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Abstract: Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1)
are gut hormones that are secreted from enteroendocrine L cells and K cells in response to digested
nutrients, respectively. They are also referred to incretin for their ability to stimulate insulin secretion
from pancreatic beta cells in a glucose-dependent manner. Furthermore, GLP-1 exerts anorexic effects
via its actions in the central nervous system. Since native incretin is rapidly inactivated by dipeptidyl
peptidase-4 (DPP-4), DPP-resistant GLP-1 receptor agonists (GLP-1RAs), and DPP-4 inhibitors are
currently used for the treatment of type 2 diabetes as incretin-based therapy. These new-class agents
have superiority to classical oral hypoglycemic agents such as sulfonylureas because of their low
risks for hypoglycemia and body weight gain. In addition, a number of preclinical studies have
shown the cardioprotective properties of incretin-based therapy, whose findings are further supported
by several randomized clinical trials. Indeed, GLP-1RA has been significantly shown to reduce
the risk of cardiovascular and renal events in patients with type 2 diabetes. However, the role
of GIP in cardiovascular disease remains to be elucidated. Recently, pharmacological doses of
GIP receptor agonists (GIPRAs) have been found to exert anti-obesity effects in animal models.
These observations suggest that combination therapy of GLP-1R and GIPR may induce superior
metabolic and anti-diabetic effects compared with each agonist individually. Clinical trials with
GLP-1R/GIPR dual agonists are ongoing in diabetic patients. Therefore, in this review, we summarize
the cardiovascular effects of GIP and GIPRAs in cell culture systems, animal models, and humans.
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1. Introduction

Atherosclerotic cardiovascular disease (CVD) is a major cause of death and disability among
individuals with diabetes in many countries [1,2]. Indeed, a hazard ratio among individuals with
diabetes as compared with those without diabetes was 1.8 for death from CVD even after adjusting for
several well-known risk factors such as high systolic blood pressure and serum cholesterol levels [1].
However, the effects of strict blood glucose control on CVD are marginal, especially in diabetic patients
with a long disease history [3–7]. These observations suggest that development of novel therapeutic
strategies is needed to further reduce the risk of CVD and subsequently improve the quality of life in
both type 1 and type 2 diabetic patients [1,8–10].
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Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are
gut hormones that are secreted from enteroendocrine L cells and K cells, respectively, in response
to stimuli with digested nutrients [11,12]. GIP and GLP-1 are also referred to as incretins for their
ability to stimulate insulin secretion from pancreatic beta cells in a glucose-dependent manner.
Furthermore, GLP-1 exerts anorexic effects through its actions on the central nervous system [11,12].
Since native incretin is rapidly inactivated by dipeptidyl peptidase-4 (DPP-4), DPP-resistant GLP-1
receptor agonists (GLP-1RAs) and DPP-4 inhibitors have been developed and now widely used for
the treatment of diabetic patients as incretin-based agents because of their superiority to classical
insulinotropic agents, such as sulfonylureas and glinides from the standpoint of low risks for
hypoglycemia and body weight gain [13–15].

Both GIP and GLP-1 have been reported to exert direct effects on the cardiovascular system in
addition to pancreatic beta cells [12,16]. Indeed, a number of preclinical studies, including ours,
have shown the cardiovascular protective effects of native incretins and incretin-based agents
partly in a glucose-lowering independent manner [17–28], whose observations were consistent
with the recent cardiovascular outcome trials demonstrating that GLP-1RAs significantly reduced the
cardiovascular and renal events in high-risk type 2 diabetic patients compared with placebo [29–33].
Furthermore, DPP-4 inhibitors have also been shown to improve surrogate markers of atherosclerotic
CVD in several clinical trials [34–36], although their effects on CV hard events were neutral in
various cardiovascular outcome trials [37–41]. Based on these clinical findings, GLP-1RAs have now
recommended as one of the first-line therapies in metformin-treated type 2 diabetic patients with high
risks or established CVD.

In contrast to the case of GLP-1, no GIP receptor (GIPR) agonist is clinically utilized to date
because its therapeutic potential was doubted by the observations showing impaired insulinotropic
effects of GIP in individuals with diabetes [42–44]. In addition, inhibition of physiological GIP
has been shown to prevent the body weight gain in high-fat diet (HFD) fed mice by suppressing
the GIP-induced adipogenesis in adipose tissues [45–48], thereby raising safety concerns that GIP
treatment could promote obesity and deteriorate the metabolic risks in type 2 diabetic patients.
Therefore, cardiovascular effects of GIP had been almost neglected. However, paradigm of GIP-based
therapy has been changed by recent preclinical studies, which showed that administration of GIP
analogs at pharmacological doses or overexpression of GIP could suppress the HFD-induced body
weight gain as is the case of the inhibition of physiological GIP, probably through the anorexic
effects of GIP on the central nervous system [49–53]. These observations were further supported by
a recent clinical trial, which showed that LY3298176, a dual agonist targeting for GIPR and GLP-1R
exerted superior effects on glycemic controls and body weight reductions compared with GLP-1RA,
dulaglutide monotherapy in patients with type 2 diabetes [54]. Given the fact that clinical trials
with dual (GLP-1R/GIPR) or triple (GLP-1R/GIPR/glucagon receptor) agonists are ongoing in diabetic
patients [55,56], attention will be paid whether combination therapy with incretin-based therapy,
such as GIPR agonists and GLP-1RAs, could be more effective for preventing the CVD than GLP-1RA
monotherapy in type 2 diabetic patients. However, to data, there is no clinical trial to address the issue.
Therefore, this article summarizes the cardiovascular effects of GIP and GIPRAs in cell culture systems,
animal models, and humans. Although several observational studies reported the correlation between
circulating GIP levels and presence or severity of atherosclerotic CVDs, these data are not included in
this review because we cannot draw a definite conclusion from observational studies whether GIP acts as
a causal or compensative protective factor for CVD. In this review, literature searches were undertaken
in Medline by the PubMed interface. Non-English language articles were excluded. Key words (GIP
[glucose-dependent insulinotropic polypeptide, glucose-dependent insulinotropic peptide, or gastric
inhibitory polypeptide] and (atherosclerosis, restenosis, heart, artery, inflammation, adipose tissue,
endothelial cell, smooth muscle cell, monocyte, macrophage, adipocyte, and desensitization) have
been used to select the articles.
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2. Cell Culture Studies

2.1. Vascular Endothelial Cells (VECs)

VEC plays a central role in the maintenance of cardiovascular homeostasis mainly via nitric
oxide (NO) production [57], and their dysfunction is involved in the pathogenesis of early phase
of atherosclerosis [58]. GIPR has also shown to be expressed in various types of VECs [27,59–63].
GIPR belongs to the glucagon receptor subfamily of G protein-coupled receptor class B, and its
signaling is mainly mediated by cyclic adenosine monophosphate (cAMP) pathway in pancreatic beta
cells [11,12]. However, GIPR signaling pathway in VECs is possibly distinct from that in pancreatic
beta cells, whereas effects of GIP may differ among VEC types [60,64–66]. There is an in vitro study
showing the different effects of GIP on VECs isolated from hepatic artery and portal vein of canine [64].
GIP stimulated cell proliferation in either type of VECs without affecting intracellular cAMP levels.
However, ranging from 0.1 to 10 nM, GIP dose-dependently increased the intracellular calcium levels
and NO production without affecting endothelin-1 production in ECs of portal vein. On the other
hand, GIP did not affect the intracellular calcium levels or NO production, but increased endothelin-1
production in ECs of hepatic artery. These observations are consistent with in vivo findings that
GIP infusion dose-dependently increased portal vein blood flow but decreased hepatic artery blood
flow in conscious dogs [65]. The subsequent study by the same group showed that immortalized
ECV 304 cells and ECs collected from human umbilical vein (HUV), aorta, and pulmonary artery
contained different splicing patterns of GIPR [66]. Indeed, responses to GIP stimulation, as assessed
with elevations in intracellular calcium levels, were different among these VECs, and GIP-induced
activation of cAMP-dependent protein kinase, also known as protein kinase a (PKA), was observed
only in HUVEC. These observations were further supported by a study that ranging from 0.1 to 100 nM,
GIP concentration-dependently increased the endothelin-1 (ET-1) production in HUVECs, but not ECV
304 cells [60]. Although it remains unclear why effects of GIP are varied between VEC types, a couple
of studies suggested the involvement of GIPR splicing variants in GIP actions [67,68]. The truncated
GIPR retaining intron 8 was co-expressed with functional GIPR in pancreatic beta cells of mice, and the
induction of truncated GIPR gene impaired the GIP-induced cAMP production in cells expressing
functional GIPR [67]. Furthermore, 64 possible variants of GIPR were detected in human adipose
tissues, and only two of them contained the functional domain [68]. However, further studies are
needed to clarify whether GIPR splicing variants can be involved in altered GIP actions between
VEC types.

Anti-atherogenic effects of GIP on VECs were reported by several studies using HUVECs
(Table 1) [27,61,63]. Accumulation of advanced glycation end products (AGEs) is a causal factor for
atherosclerosis through dysfunction, inflammation, apoptosis, and other various adverse responses
of VECs [69,70]. We have previously found that active GIP at 50 pM inhibited the generation of
reactive oxygen species via reductions in gene expression levels of receptor for AGEs in AGEs-exposed
HUVECs, with concomitant reductions in gene expression levels of pro-atherogenic molecules, such as
vascular cell adhesion molecule and plasminogen activator inhibitor-1 (Pai-1) [61]. GIP at 1 nM also
increased the production of NO, the potent anti-atherogenic molecule [57] through the activation of
endothelial nitric oxide synthase (NOS) in HUVECs, whereas it decreased inflammatory inducible
NOS expression levels [63]. Furthermore, we have found that active, but not inactive GIP at
1000 nM increased the NO production via the activation of AMP-activated protein kinase (AMPK)
in HUVECs [27], while GIP-induced AMPK activation was mediated by phospholipase C (PLC) and
calcium/calmodulin-dependent protein kinase kinase (CaMKK), but not adenyl cyclase or liver kinase
B1 (LKB1). These findings suggest the possible involvement of GIPR/PLC/CaMKK/AMPK/NO axis in
the anti-atherogenic effects of GIP [71–73]. However, a couple of studies reported the pro-atherogenic
effects of GIP on VECs (Table 1) [60,62,64]. As above-mentioned, GIP increased the production of
ET-1 [60,64], which acts as a pro-atherogenic molecule [74]. Another study showed that GIP evoked the
ET-1 production in aortic ECs of mice via cAMP response element-binding protein (CREB)-dependent,
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but cAMP/PKA-independent mechanisms [62]. In addition, EC-produced ET-1 subsequently stimulated
the pro-atherogenic osteopontin production in aortic smooth muscle cells (SMCs) [62,75]. In consistent
with the observations, GIP-induced elevations in ET-1 and osteopontin protein productions were
observed in isolated mouse aorta ex vivo [62]. However, it remains unclear whether the inhibition
of physiological levels of GIP can result in the suppression of atherosclerosis in vivo. Taken together,
GIP could exert both anti-atherogenic and pro-atherogenic effects, which may depend on VEC types.

Table 1. Effects of glucose-dependent insulinotropic polypeptide (GIP) on cultured cells related to
cardiovascular disease. ↑, increase;→, no change; ↓ decrease.

Cell Type Anti-atherogenic Pro-atherogenic

VEC Canine portal vein EC ↑ NO production [64]
Canine hepatic artery EC ↑ ET-1 level [64]

HUVEC

↓ AGEs-induced oxidative stress
and inflammation [61]
↑ NO production [27,63]
↑ AMPK activation [27]
↓ iNOS level [63]

↑ ET-1 level [60]

Mouse aortic EC ↑ ET-1 level [62]

VSMC Human aortic SMC ↓Growth factor-induced cell
proliferation [20]

Mouse aortic SMC → Osteopontin level [62]

Monocyte
/macrophage Human THP-1 cell ↓ Inflammation [76]

↓Migration [77]

Mouse RAW 264 cell ↓ Inflammation [77]
↓Migration [77] ↑ Inflammation [78]

Adipocyte Isolated human
adipocyte

↑ Adiponectin level [79]
Inflammation [80]

Isolated rat adipocyte ↑ Adiponectin level [79]
↑ Inflammation [81]
↑ Osteopontin level

[82,83]

Mouse 3T3-L1 cell

↑ Inflammation [82,84]
↑ Osteopontin level [83]
→ Inflammation [78]
↓ Adiponectin level [84]

2.2. Vascular Smooth Muscle Cells (VSMCs)

VSMCs exist in the media of vasculatures as contractile form under physiological conditions.
Growth factors, some of which can be produced from atherosclerotic plaque, induce a phenotypic
switch from contractile to synthetic form, which are prone to proliferation, migration and extracellular
matrix production, thereby contributing to the progression of atherosclerosis [85]. GIPR protein was
barely detected in the media of mouse aorta [62]. However, gene expression levels of Gipr in cultured
mouse aortic SMCs were upregulated by stimulation with growth factors, thus suggesting that GIP
may act on synthetic, but not contractile form of VSMCs [62]. Indeed, we have found that active
GIP suppressed the growth-factor-stimulated cell proliferation in human aortic SMCs (Table 1) [19].
On the other hand, GIP did not directly affect osteopontin production, which was indirectly evoked by
GIP-induced production of ET-1 from VECs [62]. However, the underlying mechanisms and other
biological effects of GIP on VSMCs remain to be elucidated.

2.3. Monocytes, Macrophages, and Adipocytes

The cascade of monocyte attachment and infiltration to vessel walls, differentiation to macrophages,
and form cell formation contribute to the pathogenesis of atherosclerosis [85–91]. In addition,
adipose tissue inflammation also plays a role in the promotion of atherosclerosis through the altered
production of inflammatory cytokines/chemokines and adipokines [92]. We have previously found
that GIPR is expressed in monocytes, but its level is considerably downregulated after differentiation
to macrophages, thereby indicating the involvement of GIP in the inflammatory responses [19].
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Indeed, a couple of studies showed the anti-inflammatory effects of GIP in immune cells (Table 1) [76,77].
GIP ranging from 1 to 100 nM dose-dependently suppressed the lipopolysaccharide (LPS)-induced
gene expression levels of tumor necrosis factor (TNF) or inducible NOS in human monocyte THP-1
cells, and these effects were abolished by inhibiting adenyl cyclase or PKA, but not exchange protein
directly activated by cAMP 2 [76]. This suggests the involvement of GIPR/adenyl cyclase/PKA
axis. The anti-inflammatory effects of GIP on monocytes were further demonstrated by a recent
study showing that active GIP suppressed the chemokine ligand 2 (CCL2)-induced migration of
mouse monocyte RAW 264 cells and human monocyte THP-1 cells thorough reductions in gene
expression levels of chemokine receptor type 2 [77]. In addition, active GIP also inhibited the matrix
metalloproteinase-9 protein levels and interleukin (IL)-6 production by suppressing LPS-induced
activation of nuclear factor-kappa B p65 and mitogen-activated protein kinases in mouse monocyte
RAW 264 cells [77].

GIPR has also been shown to be expressed abundantly in differentiated, but not undifferentiated
premature adipocytes [82,93,94], and its expression levels were also upregulated by various stimuli,
such as IL-1β or hypoxia-inducible factor-1 α activator, and exposure to hypoxic conditions [82].
Anti-inflammatory effects of GIP on adipocytes are reported by several studies (Table 1) [79,80]. GIP at
100 nM increased the gene expression levels of Adiponectin in isolated rat and human adipocytes [79].
Furthermore, DPP4-resistant [D-Ala2] GIP at 100 nM in the presence of insulin reduced the gene
expression levels of IL-1 beta, IL-6, CCL8, and progranulin in adipocytes collected from mesenteric
adipose tissue of obese individuals [80]. However, pro-inflammatory effects of GIP on adipocytes are
also reported by several studies (Table 1) [68,78,81–84]. In differentiated mouse 3T3-L1 adipocytes
overexpressing GIPR, GIP increased the gene expression levels of Il-6, Tnf-alpha, Ccl2 and Ccl7,
but decreased those of adiponectin and leptin, which were mediated by IKKβ or PKA, and partially by
c-Jun-NH2-terminal kinase [84]. In addition, subsequent studies reported that GIP at 1 or 100 nM also
increased the protein levels of IL6 and IL-1 receptor antagonist in the presence of LPS, IL-1β, or TNF-α
in adipocytes obtained from subcutaneous abdominal fat pads of non-obese and obese individuals [81],
and that GIP at 10 nM increased the production of IL6 and CCL2 in differentiated mouse 3T3-L1
adipocytes [82]. Another study reported that GIP at 100 nM increased the gene expression levels of Ccl2
in mouse monocyte RAW 264 cells, but not differentiated mouse 3T3-L1 adipocytes [78]. GIP at 1 to
100 nM also increased the protein levels of osteopontin in insulin-treated mouse 3T3-L1 adipocytes and
isolated rat adipocytes via the transcription factor nuclear factor of activated T-cells [83], which was
further confirmed in cultured rat visceral adipocytes under normal and high glucose conditions [68].
Collectively, GIP is likely to exert anti-inflammatory effects on monocytes, whereas its effects on
adipocyte inflammation are controversial.

3. Animal Studies

3.1. Atherosclerosis Models

Atherosclerosis is the main cause of tissue ischemia and infarction in brains and hearts, and its
prevention has long been a potential therapeutic target to suppress the CVD in individuals with
diabetes [1,2]. Anti-atherogenic effects of GIP in mouse models were reported by several research
groups (Table 2) [19,21,77]. We have found in atherosclerosis-prone apolipoprotein E knockout
(ApoE-/-) mice [95] that chronic infusion of active GIP (25 nmol/kg/day) for 4 weeks suppresses
the aortic plaque formation and intra-plaque macrophage accumulation compared with vehicle
treatment, whose effects were totally independent of food intake, body weight, systolic blood pressure,
and plasma glucose and lipid levels [19]. In our study, inactive GIP infusion showed no effects on
atherosclerosis. Furthermore, active GIP, but not inactive GIP infusion, suppressed the macrophage
foam cell formation in ex vivo experiments, which plays a crucial role in the development and
progression of atherosclerosis [90,91], whereas it decreased protein expression levels of CD36 and
acetyl-coenzyme a acetyltransferase-1, which are involved in oxidized low density lipoprotein (LDL)
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uptake and intracellular cholesterol storage, respectively. We have also observed the anti-atherogenic
effects of GIP in diabetic animals [21]. The infusion of active GIP (25 nmol/kg/day) for 4 weeks reduced
the aortic plaque formation, intra-plaque macrophage accumulation, macrophage foam cell formation
in streptozotocin-induced diabetic ApoE-/- mice. In addition, recently, overexpression of GIP has been
reported to stabilize the atherosclerotic plaque in non-diabetic ApoE-/- mice [77]; overexpression of GIP
gene reduced macrophage accumulation and increased collagen content of aortic plaques, while it
did not induce body weight gain. Taken together, these findings suggest that GIP at pharmacological
concentrations could exert protective effects against atherosclerosis without deteriorating the obesity,
and the beneficial effects of GIP might also be preserved in diabetic animals. However, it remains
unclear whether GIP infusion at the physiological dose suppresses or promotes atherosclerosis in
animal models.

3.2. Restenosis Models

Percutaneous transluminal angioplasty (PTA) and bypass graft are common revascularization
procedures for the treatment of atherosclerotic vascular disease that could cause the ischemia or
infarction of hearts [96,97]. PTA in combination with drug-eluting stents can be widely applicable
to coronary heart disease patients with various comorbidity due to its less invasiveness than bypass
graft. However, its long-term coronary artery patency is still limited by substantial rate of restenosis,
especially in high-risk patients, such as diabetic subjects [96,97]. One of the main causes of restenosis
is neointimal hyperplasia, which chronically occurs at the site of the intervention as an exaggerated
healing response to vascular injury caused by PTA procedures [98]. We have previously investigated
the effects of pharmacological and physiological doses of GIP on restenosis using mouse models
of femoral artery wire injury (Table 2) [27]. The infusion of active GIP (50 nmol/kg/day), but not
inactive GIP for 4 weeks suppressed the injury-induced neointimal hyperplasia and vascular cell
proliferation without affecting the metabolic parameters, including body weight gain. In addition,
active GIP infusion also facilitated the regeneration of VECs, which were completely denuded after
wire insertion [27]. Furthermore, the active GIP infusion also significantly reduced the injury-induced
neointimal hyperplasia and vascular cell proliferation in diabetic db/db mice, an animal model of type 2
diabetes with obesity as well [27]. Interestingly, co-treatment with a NOS inhibitor, nitro-L-arginine
methyl ester completely abolished the beneficial effects of active GIP, thus suggesting the involvement
of NO-dependent mechanisms in atheroprotective actions of GIP [27]. In contrast, whole-body deletion
of GIPR gene in wild-type mice promoted the neointimal hyperplasia after vascular injury [27].
Therefore, pharmacological GIP may be beneficial to inhibit the restenosis after PTA through the
suppression of neointimal hyperplasia both in non-diabetic and diabetic animals.
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Table 2. Cardiovascular effects of GIP in animal models of cardiovascular disease. ↑, increase; →,
no change; ↓ decrease.

Animal Model GIPR Activation GIPR Inhibition

Atherosclerosis ApoE knockout
(male C57BL/6-background mice)

↓Plaque formation [19]
↓Macrophage foam cell formation

[19]
↑Plaque stability [77]

ApoE knockout with diabetes
(male C57BL/6-background mice)

↓Plaque formation [20]
↓Macrophage foam cell formation

[20]

Restenosis Femoral artery wire injury
(male C57BL/6 mice)

↓Neointimal formation [27]
↑endothelial regeneration [27]

↑Neointimal formation
[27]

Femoral artery wire injury with
diabetes (male db/db mice) ↓Neointimal formation [27]

Cardiac remodeling
Angiotensin II infusion (male
C57BL/6-background ApoE

knockout mice)

↓Cardiomyocyte enlargement [25]
↓interstitial fibrosis [25]

Coronary artery ligation (male
C57BL/6-background mice) ↑Scar formation [99] ↓Mortality [99]

↓Scar formation [99]
Transverse aortic constriction

(male C57BL/6-background mice)
→Left ventricular

function [99]
Doxorubicin injection (male
C57BL/6-background mice)

↓Cardiac atrophy [99]
→Mortality [99]

Inflammation
Standard diet

(Ref. 49: male C57BL/6 mice, Ref.
86: male db mysty mice)

↓Adipose tissue inflammation [49]
↑Adipose tissue inflammation [82]

High fat diet
(Ref. 50: C57BL/6-background

mice [no information for sex], Ref.
89: male F344/jcl rats, Ref. 90:

male C57BL/6 mice, Ref. 109: no
information for background strain

and sex)

↓Adipose tissue inflammation
[50,79,80]

↑Adipose tissue expression and
blood levels of adiponectin [79,80]

↑Blood and adipose
tissue levels of IL-6 [100]

Diabetes
(male db/db mice) ↑Adipose tissue inflammation [82]

Gingivitis
(male C57BL/6-background mice)

↑Gingival inflammation
[76]

Endotoxemia
(male C57BL/6 mice) ↓ Blood IL-6 level [101]

3.3. Cardiac Remodeling Models

Heart failure has become one of the major causes of CV death in individuals with diabetes,
who are at high risk for heart failure and death [102,103]. The pathology of heart failure in diabetes is
associated with cardiac remodeling caused by complexes of atherosclerotic coronary disease and diabetic
cardiomyopathy, resulting in systolic and diastolic dysfunction [104–106]. However, effective therapy
to ameliorate cardiac remodeling in diabetes is still limited. GIPR has been shown to be expressed
both in the atrium and ventricle of mice and human hearts, thus suggesting that the heart is one
of the extra-pancreatic target organs for GIP [25,59,99]. We have previously found that GIP plays
a protective role against cardiac remodeling in ApoE-/- mice infused with angiotensin II (Table 2) [25],
whose pathway is also activated in diabetic cardiomyopathy [104–106]. Indeed, infusion of active GIP
(25 nmol/kg/day) for 4 weeks suppressed the left ventricle cardiomyocyte enlargement and interstitial
fibrosis, which were associated with concomitant reductions in cell apoptosis and transforming growth
factor-β protein expression in the hearts of angiotensin II-infused ApoE-/- mice [25]. In other studies,
effects of GLP-1 on infarcted rat hearts were evaluated [99,107–109]. In the infarcted rat hearts induced
by coronary artery ligation, perfusion with GIP, but not GLP-1 at the infusion rate at 100 nmol/l for
1 h reduced the protein expression levels of resistin [107], a promoter of cardiac remodeling and
dysfunction [108,109]. In contrast to the findings, deleterious effects of GIP on cardiac remodeling
were also reported in mouse models of myocardial infarction (Table 2) [99]. GIPR gene expression
levels in the heart were upregulated at one day but recovered to the baseline at two days after the
induction of myocardial infarction. One-week pre-treatment with [D-Ala2] GIP injections (24 nmol/kg
body weight, twice daily), did not affect the mortality, but increased the left ventricle scar formation
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at two weeks after the induction of myocardial infarction in wild-type mice. On the other hand,
both whole-body and cardiomyocyte-specific deletion of GIPR gene reduced the infarction-induced
mortality, ventricular weight, and left ventricle scar formation [99]. Interestingly, whole-body deletion
of GIPR gene did not affect the survival or left ventricle function in doxorubicin-induced or transverse
aortic-constriction-induced heart failure mice [99]. Collectively, these findings suggest that effects of
GIP on cardiac remodeling may differ depending on experimental conditions. Administration of GIP at
the pharmacological dose may prevent the angiotensin II-induced cardiac hypertrophy, while inhibition
of physiological levels of GIP could suppress the cardiac remodeling after myocardial infarction.

3.4. Inflammation Models

Inflammation plays a crucial role in the development and progression of atherosclerotic
CVD [85–89]. Several studies have shown the anti-inflammatory properties of GIP (Table 2) [49,50,79,80].
The injections of [D-Ala2] GIP (0.12 mg/kg body weight, once daily) decreased the adipose tissue gene
expression levels of pro-inflammatory cytokines, such as Il-1beta, Il-6, Tnf-alpha in wild-type mice fed
with standard diet [49]. Moreover, overexpression of GIP gene attenuated the gene expression levels of
pro-inflammatory molecules, including Ccl2, inhibitor of nuclear factor kappa-B kinase subunit beta, Il-4
receptor alpha, Tnf receptor superfamily member 1b, and Pai-1 in the epididymal fats of HFD-fed mice [50].
Consistent with the case of GIP overexpression, administration of GIP (10µg/kg, twice daily) for 2 weeks
increased the blood levels of adiponectin, an anti-inflammatory and insulin-sensitizing adipokine in
HFD-fed rats, which were accompanied with its increased gene expression and decreased Tnf-alpha
and Pai-1 gene in the stromal vascular fraction of epididymal fat [79]. In addition, once daily injections
of [D-Ala2] GIP (0.12 µg/g) decreased the infiltration of inflammatory immune cells into, and gene
expression levels of Tnf-alpha, Il-1beta, interferon-γ, fractalkine, Ccl2, Ccl5, and Ccl8 in, the epididymal
fat of HFD-fed mice, which were accompanied with reductions in the number of circulating bone
marrow-derived monocytes and neutrophils [80]. On the other hand, the [D-Ala2] GIP injections
increased the epididymal gene expression and blood levels of adiponectin [80]. The anti-inflammatory
effects of GIP have also been observed in other tissues [76,101]. Whole-body deletion of GIPR gene
promoted the gingival macrophage infiltration and gene expression levels of Tnf-alpha and inducible
nos in a mouse model of periodontitis [76]. The infusion of active GIP (4 pmol/kg/min) reduced
the blood levels of IL-6 in LPS-induced endotoxemic mice as well [101]. However, opposite results
were obtained in a couple of studies (Table 2) [82,100]. Twice daily injections of GIP (5 nmol/kg)
for 1 week augmented the gene expression levels of Ccl2 and Il-6 in the retroperitoneal or perirenal
fat of db/db mice, and also increased the Ccl2 gene expression levels and macrophage infiltration in
the retroperitoneal fat of non-diabetic lean mice [82]. In another study, adipocyte-specific deletion
of GIPR gene in HFD-fed mice decreased the lean mass weight and liver steatosis, but not visceral
or subcutaneous fat weight, with concomitant reductions in blood levels of IL-6 and adipose tissue
gene expression levels of Il-6 and suppressor of cytokine signaling 3, which is a downstream mediator
of IL-6 [100]. Taken together, physiological levels of GIP may promote adipose tissue inflammation,
whereas GIP at the pharmacological dose could exert anti-inflammatory effects in the adipose tissues.

3.5. Limitation of Animal Studies

Male animals were exclusively used in the animal studies (Table 2), possibly due to avoiding
potential CV protective effects of estrogen, which needs to be considered in the case of female
animals. However, diabetes confers a higher relative risk of CVD mortality among women than among
men [110,111]. It remains completely unclear whether the CV effects of GIP demonstrated in male
animals can be observed in female non-diabetic and diabetic mice.
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4. Human Studies

4.1. Blood Flow and Blood Pressure

The effects of GIP on blood flow and blood pressure are reported by a couple of studies, in
which GIP was intravenously infused at physiological doses that could mimic post-prandial blood
levels of GIP (Table 3) [112,113]. GIP infusion, which was started at 10.8 pmol/kg/min and gradually
decreased to 4.0 pmol/kg/min at 240 min, reduced the mean arterial blood pressure by 10–15 mmHg,
and increased the heart rate by < 8 bpm in individuals with normal glucose tolerance, impaired
glucose tolerance, or type 2 diabetes (n = 10 [men, 6; women, 4], 10 [men, 6; women, 4], and 9 [men, 3;
women, 6], respectively; no information for ethnicity) [114]. Another study investigated the effects
of GIP on blood flow in non-obese young healthy men (n =10, no information for ethnicity) under
the pancreatic clamp, which was composed of the co-infusion of somatostatin, insulin, glucagon,
and growth hormone at the fixed dose of each [115]. GIP infusion at 1.5 pmol/kg/min for 1.5 h increased
the blood flow in the femoral artery, but not those in brachial or carotid artery or flow-mediated
brachial artery dilation in the hyperglycemic phase, whereas the same infusion of GIP showed no effect
on these parameters in the normoglycemic phase. GIP-induced reductions in systolic blood pressure
and increases in arterial blood flow could play a protective role against CVD, whereas GIP-induced
increases in heart rate may have harmful effects. Given the fact that CV events were reduced by
treatment with GLP-1RAs, which could induce similar changes in systolic blood pressure and heart
rate as GIP [29–33], overall effects of GIP may be beneficial against CVD.

Table 3. Cardiovascular effects of GIP in human studies. ↑, increase;↓ decrease.

Subject Change

Normal glucose tolerance or young healthy

↓Mean arterial blood pressure [114]
↑Heart rate [114]

↑Femoral artery blood flow [115]
↑ Blood levels of CCL2 [78], CCL8 [78],

and osteopontin [62]
↑Adipose tissue levels of CCL2 [78], CCL8 [78],

and IL-6 [78]

Impaired glucose tolerance ↓Mean arterial blood pressure [114]
↑Heart rate [114]

Type 2 diabetes ↓Mean arterial blood pressure [114]
↑Heart rate [114]

4.2. Inflammatory Cytokine and Chemokine

There are a couple of studies evaluating the effects of GIP on pro-inflammatory cytokines in
humans (Table 3) [62,78]. GIP infusion at 2 pmol/kg/min for 240 min increased the blood levels of CCL2
or CCL8 and subcutaneous adipose tissue gene expression levels of CCL2, CCL8, and IL-6 in obese men
with normal glucose tolerance (n = 17, no information for ethnicity) [78]. In addition, these changes
were also observed both under euglycemic- and hyperglycemic-hyperinsulinemic clamps. In another
study enrolling healthy subjects (n = 47, no information for gender and ethnicity), GIP infusion
at 4 pmol/kg/min for 105 min increased the blood levels of osteopontin, which was dependent on
GIPR genotypes under the hyperglycemic clamp [62]. These observations are consistent with the
in vivo findings that physiological level of GIP is involved in adipose tissue inflammation in animal
models [82,100]. However, it remains unclear whether pharmacological concentrations of GIP can
induce similar pro-inflammatory changes, or conversely suppress the inflammation because both
physiological GIP inhibition and pharmacological GIP administration can similarly induce anti-obesity
effects [46–50,52]. In addition, data is still missing to elucidate roles of gender and ethnicity in effects
of GIP on inflammation.
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5. Concerns about GIP Therapy

5.1. GIPR Downregulation under Hyperglycemia

As above-mentioned, insulinotropic effects of GIP has been shown to be impaired in individuals
with diabetes, possibly through hyperglycemia-induced downregulation of GIPR expression in
pancreatic beta cells [42–44,116–118]. However, influence of hyperglycemia on GIPR expression in
vascular cells is controversial [21,27,62,63]. Several studies, including ours, have shown that exposure
to hyperglycemia decreased the gene or protein levels of GIPR in HUVECs and several types of
monocytes/macrophages [21,27,63]. We have also found that Gipr gene expression levels are halved
in the aortas and pancreases of hyperglycemic db/db mice compared with normoglycemic wild-type
mice [27]. On the other hand, another report showed that Gipr gene expression levels were not changed
in mouse aortic ECs, but upregulated in mouse aortic SMCs under hyperglycemic conditions in vitro [62].
Furthermore, Gipr gene expression levels were upregulated in the carotid arteries of diabetic LDL
receptor-knockout mice compared with non-diabetic mice in vivo [62]. Therefore, further studies
are needed to clarify whether GIPR expression in vascular cells can be altered in diabetic conditions.
However, given the fact that GIP suppressed the atherosclerosis and restenosis in diabetic mice [21,27],
beneficial cardiovascular effects of GIP are likely to be preserved, at least partly, in diabetic conditions.

5.2. GIPR Desensitization under Chronic Stimulation

GIPR undergoes very rapid and reversible homologous desensitization upon GIP binding,
which is considered an important response to regulate the GIP actions in GIPR-expressing cells [119].
Thus, there is a concern that chronic administration of GIP may lead to impaired actions of GIP through
GIPR desensitization. An early study showed that the continuous infusion of human GIP to normal
rats increased the blood levels of insulin up to 30 min, which was gradually decreased afterward,
returning to the baseline levels at 4 h [120]. Similarly, in cAMP reporter L-cells expressing rat GIP
receptor, human GIP at 2 nM increased the cAMP-dependent β-galactosidase production up to 4 h,
which was disappeared at 16 h after GIP stimulation. In addition, pre-incubation with GIP at 2 nM for
16 h also diminished the effects of subsequent GIP stimulation on cAMP-dependent β-galactosidase
production. Another study also reported the desensitization of GIPR after GIP stimulation in cultured
differentiated mouse 3T3-L1 adipocytes [121]. GIP stimulation at 100 nM for 60 min increased the
cAMP levels, which was approximately halved in the second GIP stimulation at 100 nM for 15 minutes
in association with decreased numbers of GIPR on the cell surface after the first GIP stimulation.

There are a couple of studies demonstrating that insulinotropic effects of GIP can be preserved
after chronic stimulation [122,123]. Degradation resistant GIP analog, N-AcGIP (LysPAL [37]) at
12.5 nmol/kg/day once daily was injected to diabetic ob/ob mice, but its insulinotropic effects were
similarly observed at 14 days after the serial injections [122]. In addition, another study reported
that insulinotropic effects of GIP were not impaired by exposure to slightly supra-physiological
concentrations of GIP in healthy subjects and age- gender- and weight-matched patients with type
2 diabetes and first-degree relatives of such patients [123]. GIP at 50 pmol/kg was injected to the
subjects before and after continuous GIP infusion at 2 pmol/kg/min for 150 min. However, there was
no difference between insulinotropic effects of the first and second GIP injections in any of the groups.
These findings suggest that GIP-induced cAMP production may be blunted to some extent after chronic
GIP stimulation via GIPR desensitization, but it can be still sufficient to stimulate insulin secretion in
pancreatic beta cells.

6. Further Perspective: Potential Effects of GIP as an Enhancer for GLP-1 Actions

Recent in vitro studies have demonstrated that GIP may enhance GLP-1 actions through binding
to GLP-1R/GIPR heterodimer. GIPR and GLP-1 belong to G protein-coupled receptors, which function
as not only monomers but also heterodimers or homodimers [124,125]. Several studies reported that
GLP-1R/GIPR heterodimer was formed in HEK-293 cells expressing these receptors, and the heterodimer
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resulted in an impaired response to GLP-1 stimulation [126–128]. Interestingly, the heterodimer
formation was promoted by GLP-1 stimulation, whereas it was reversed by GIP stimulation [127].
These findings suggest a possibility that GIP can act as an enhancer of GLP-1 actions in cells expressing
both GLP-1R and GIPR such as VECs. Although these in vitro findings need to be confirmed by
in vivo studies, this effect of GIP may be one of mechanisms, by which the GLP-1R/GIPR dual agonist
LY3298176 exerted superior metabolic effects compared with the GLP-1R mono-agonist dulaglutide [54].

7. Conclusions

GIP can exhibit both anti-atherogenic and pro-atherogenic properties in vitro: the former is
enhancement of NO production and AMPK activation in VECs, inhibition of cell proliferation in VSMCs,
and suppression of inflammatory responses in monocytes, macrophages, and adipocytes. The latter is
enhancement of ET-1 production in VECs and osteopontin production in VSMCs, and provocation of
inflammatory responses in adipocytes (Figure 1). However, overall effects of GIP at pharmacological
concentrations are likely to be protective against atherosclerosis both in non-diabetic and diabetic
conditions in vivo. Furthermore, recent in vivo studies have demonstrated multiple beneficial effects
of GIP on diabetes-related diseases, such as Alzheimer’s disease [129–134] and osteoporosis [135–146].
These findings suggest that dual or triple agonists including GIPR, which will be available in the near
future [54–56], could be comprehensive treatment for diabetes and its related disorders.
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Anti-atherogenic effects of GIP are induced by enhancement of nitric oxide (NO) production and
AMP-activated protein kinase (AMPK) activation in vascular endothelial cells (VECs), suppression of
cell proliferation in vascular smooth muscle cells (VSMCs), and suppression of inflammatory responses
and form cell formation in monocytes/macrophages or adipocytes. Pro-atherogenic effects of GIP are
associated with enhancement of endothelin-1 (ET-1) production in VECs, ET-1-mediated osteopontin
production in VSMCs, and provocation of inflammatory responses in adipocytes.
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AGE Advanced glycation end product
AMPK AMP-activated protein kinase
ApoE-/- Apolipoprotein E knockout
CaMKK Calcium/calmodulin-dependent protein kinase kinase
cAMP Cyclic adenosine monophosphate
CCL Chemokine ligand
CREB cAMP response element-binding protein
CVD Cardiovascular disease
DPP Dipeptidyl peptidase
ET Endothelin
GIP Glucose-dependent insulinotropic polypeptide
GIPR GIP receptor
GLP-1 Glucagon like peptide-1
GLP-1RA GLP-1 receptor agonist
HUV Human umbilical vein
IL Interleukin
LDL Low density lipoprotein
LKB Liver kinase B
LPS Lipopolysaccharide
NO Nitric oxide
NOS Nitric oxide synthase
PAI Plasminogen activator inhibitor
PKA Protein kinase A
PLC Phospholipase C
PTA Percutaneous transluminal angioplasty
SMC Smooth muscle cell
TNF Tumor necrosis factor
VEC Vascular endothelial cell
VSMC Vascular smooth muscle cell
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