). Lignin only occurs in
secondary cell wall, pectin is present solely in primary cell wall, and cellulose participates in both.
Decrease in lignin and cellulose and increase in pectin imply decreased lignification. These results
are consistent with the results of microscopic observation of the stems (Figure 3a–d,f–i,k). Moreover,
innate BnMYB43 showed considerable expression in root and other vascular organs (e.g., leaf vein
net), and BnMYB43-silenced plants also had smaller organs in root system and other vascular organs
(e.g., leaf vein net) with short root length and less lateral root number, indicating similar effect in
root other vascular organs as observed in stem. It can be inferred that Brassica MYB43 genes are key
regulatory factors of the biogenesis of lignified cells in vascular organs, stem being the major organ.

4.2. BnMYB43′s Function Has Effect on the Biogenesis of Parenchyma Cells

Unexpectedly, though innate BnMYB43 expression could not be detected in the pith, the silencing
plants showed a smaller pith area. The number of total pith cells in the cross section of the transgenic
stem decreased significantly, although there was no significant change in the cell number per unit
area (Table 1). The impairment of stem and plant development in silencing plants was caused by the
reduction in cell numbers of all lignified and non-lignified tissues other than the reduced lignification
degree of the sclerenchyma cells. The biogenesis of both sclerenchyma and parenchyma cells was
retarded, which profoundly influenced the development of the stem and the whole plant. As for why
silencing sclerenchyma-related BnMYB43 could impair parenchyma cell biogenesis, the possible reason
is signal crosstalk between these two types of tissues during stem development, which might involve
cell cycle/division process.

Higher plants produce various tissues and organs of mature plants through the combination of
cell division, cell expansion and cell differentiation [69,70]. Therefore, the growth and development of
plants are closely related to cell division [71]. Plant cell division has a complex regulatory mechanism,
and there are many molecules involved, such as CDKs, cyclins, CKS, KRPs, ICKs, CAKs, Retinoblastoma
Protein and E2Fs. Among them, CDKs play a key role [69,71–73]. In this study, the expression of cell
cycle related genes was consistently significantly down-regulated in BnMYB43-silencing plants when
compared with WT (Figure 6), implying lower activity of cell division process in the whole organ.
BnMYB43 as a key positive regulator of vascular lignification also affects the cell biogenesis of the
whole organ possibly through crosstalk in cell cycle pathway.

4.3. BnMYB43 Participates in the Trade-Offs Between Organ Development and Disease Resistance

In this study, though plant development and growth were retarded by BnMYB43 silencing,
inoculation results indicated great enhancement in stem resistance to S. sclerotiorum infection (Figure 4).
The first reason might be the modification of cell wall composition and structure. Due to the
surface position, plant cell wall plays an important role in the interaction between the plant and
microorganisms [74]. First of all, the cell wall is the natural physical barrier against the pathogen.
The polysaccharides in the cell wall are crosslinked into a network through ions and covalent bonds to
resist physical penetration. Secondly, the cell wall is the dynamic storage of antibacterial proteins and
secondary metabolites that inhibit the growth of pathogens [75]. Studies have shown that the cellulose
content in the cell wall is negatively correlated with plant disease resistance [3,10,12,14]. In other
research, the content of lignin in the cell wall is proportional to plant disease resistance [14,76–78].
Finally, the pectin content in the cell wall is proportional to plant disease resistance [17,18]. In this
study, BnMYB43 silencing plants showed drastic reduction in cellulose and lignin contents but great
increase in pectin contents in the stem, which were in consistent with changes in gene expression
patterns of respective biosynthesis pathways (Figures 3 and 5). It is reasonable to assume that changes
in these ingredients as well as stem structure in transgenic rapeseed could influence the resistance to
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S. sclerotiorum, especially the increased pectin content and shifted methylation pattern might contribute
to resistance enhancement.

The second reason, which might be more important, is modification of classical defensive genes.
Contrary to the down-regulation of gene expression in lignin and cellulose biosynthesis pathways, many
of the genes involved in disease resistance were up-regulated by BnMYB43 silencing. Before inoculation,
the basal expression levels of WRKY18, JAZ9 and PAD4 were 32.95, 4.34 and 262.57 folds higher in
transgenic plants than in WT plants respectively, implying enhanced preexisting innate immunity.
After inoculation with S. sclerotiorum, the expression levels of WRKY18, WRKY70, JAZ9, PAD4, PR1 and
WRKY33 were generally higher in transgenic plants than in WT plants, implying elevated ability in
combating pathogen infection process (Figure 7). On the other hand, negative factors of necrotrophic
disease resistance such as MPK4, WRKY28 and KRKY75 showed lower expression levels in transgenic
plants than in WT plants before or after inoculation. WRKY18 is involved in the SA-mediated defense
signaling pathway against pathogens by inducing systemic acquired resistance (SAR) [79,80]. WRKY70
acts as an activator of SA-induced genes and a repressor of JA-responsive genes, and as a node
of convergence for integrating SA- and JA-signaling events during plant defense [81,82]. JAZ9 is
a repressor that regulates JA signaling [83,84]. AtPAD4 is an important regulator of plant defense
signaling, and PR1 is a defense-related gene [85–87]. WRKY33 was proved to markedly enhance
resistance to S. sclerotiorum in oilseed rape [88]. MPK4 is generally regarded as a negative regulator
of defense responses [89–91], although Wang et al. and Zhang et al. proved that overexpression of
BnMPK4 enhanced resistance to S. sclerotiorum and Pseudomonas syringae pv tomato (Pst) DC3000 in
oilseed rape. WRKY28 and WRKY75 positively regulate A. thaliana defense against S. sclerotiorum [92],
but negatively regulate B. napus defense against Botrytis cinerea and S. sclerotiorum [93,94].

These results indicate that cell wall lignification/vascular development and disease resistance
have the status of growth-defense trade-offs in BnMYB43I-transgenic plants. The disease resistance
not only comes from cell wall modification, but also be contributed by activating the expression of
signal pathway and defensive genes after silencing the BnMYB43 gene family. For BnMYB43, adequate
expression level is crucial to maintain an optimum trade-off between growth and resistance, otherwise
strengthening of one side will sacrifice the other side.

4.4. Involvement of BnMYB43 in Contributing to Plant Morphology and Yield Potential

The formation of lateral roots is the main determinant of root structure and an important means
of effectively absorbing water and nutrients [95]. In this study, the roots of transgenic lines were less
developed than WT (Figure S5a–d), so we speculate that the transgenic plants are not able to absorb
as much water and nutrients for plant growth and development as the WT plants. Certainly, less
developed roots were also less powerful in terms of plant anchoring in the soil in transgenic plants
than WT. The leaves of the transgenic lines became shorter (Figure S5e), and the corresponding leaf
area was smaller than WT (Figure S5f); therefore, the photosynthesis and transpiration of transgenic
plants are likely weaker, which is not conducive to the transport of water and nutrients in the whole
plant. Stems with decreases in diameter (Figure 2c), xylem thickness (Figure 3k), number of vessels
and all kinds of cells (Figure 3a–j; Table 1) are also likely less not conducive to the transport of nutrients
and water for the growth of transgenic plants. Consequently, the silique number and seed yield of
transgenic plants decreased significantly (Figure 2f,i). The above results showed that suppression the
expression of BnMYB43 gene family affected the growth and development of root, leaf, stem, silique
and seed of oilseed rape, and especially the yield. Therefore, MYB43 is speculated to be involved in the
contribution of plant morphogenesis and yield potential.

5. Conclusions

In this study, suppression of the expression of the BnMYB43 gene family was shown to inhibit
the growth and development of oilseed rape, reduce its yield and weaken its lodging resistance
while increasing its resistance to S. sclerotinia. The results suggest that BnMYB43 plays a role in the
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balance between growth and defense; this phenomenon is consistent with growth–defense trade-offs.
In order to survive and reproduce, plants, which grow in dynamic environments where there are many
threats and opportunities, have to balance their investment in growth and defense with limited energy
and resources, which has been called growth–defense trade-off [96]. The growth-defense trade-off

has important ecological, agricultural and economic consequences [97]. That means BnMYB43 is an
important factor in the growth-defense trade-offs of oilseed rape. The information obtained from this
study can be used to guide the genetic modification of BnMYB43, and makes it a new breeding target
for modifying the trade-off status in favor of growth, or resistance, or both.
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The plant phenotype of BnMYB43I transgenic plants. Table S1. Primers used in this study. Table S2. Cellulose,
lignin and pectin compositions measurement of the BnMYB43I transgenic plants. Table S3. Lignin monomer
compositions measurement of the BnMYB43I transgenic plants.
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