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Abstract

Planting non-food bioenergy crops on marginal lands is an alternative bioenergy development solution in China. Native
non-food bioenergy plants are also considered to be a wise choice to reduce the threat of invasive plants. In this study, the
impacts of climate change (a consensus of IPCC scenarios A2a for 2080) on the potential distribution of nine non-food
bioenergy plants native to China (viz., Pistacia chinensis, Cornus wilsoniana, Xanthoceras sorbifolia, Vernicia fordii, Sapium
sebiferum, Miscanthus sinensis, M. floridulus, M. sacchariflorus and Arundo donax) were analyzed using a MaxEnt species
distribution model. The suitable habitats of the nine non-food plants were distributed in the regions east of the Mongolian
Plateau and the Tibetan Plateau, where the arable land is primarily used for food production. Thus, the large-scale
cultivation of those plants for energy production will have to rely on the marginal lands. The variables of ‘‘precipitation of
the warmest quarter’’ and ‘‘annual mean temperature’’ were the most important bioclimatic variables for most of the nine
plants according to the MaxEnt modeling results. Global warming in coming decades may result in a decrease in the extent
of suitable habitat in the tropics but will have little effect on the total distribution area of each plant. The results indicated
that it will be possible to grow these plants on marginal lands within these areas in the future. This work should be
beneficial for the domestication and cultivation of those bioenergy plants and should facilitate land-use planning for
bioenergy crops in China.
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Introduction

The declining availability of fossil fuels in a world of growing

population and the environmental impact of greenhouse gas

emissions have motivated increasing interest in the production of

renewable bioenergy [1–3], which may become a substantial

proportion of our future energy supply [4]. Bioenergy crops are

the most important raw materials used for producing bioenergy,

especially for liquid biofuel [5]. In recent decades, a greater

number of wild plant species have been cultivated for bioenergy

production, and some easily adaptable species have been

introduced to different regions and countries. For example, an

American native plant, switchgrass (Panicum virgatum), has been

introduced to many other parts of the world, including China [6]

and Europe [7]. For some regions, the introduction of alien species

with high primary productivity can be beneficial for bioenergy

production; however, the presence of such plants may be

detrimental to the regional ecosystems [8]. For example, the giant

reed (Arundo donax) is among the species with the highest biofuel

potential in Europe [9,10] but has also been named one of the

world’s top 100 worst invaders. Being aware of the seriousness of

this problem, some researchers have conducted assessments of the

invasive potential of some bioenergy plants in some countries and

regions, demonstrating the high invasive probability of some

species [11–13]. Thus, more attention has been paid in recent

years to native bioenergy plants [14–16].

As the world’s largest energy consumer [17], China is also

paying more and more attention to bioenergy [18,19], with

particular focus on energy produced from non-food bioenergy

crops. These crops are mainly grown on marginal lands, i.e., land

in relatively poor natural condition that remains capable of

supporting the cultivation of energy plants, or land that is not

currently used for agricultural production but can grow energy

plants [20]. Because it is necessary to ensure the security of the

food supply, there is almost no currently cultivated land that could

be made available to grow bioenergy crops in China [20–22].

Hence, several bioenergy plants have been introduced to China,

and their use has been explored over the last few years. However,

some alien species such as Helianthus tuberosus and Ricinus
communis also showed the potential for biological invasion [23].

On the other hand, China is one of the world’s most abundant

countries in terms of plant resources, especially in energy plant

resources [22,24]. Although many wild or semi-wild native
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non-food bioenergy plant species have been gradually cultivated

[25,26], there is still a long way to go before cultivation of

bioenergy feedstocks can occur on a large scale.

To further develop native bioenergy feedstock crops, it is

necessary to understand the climate niche of those plants and

identify their suitable growing areas under current and future

climate conditions. Species distribution models (SDMs), which

predict species’ probability of occurrence across a landscape by

relating documented locations of their presence to environmental

information, are frequently used to solve this problem [27,28].

Many SDMs, such as Genetic Algorithm for Rule-set Production

(GARP), Ecological Niche Factor Analysis (ENFA), Maximum

Entropy (MaxEnt) and BIOCLIM have been developed for

estimating species distributions from presence-only species records.

Among them, MaxEnt usually produces good predictions of

species distribution [29–34]. MaxEnt is a popularly used SDM for

modeling species distributions. Its predictive applications include

the spatial distribution of plant species [35], the spread of invasive

species [36], and the effects of climate change on plant

distributions [37,38]. The model has also been applied to identify

the current and future suitable areas for growing bioenergy crops

[39,40]. In this study, the MaxEnt model was used to analyze the

climatic niche as well as the present and future potential

distributions of nine native non-food plants with great potential

for bioenergy production in China. This knowledge will be of

fundamental importance for further domestication and cultivation

of those plants, and for the planning, implementation, and

operational management of future bioenergy production both in

China and around the world.

Materials and Methods

Study area and climate
China covers approximately 9.6 million square kilometers of

land area, but the agricultural crop land area is only 1.4 million

square kilometers. Most parts of China lie in the North Temperate

Zone, which is characterized by a warm climate and distinctive

seasons. Thus, a continental monsoon climate prevails over most

of China. From September to April the following year, the dry and

cold winter monsoons result in cold and dry winters and lead to

large differences in temperature between the North and the South.

From April to September, warm and humid summer monsoons

give rise to high temperatures and abundant rainfall all over China

and lead to small differences in temperature between the North

and the South. In terms of temperature, the country can be

divided into six zones; these are the tropical, subtropical, warm-

temperate, mid-temperate,and cold-temperate zones from south to

north; a plateau climate zone in the Tibetan Plateau (Figure S1,

S2). There is a decreasing trend in precipitation from the

southeastern coastal to the northwestern inland area, and the

average annual precipitation differs significantly from place to

place (Figure S3).

Study species
Nine native non-food bioenergy plants, including five woody oil

plants and four grasses, were selected for this study (Table 1). The

oil plants were Pistacia chinensis, Cornus wilsoniana, Xanthoceras
sorbifolia, Vernicia fordii and Sapium sebiferum; these deciduous

trees or shrubs were traditionally used for timber, landscaping and

technical oils, etc. [41–46]. The grasses consisted of Miscanthus
sinensis, M. floridulus, M. sacchariflorus and Arundo donax.

These species are traditionally used for forage and papermaking as

well as water and soil conservation in China [41,47,48]. However,

in North America and Europe, they are planted as energy crops to

produce cellulosic ethanol [9,49].

Species data collection
The occurrence records of the species of the nine plants were

collected from on-line herbarium specimen information provided

by the Chinese Virtual Herbarium (http://www.cvh.org.cn/cms/

en), the Specimen Resources Sharing Platform for Education

(http://mnh.scu.edu.cn/new/) and the Global Biodiversity Infor-

mation Facility (www.gbif.org). Between 112 and 620 herbarium

records were collected from each species (Table 1).

Climatic data
Present climatic data (1950–2000) were downloaded from the

WorldClim database with 2.5-min resolution (http://www.

worldclim.org/) [50]. Climatic data projected to the year 2080

from the global climate model of the Canadian Centre for Climate

Modeling and Analysis (CCCMA) were used to assess the effects of

climate change. The CCCMA model was recently evaluated as a

top-performing model [51]. The greenhouse gas emission scenario

A2a was selected to assess plausible futures based on a range of

human choices over the next few decades. Nineteen bioclimatic

variables from the WorldClim dataset were used to assess current

climatic conditions (Table 2).

Maximum entropy algorithm (MaxEnt)
A maximum entropy (MaxEnt version 3.3.3k; http://www.cs.

princeton.edu/wschapire/maxent/) approach was employed to

model present and future potential distributions of these nine

species [33]. The 25th percentile training presence, a convergence

threshold of 1025, a maximum of 500 iterations and 10,000 global

background points were used. The logistic output was chosen as an

estimate of the probability of the presence (ranging from 0 to 1)

conditioned on the environmental variables in each grid cell [52],

given that the temporal and spatial scale of sampling results in a

50% chance of the species being present in suitable areas [34].

To predict the distribution of each plant, MaxEnt’s internal

jackknife procedure and the contribution percentage of each

variable were used to assess the importance of each environmental

variable. Contribution percentage was gauged the gain in model

performance with and without each variable, essentially providing

a measure of the relative importance of each environmental

variable. For all predictions, models were evaluated by the area

under receiver operating curve (ROC) statistic, which is used to

calculate the area under the ROC curve (AUC) based on the

trapezoidal method described in [33]. The AUC values were

calculated automatically by MaxEnt. During prediction process,

the false-positive error rate on the x-axis versus the true positive

rate along the y-axis for every probability value predicted by the

model was plotted in a coordinate system. The AUC value is the

sum of the area occurring under the ROC curve and varies from 0

to 1. Generally, an AUC value of 0.5 indicates that model did not

perform better than random, values between 0.5 and 0.75 are

indicative of low model performance, values of 0.75–0.9 are

considered to be potentially useful, and values above 0.9 are

excellent [53,54].

Results

Model accuracy and prediction success
Models for the nine species performed better than random.

Both training and test AUC values were greater than 0.9 for all

species under the present and future climatic conditions (Table 3).

These modeling results were considered to be of an excellent
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standard. These results indicated that for each species, the most

climatically suitable areas predicted by MaxEnt were highly

correlated with the occurrence of location points.

Projections suitable habitats under baseline climate
(1950–2000)

Figure 1 shows the suitable habitats predicted by MaxEnt for

the five oil bioenergy plants in China. The main suitable habitats

of the five plants, dominated by hills and plains, are distributed in

the regions east of the Mongolian Plateau and the Tibetan Plateau.

These plants are wildly or semi-wildly distributed on hills or slopes

and in mountain forests, open forests or open field (Table 1). With

the exception of X. sorbifolia, suitable areas for the plants are

mainly found in the south of China, including the Yangtze Plain,

the Southeast China Hill, the Sichuan Basin and the Yunnan-

Guizhou Plateau. In contrast, the suitable habitats of X. sorbifolia
are distributed in the north of China, including the Northeast

China Plain, the North China Plain and the Loess Plateau. P.
chinensis, V. fordii and S. sebiferum are adapted to some parts of

the tropics, while the other two oil trees were distributed in the

temperate and subtropical regions. Among these five plants, P.
chinensis has the widest suitable habitat according to the MaxEnt

model’s results.

The plants in the genus Miscanthus are famous for their great

potential for second-generation bioethanol production [49]. There

are a total of 14 species in this genus, which originated from

Southeast Asia and the Pacific Islands, even extending to tropical

Africa, and seven species of them are distributed in different

regions of China [47]. In China, M. sinensis, M. floridulus and M.
sacchariflorus are the most widely distributed species in the genus.

Figure 2 showed the suitable habitats for these three species by

MaxEnt prediction. M. sinensis and M. floridulus are mainly

distributed in the south, the tropical and subtropical regions. The

suitable area of M. sacchariflorus ranges from the Songhua River

Basin in the northeast to the Yangtze River Basin in the south. A.
donax is also a native grass in China, and its suitable habitats

include the Sichuan Basin, the Yunnan-Guizhou Plateau and the

area south of the Yangtze River.

Dominant bioclimatic variable analysis
In this study, bioclimatic variables were chosen as predictors for

the potential distribution of the nine species. Table 2 shows the

contribution percentage of the 19 bioclimatic variables to each

species. The distributions of P. chinensis, C. wilsoniana, V. fordii,

M. sinensis and M. floridulus were significantly affected by

precipitation, especially the precipitation of the warmest quarter

(Bio 18), the contribution percentages of which were more than

35% for all the five plants and approaching 59% for M. floridulus.
However, the distribution of X. sorbifolia was mainly predicted by

the temperature, especially the annual mean temperature (Bio 1,

20%) and the distribution of A. donax was predicted by the mean

temperature of the coldest quarter (Bio 11, 39%). The precipita-

tion of the warmest quarter (Bio 18, 25.1%) and temperature

seasonality (Bio 4, 19%) provided the most useful information for

M. sacchariflorus. Lastly, for S. sebiferum, the contributions of

precipitation of the warmest quarter (Bio 18, 25.1%), annual mean

temperature (Bio 1, 21.7%) and isothermality (Bio 3, 21.4%) were

almost the same.

The jackknife evaluation procedure indicated that the climatic

variable of precipitation of the warmest quarter (Bio 18) was the

strongest predictor for the geographic distribution prediction of P.
chinensis, V. fordii, M. sinensis and M. floridulus. However, for X.
sorbifolia, S. sebiferum, M. sacchariflorus and A. donax, the most

important predictor was the variable of annual mean temperature

(Bio 1). The precipitation of the coldest quarter (Bio 19) was the

most important variable for C. wilsoniana (Figure 3).

Changes in climatically suitable habitats by 2080
There were subtle changes between current and future suitable

habitats predicted for each species (Figure 1, 2). The general trend

was that the predicted suitable area in the tropics was decreasing.

Taking Hainan Island as an example, some parts were suitable for

P. chinensis, S. sebiferum, M. floridulus and A. donax to grow

under the present climatic conditions. However, for the predicted

climatic conditions in 2080 (A2a scenario), there was almost no site

with probability greater than 0.5 in the island for all those plants.

Among the nine species, the extent of suitable habitats

(occurrence probability above 0.5) of P. chinensis, S. sebiferum,

M. sinensis and A. donax would slightly increase under the 2080

climatic conditions, and the same would happen to V. fordii.
However, the extents for the other four species would slightly

decrease (Figure 4).

Discussion

MaxEnt is an excellent species distribution modeling tool that

has been extensively utilized for more and more species

distributions predictions since it became available in 2004 [34].

It can model the species distributions just from presence-only

Table 3. The area under receiver operating curve (AUC) score of MaxEnt models for each of the nine bioenergy plants.

Species Current Future (2080)

Test AUC Training AUC Test AUC Training AUC

Pistacia chinensis 0.974 0.978 0.974 0.979

Cornus wilsoniana 0.987 0.993 0.986 0.993

Xanthoceras sorbifolia 0.987 0.989 0.989 0.990

Vernicia fordii 0.976 0.981 0.979 0.981

Sapium sebiferum 0.963 0.968 0.964 0.970

Miscanthus sinensis 0.973 0.979 0.964 0.979

Miscanthus floridulus 0.977 0.979 0.978 0.980

Miscanthus sacchariflorus 0.983 0.987 0.987 0.988

Arundo donax 0.927 0.947 0.936 0.942

doi:10.1371/journal.pone.0111587.t003

Predicting the Impacts of Climate Change on Bioenergy Plants

PLOS ONE | www.plosone.org 5 November 2014 | Volume 9 | Issue 11 | e111587



Figure 1. Predicted current and future (2080) suitable habitats for five woody oil plants (Pistacia chinensis, Cornus wilsoniana,
Xanthoceras sorbifolia, Vernicia fordii and Sapium sebiferum).
doi:10.1371/journal.pone.0111587.g001
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species records, which are usually collected from specimen records,

field survey records and literatures. The obtained records numbers

are various for different species. In this study, up to 620 records

were found for V. fordii, but only 112 records for C. wilsoniana
were collected. In some other studies, this number is even lower

[37]. However, the MaxEnt model is strongly influenced by

species’ ecological characteristics independent of sample size and

can extract useful biogeographical information from small samples

(as low as five records) [55,56]. The records numbers of the nine

species varied widely (in the range of 112–620), but the AUC

values were all greater than 0.9, indicating that the predicted

results of the tested nine plants were reliable.

MaxEnt provides species’ probabilities of occurrence in a

logistic output format, which ranges from 0 to 1 assigned to each

pixel in the study area [33]. Usually, the values are re-divided into

several classes of potential habitats. However, in different reports

for different species, the classification approaches were also

different. For instance, for Justicia adhatoda, the area could be

considered as suitable habitat only if the occurrence probability

was greater than 0.6 [35], while for Jatropha curcas, the

occurrence probability can be just above 0.25 [40]. Elith et al.

considered that the probability of species being present in suitable

areas was at an average site of 0.5 [34]. For each of the nine

species in this study, the area with probabilities above 0.5 was the

Figure 2. Predicted current and future (2080) suitable habitats for four bioenergy grasses (Miscanthus sinensis, M. floridulus, M.
sacchariflorus and Arundo donax).
doi:10.1371/journal.pone.0111587.g002
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main natural distribution area [41–48]. Thus, in this study, we

focus on the suitable habitats with probabilities above 0.5.

The current suitable areas of these nine plants were mainly

distributed in the regions east of the Mongolian Plateau and

Tibetan Plateau, which are the traditional Chinese agricultural

regions [57]. The cultivation of these plants relies on marginal

land. In China, the total area of marginal land suitable for the

cultivation of energy plants is estimated to be up to 130.34 million

ha [20]. According to the distribution map of marginal land

suitable for energy plants in China [20], except for sparse

grasslands, most of the marginal land lies within the suitable areas

of the nine plants in this study (Figure 2, 3). The shrub land and

sparse forest land should be suitable for the woody oil plants, while

the dense grassland, moderate dense grassland and some bottom

land or bare land should be appropriate for the energy grasses

[20,22,24].

Temperature and precipitation are two key factors influencing

plant growth and distribution [58]. The suitable area of the nine

plants was mostly distributed in humid and semi-humid regions of

China, and five of them were mainly distributed in the south of

Figure 3. Relative predictive power of different bioclimatic variables based on the jackknife of regularized training gain in MaxEnt
models for the nine plants.
doi:10.1371/journal.pone.0111587.g003
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China, which is dominated by humid, subtropical and tropical

regions. The precipitation of the warmest quarter (Bio 18) is one of

the most important bioclimatic variables. It profoundly affected

the distribution of P. chinensis, C. wilsoniana, V. fordii, M.
sinensis and M. floridulus, which were mainly distributed in

southern China. For the species distributed in northern China,

such as X. sorbifolia and M. sacchariflorus, some temperature

variables such as annual mean temperature (Bio 1), temperature

seasonality (Bio 4) and mean temperature of driest quarter (Bio9)

made more contribution to their distribution.

Climate change will cause plants’ ranges to shift because climate

is the dominant factor affecting the natural distribution of plants

[59,60]. The relatively stable distribution region of energy plants is

very important for the sustainable supply of feedstock for

bioenergy production [39,40]. Based on recent observations

suggesting that climate change will be more severe than previously

expected [61,62], this study predicted energy plant distributions

under the A2a emission scenario, which projects relatively large

changes. According to the MaxEnt modeling results under this

scenario, all nine species would have relatively stable suitable

ranges in the following decades (Figure 1, 2); even though some

species would suffer small decreases in their range (Figure 3), the

impact of climate change on the total suitable area of each plant in

the coming decades will likely be limited. However, it is

acknowledged that continued global warming will inevitably

influence plant growth and distribution [63,64].

Our result also showed that the suitable habitats of P. chinensis,
S. sebiferum, M. floridulus and A. donax will decrease in low-

latitude regions in the near future. This is similar to the patterns

for bioenergy crops in Europe predicted by Tucka et al. [65]. The

low-latitude zones are particularly vulnerable to climate change. If

bioenergy plants are to be viable in these regions of China in the

future, adaptation to climate change will involve efforts to breed or

find heat- and drought-tolerant plant varieties or species.

In conclusion, for the nine non-food energy plants selected in

this study, the suitable habitats were mainly distributed in the

traditional farming areas of China, where arable lands that can be

used for the planting of energy plants are rare. The large-scale

cultivation of these energy plants in the future can only be

conducted on marginal land. Climate change in coming decades

will cause decreases in the suitable habitats in the tropics but will

have little effect on the total distribution area of each plant,

indicating that distribution of those plants in the coming decades

will remain relatively stable. Thus, suitable marginal land is

available for cultivating those plants. Nevertheless, for bioenergy

production to be sustainable, further work, including breeding and

cultivation management, still needs to be performed.
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