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Abstract: This paper proposes a proximity imaging sensor based on a tomographic approach with
a low-cost conductive sheet. Particularly, by defining capacitance density, physical proximity in-
formation is transformed into electric potential. A novel theoretical model is developed to solve
the capacitance density problem using the tomographic approach. Additionally, a prototype is
built and tested based on the model, and the system solves an inverse problem for imaging the
capacitance density change that indicates the object’s proximity change. In the evaluation test, the
prototype reaches an error rate of 10.0–15.8% in horizontal localization at different heights. Finally, a
hand-tracking demonstration is carried out, where a position difference of 33.8–46.7 mm between the
proposed sensor and depth camera is achieved at 30 fps.

Keywords: capacitive sensing; motion capture; proximity imaging; impedance tomography

1. Introduction

Object tracking technique is crucial in robotics like teleoperation, input interface,
and human–robot interaction. Camera-based approaches are commonly adopted [1] when
tracking an object at a larger range. Thanks to the recent advancement of machine learning
technologies [2,3], camera-based object tracking has been widely used in robot–human
cooperation [4] and autonomous driving vehicles [5].

However, at a closer range, visual solutions suffer from restraint of field of view and
blocking effect with nontransparent objects. These effects limit the potential of applying
visual solutions to close-range proximity sensing. Close-range proximity sensing is neces-
sary for human–computer interfaces such as augmented reality (AR) devices [6]. These
devices usually possess limited space for sensors, therefore requiring a thinner proximity
sensor for a wider detection area.

Several researches have been carried out regarding close range proximity sensors,
and three common approaches are adopted: optical, inductive, and capacitive approaches.
Sensors such as Light Detection and Ranging (lidar) or depth sensor are precise in the
optical approach [7], but they are hard to implement and still suffer from object occlusion.
The inductive approach can realize robust sensors, but it only works with conductive
objects [8]. On the other hand, sensors based on the capacitive approach can detect
both conductive and non-conductive objects, but they are vulnerable to disturbances and
contamination [9,10]. There are also researches that combine inductive and capacitive
approaches together [11]. These approaches focus on single proximity sensing, which
could only give proximity on one point.

For 3D object tracking, capacitance sensors are often utilized in the form of arrays
to generate 3D proximity information. These sensors usually are thin and can be hidden
behind some surfaces, and are also not restrained by field of view. Zhang et al. [12] applied
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a conductive paint pattern onto a wall to track human poses. Ye et al. [13] proposed a
high-performance capacitance sensor array by introducing a high sensitivity capacitance
measuring circuit and grounded shields around each sensor. However, the sensor array
method usually requires complex design of hardware and manufacturing, making it
difficult to integrate into arbitrary-shaped devices.

Since the works in [14,15], tomographic approaches have been utilized to determine
changes of conductivity across materials through boundary electrodes’ information, which
is usually concerned with the pressure distribution on the material. The application of
electric impedance tomography sensors has proven its advantage of scalability, versatility,
and ease of fabrication. In the previous researches, most of the researches have been
focusing on force and pressure imaging [16–18]. Some attempts have been made to utilize
tomography to image proximity of cylindrical objects; however, it only reveals information
on one dimension [19,20]. There have not been endeavor towards using tomographic
approach to solve proximity imaging on 2D surfaces.

The purpose of this paper is to capture an object’s 3D position using a thin conductive
sheet. Therefore, a novel theoretical model is proposed to find capacitance density, which
is related to proximity distribution, from the boundary electrodes on a conductive sheet.
Proximity distribution is then used to predict the object’s position. To accomplish the
model, the capacitance density on the conductive sheet due to surrounding objects is
defined and introduced into the differential equation for the tomographic approach. The
system solves an inverse problem to reconstruct the capacitance density, thus estimating
the proximity distribution. As the detector is a homogeneous thin layer of a conductive
sheet, the detection area can easily be scaled to a larger surface. Additionally, with its
hardware architecture, it is possible to incorporate pressure sensing into the same sensor,
granting the sensor the abilities of imaging touch interaction and 3D object tracking with
low cost and easy manufacturing.

In our previous conference paper, the theoretical model for estimating capacitance
density distribution was presented [21]. In this paper, the proximity mapping from capac-
itance density inside the model is improved. Based on the proposed model, we made a
functioning prototype and evaluated the performance of the proposed system. The main
contributions of this paper are as follows:

• To present an improved novel proximity imaging method [21] for an object track-
ing application.

• To develop a proximity imaging sensor using a low-cost conductive sheet and evaluate
its proximity and horizontal position estimation accuracy.

• To implement a hand-tracking demonstration as a potential application of the pro-
posed system.

2. Methods
2.1. Overview

Our final goal is to visualize a proximity distribution on a surface (see Figure 1). First,
proximity–capacitance coupling is introduced. A single layer of conductive sheet is used to
convert the proximity information to potential on each electrode at the sheet’s boundary.
The system solves an inverse problem to find the capacitance distribution on the surface.
In this paper, we assume that the conductive sheet used for capacitance coupling is a
pure resistive material and that only electrically-grounded objects are considered as target
objects. The following discussion is all under a single time frame, and all the variables are
time-dependent.

As shown in Figure 2, when a grounded object exists above a conductive surface,
capacitance Ceq appears between these two objects. If voltage Vin is applied at the boundary
of the surface, free electrons will accumulate on the surface and the grounded object. The
distribution of electrons is represented by ρe(r) as the value of the charge density at point
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r ∈ R2. We also define φ(r) as the potential value at the same point. As a result, capacitance
density ςC(r) can be defined on the surface as

ςC(r) =
ρe(r)
φ(r)

. (1)

The shape and distance of the grounded object placed over the surface determine the
capacitance density. Establishing the precise relation between the capacitance density and
the distance distribution can be considerably difficult. However, the distance between the
target object and the detecting sheet can be inferred by obtaining the capacitance density.

Figure 1. Overview of the proximity imaging. The system interprets physical distance information
as voltage data on electrodes and then uses an inverse problem solver to map capacitance density
(modified from the work in [21]).

Figure 2. Explanation of proximity capacitance coupling and electrode position illustration (modified
from the work in [21]).

For the sensor design, N electrodes are attached to the sheet at the boundary, as shown
in Figure 2. By inputting a voltage signal through one electrode and reading voltage data
from other electrodes one at a time, we can obtain N − 1 number of data for one input
condition. After switching the input condition through all the boundary electrodes, we can
obtain N(N − 1) number of data for a single detection frame. Using those data to solve the
inverse problem, we can obtain the capacitance distribution across the sheet. We can then
estimate a proximity map of the grounded objects above the sensor.

2.2. Forward Problem

A reconstruction algorithm is used to solve the inverse problem of estimating ςC
using the potentials at the boundary electrodes for multiple input conditions. To define
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the inverse problem, we first consider the forward problem. Given the capacitance density
ςC(r) condition, the potential distribution on the sheet is obtained by solving a partial
differential equation. As a thin sheet is utilized, the model is established on a 2D surface.

Considering the condition of free electrons at a point inside the conductive sheet
domain Ω, the accumulation rate of its free electrons is equal to the inflow of the current to
the point:

∇ · js(r) +
∂ρe(r)

∂t
= 0 on Ω, (2)

where js is the current density vector, ρe is the amount of free electrons at that point, whose
values are time variant, and t is time. The current density vector can be represented as in
the following equation:

js(r) = σ(r)E(r) = σ(r)(−∇φ(r)), (3)

where E(r) is the electric field, σ(r) is the conductivity of the homogeneous sheet, and φ(r)
is the potential at the point. Equation (2) can then be rewritten as

∇ · (−σ(r)∇φ(r)) =
∂ρe(r)

∂t
. (4)

Following the shunt model [22], the potential at the input electrode region Ωd is
treated as the boundary condition

φ(r) = V0ejωt on Ωd, (5)

where V0 is the voltage amplitude of the input sine signal and ω is its angular frequency.
The potential at every point in the domain can then be represented as

φ(r) = V(r)ej(ωt+ϕ(r)) on Ω, (6)

where V(r) is the amplitude and ϕ(r) is the phase. According to the previous definition of
the capacitance density ςC(r) in (1), the density of free electrons on position r is

ρe(r) = ςC(r)V(r)ej(ωt+ϕ(r)). (7)

A differential equation can then be derived from (4) and (7):

∇ · (σ(r)∇φ(r))− jωςC(r)φ(r) = 0. (8)

Note that φ(r) is a complex number. Because the conductivity of the sheet does not
change in our application, the variable in (8) is ςC(r).

The finite element method (FEM) is used to find the potential distribution with (8).
By solving the forward problem, the potentials at the electrodes can be calculated, and the
output on electrode areas Ωe can be represented as

φ(r) = Ve(r)ej(ωt+ϕe(r)) on Ωe. (9)

2.3. Inverse Problem

A regularization-based imaging method [23] is utilized due to its fast reconstruction
speed. Amplitude Ve is used as our main measurement parameter, as it is easier for signal
measurement. The basic idea of the dynamic imaging is linearizing the system around an
initial density value vector ς0. After obtaining the Jacobian matrix J between the electrode
potential amplitudes and the capacitance density, the differential amplitude vector δV can
be approximately calculated using the following equation:

δV ≈ Jδς + w (10)
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where δV is a vector comprising the difference of the current electrode amplitude readings
and the original amplitudes, which are recorded before locating objects near the sensor;
vector δς is the change of the capacitance density on each element; and vector w represents
an error. The amplitude vector has N(N − 1) elements, while the capacitance density
vector has Nelem elements. In practice, we obtain the original amplitude data Vori when
there is no object in the detection range. We then subtract Vori from the measured data
Vmea to obtain the difference amplitude vector δV and do the reconstruction.

Through this method, a mapping between the electrode potential information δV
and the capacitance density δς can be established in a linear relation, and an acceptable
reconstruction speed is achieved.

2.3.1. Jacobian Matrix

The Jacobian matrix is the derivative with respect to the capacitance density change.
The matrix could be calculated numerically by perturbing the capacitance density of each
element in the mesh by δς. In practice, a difference approximation for J is obtained by
dividing δV by δς:

Ji,k =
δVi
δςk

; i = 1, . . . , N(N − 1); k = 1, . . . , Nelem (11)

where N is the number of electrodes and Nelem is the number of elements in the detection
area mesh.

2.3.2. Regularization

As shown in (10), solving δς from δV is a highly ill-posed problem. Therefore, the
Tikhonov regularization method is utilized to solve this problem. Lionheart et al. [24]
stated that the formal solution of Tikhonov regularization is proposed as follows:

δ̂ς = (JT J + λ2Q)−1 JTδV (12)

where λ is a hyperparameter that controls the amount of regularization and Q is a regu-
larization matrix which, in our case, is an identity matrix I. By pre-calculating the matrix
(JT J + λ2Q)−1 JT , a fast speed reconstruction of the capacitance density can be achieved.

2.4. Proximity Mapping and Calibration

Different from the previous paper [21], for proximity mapping, we used the following
equation to approximately fit the distance with the capacitance for objects possessing a
flat bottom surface. According to the capacitance between two infinite size planar boards
C = ε0S/d, the capacitance density can be derived as ς = ε0/d where d is the distance
between the two boards and ε0 is vacuum permittivity. We generated the following
equation to approximate the proximity and capacitance density:

dk = b1 +
b2

δςk
(13)

where dk is the normal distance of the object from the k-th element and δςk is the output
from the solver on the k-th element. Parameters b1 and b2 can be fitted from the calibration
experiment data. However, for a complex-shaped object, a specific function has to be
considered to yield a better result in decoupling proximity and capacitance, which means
that a separate calibration is needed for differently shaped objects.

3. Implementation
3.1. Sensor Construction

The outline of the sensor is shown in Figure 3. A multiplexer switches the input
signal on every electrode, and an AD converter (ADC) reads the voltage signal on every
channel. Due to the large impedance in our system, voltage followers were implemented
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before every ADC to prevent the impedance of ADC affecting the sensor circuit. The
multiplexer chosen was MUX36S16IPW, and the amplifier used for the voltage follower
was MCP6291RT-E/MS. The circuit part is shown in Figure 4. For ADC, we used a USB-6349
Multifunction I/O Device (National Instrument), which could provide 500 kHz sampling
speed for all the analog input channels. The control system was developed using LabView.
For the sensor, a polyethylene-including carbon conductive sheet (ZC-86, Engineer Inc.,
Yokohama, Japan) with size of 200 mm× 200 mm was used (see Figure 4). The surface
resistance of the sheet is 5× 103 Ω/Sq at 20 °C temperature and 50% humidity, and its
moisture permeability is 60 g/m2. Sixteen copper square electrodes with a side length of
12 mm were arranged evenly on the perimeter and were connected to the sensor sheet with
conductive tape.

Figure 3. Outline of the sensor structure. Voltage followers are used to improve performance.

Figure 4. Sensor construction, circuit, and detection area.

A voltage with amplitude of 3 V and frequency of 20 kHz was used as the excitation
signal. The signal generator used was WF-1946 (NF Corporation, Yokohama, Japan). This
frequency was chosen because of the sampling speed for the ADC, and also because it
generated the largest change in the electrode output amplitude with regard to the distance
change of a hovering object. The channel selection on the multiplexer was controlled
by USB-6349’s digital output channel. For the signal reading process, 500 sample points
were recorded on every excitation condition. After reading one excitation condition,
the controller changed the input condition. The switching speed of the controller was
1 kHz. For every excitation condition, the last 250 sample points were used to compute the
amplitude. A hamming window was applied before applying fast Fourier transformation
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to erase the effect of phase difference. After recording all 16 excitation conditions, all data
were sent to the inverse solver. The imaging frame rate for our prototype was 30 Hz.

3.2. Reconstruction Solver

The mesh used in the solver was generated by Altair Hypermesh software. In this
paper, the size of the mesh was set to 200 mm× 200 mm to match with the size of the
real sensor. The domain was divided into 5000 isosceles right-angled triangle elements.
The length of the cathetus on each triangle was 4 mm. Because we used a linear model to
approximately solve the problem, the difference in size of the mesh elements affected the
performance of the system greatly. Therefore, elements with the same size were applied
across the whole domain. The side length of each square electrode was set to 12 mm.
Python language was used to implement the forward FEM simulator and the inverse
solver. For calculating the Jacobian matrix inside (10), a change of capacitance density
δςk of 1× 10−4 F/m2 was applied to one element. The corresponding electrode output
amplitude δVi was obtained to construct the Jacobian matrix, as described in (11). The
matrix was constructed by repeating this calculation on all 5000 elements. Choosing the
hyperparameter λ in (12) considerably affected the reconstruction results. The optimal
hyperparameter was chosen according to the best resolution method mentioned in [25],
which was 203 in this paper. All the results mentioned in the succeeding paragraphs were
all generated using the solver with optimized parameters.

The reconstruction solver was built after choosing the hyperparameters. Some simple
examples were used to demonstrate the performance (see Figure 5). Reconstruction was
applied in a detection area with a size of 168 mm× 168 mm. A threshold process was
applied to the result to show the pattern more clearly. We used 80% of the maximum
value as the threshold value, and values smaller than the threshold are not shown in the
result graph.

Figure 5. Reconstruction results of the algorithm. The first and second rows represent the ground
truth and the reconstruction result, respectively. Inside ground truth image, the black area possesses
a capacitance density of zero, while the yellow area is the ground truth target whose value is
1× 10−9 F/m2.

For parameters in (13), we used the calibration result of an 80 mm× 80 mm object,
which will be mentioned in Section 4 to fit b1 and b2. Figure 6 shows some measurement
results of the constructed system.
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Figure 6. Proximity reconstruction results under three different hand-hovering conditions. A thresh-
old of 80% value between the minimum and maximum proximity value is applied.

4. Experiments

Two experiments were conducted to examine the performance of the sensor and show
its potential applications. The first one was an evaluation experiment, and the other one
was a hand-tracking demonstration.

4.1. Performance Evaluation
4.1.1. Testing Device

To evaluate the performance of the sensor in proximity sensing, the proximity sensing
performance (position accuracy on measuring objects) was investigated.

In order to evaluate the accuracy of the 3D position sensing, an XYZ stage was
prepared to control the object position. As shown in Figure 7, an ANYCUBIC Chiron 3D
printer with 0.1 mm position accuracy was modified into an XYZ stage for moving the
testing object. An aluminum frame was attached to the end of the moving component and
the stage was calibrated so that its working space was parallel to the surface on which the
sensor was placed. As shown in Figure 7, a leveling mechanism was attached between the
object and the aluminum frame to compensate the tilt because of the extended part.

Figure 7. Experiment setup for performance evaluation.
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The objects used were made out of electron-conjugated conductive polymer sheet
with a resistance of 2.5× 10−2 Ω/Sq and acrylic boards which can be laser-cut freely and
constructed into any shape. Four different sized square objects (objects A, B, C, and D in
Figure 7) with side length of 20 mm, 30 mm, 40 mm, and 80 mm were chosen as the testing
objects. Three other objects (objects E, F, and G in Figure 7) were chosen to demonstrate
sensor’s capability of detecting randomly shaped objects and non-flat objects. These objects
were grounded using a crocodile clipper attached to the slit that is extended from the
bottom surfaces.

4.1.2. Metrics

To evaluate the results, the center of position (CoP) was calculated according to
the reconstruction result. The CoP was generated as the center of mass of the elements
whose estimated capacitance density δς is larger than 90% of the maximum value. The
capacitance density at CoP is the mean value of elements chosen to calculate CoP. In this
work, position error (PE) was used as the main evaluation method at every height situation
between the reconstructed CoP and the ground truth. For comparison between different
objects, every object was hovered above the detection surface at ten different heights from
5 mm to 50 mm. At each height, the center of the object stayed at 25 different evenly
distributed points inside the detection area (168 mm× 168 mm). For randomly-shaped
objects and non-flat objects, we tested these objects on three different heights: 10 mm,
30 mm, and 50 mm. The objects were also placed at 25 points same as the square objects.

To investigate the detection range of the sensor regarding the size of objects, the square
objects were hovered above the center points at 20 different heights from 5 mm to 100 mm.
The reconstructed capacitance density value at CoP was used to determine the detec-
tion range.

Before the experiment, every object was placed at 400 mm (where the object is far
beyond the detection range) above the center point of the sensor to get the original voltage
data Vori for that object. We measured 50 datasets at every position and obtained the mean
value of the output amplitude data, Vmea. After gathering the amplitude output on every
position, the difference between the gathered data and the original voltage data was used
for the reconstruction.

4.1.3. Results

Figure 8a shows the mean capacitance densities at CoP at different heights for every
object, and Table 1 summarizes their relative standard deviations (RSD). The result indicates
that the capacitance density becomes smaller as the target object gets smaller.

(a) (b)

Figure 8. (a) Mean capacitance density value at center of position (CoP) reconstructed regarding
distance using objects with different size. The red line shows the fitted curve of the 80 mm object. (b)
Capacitance density value at CoP reconstructed regarding distance with different horizontal position
using 80 mm object (Object D).



Sensors 2021, 21, 2736 10 of 16

Table 1. Relative standard deviation (RSD) of capacitance density value at CoP on every height.
The last row presents detection range of every square object. The values are height of the measurement
point whose reconstructed capacitance density is closest to 3× 10−7 F/mm2.

Object A Object B Object C Object D
20 mm 30 mm 40 mm 80 mm

Distance (mm) RSD (%) RSD (%) RSD (%) RSD (%)

5 20.5 21.9 22.2 27.5
10 6.0 6.5 7.9 8.3
15 4.9 4.2 7.9 6.4
20 9.1 7.2 7.3 8.9
25 6.3 5.5 5.2 8.5
30 5.9 6.5 6.4 8.3
35 8.1 6.2 9.8 8.6
40 11.5 10.2 11.7 7.8
45 9.1 9.3 12.0 12.6
50 10.2 10.9 10.9 10.9

Detection Range (mm) 50 60 70 90

However, the difference of the values between the 40 mm object and 80 mm object
was not large, although the side length is two times larger. Because the electric field
coupling is more complex on the perimeter of a flat object, larger objects posses more
evenly distributed electric fields in the center. Due to this effect, the largest reconstructed
value that represents the center value became similar on larger objects at the same height.
We can utilize this property to implement some application on larger objects such as hand
tracking. A simple flat object can be utilized to calibrate the sensor. The fitted parameters
can then be used for hand-tracking experiments.

Note that the RSD value at 5 mm distance was much larger than at larger distances.
The value difference is caused by the same effect described above. The electric fields is
much more condensed at the perimeter of the sensor sheet. As shown in Figure 8b, at a
smaller distance, the reconstructed value at the CoP is much larger on corner than the value
at the center. As a result, the RSD value at 5 mm is significantly larger.

The last row of Table 1 demonstrates the detection range of every square object.
Because of the noise, the proposed sensor performed poorly when the reconstructed capac-
itance value is smaller than 3× 10−7 F/m2. As a result, we use this value as threshold of
determining the maximum detection range for the objects. The height of the measurement
point whose capacitance density value at CoP is the closest to the threshold was set as
detection range. Due to stronger electrical coupling with larger objects, the detection range
increases with the size of the object.

Table 2 presents the PE value of the measurement results, and Figure 9 shows the CoP
results for Object D (80 mm× 80 mm). PE increased when height increased. For every
object, the PE at each height value is similar, which means that the horizontal position
accuracy on detecting a single object is similar regardless of the change in size.

Table 3 presents the Standard Deviation (STD) of the CoP coordinates of all samples
at a single measurement on every height. The STD value represents the resolution of the
sensor which varies with size and height of the object. The resolution is higher when
objects are larger or object’s height is smaller.

The result of non-square objects (objects E, F, and G) is shown in Figure 10, which is
similar to the result of squared objects with the same size. The results further indicates that
the PE value is not concerned with the shape of the object. Furthermore, the data show
that although with some larger error, the proposed sensor possesses the ability of detecting
non-flat object.
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Table 2. PE data for experimental data and simulation data.

Object A Object B Object C Object D
20 mm × 20 mm 30 mm × 30 mm 40 mm × 40 mm 80 mm × 80 mm

Distance (mm) Mean (mm) STD (mm) Mean (mm) STD (mm) Mean (mm) STD (mm) Mean (mm) STD (mm)

5 21.518 8.806 20.806 7.316 19.935 7.644 20.725 6.860
10 22.241 8.681 22.676 7.769 21.999 10.089 21.414 8.833
15 24.601 11.214 22.909 8.696 26.662 14.314 22.067 10.144
20 28.592 14.277 21.983 9.313 24.732 9.994 22.504 10.675
25 28.030 12.690 25.554 12.157 23.756 11.524 22.815 11.779
30 27.743 13.933 26.624 13.009 25.251 13.458 24.401 13.887
35 30.909 15.684 26.621 12.205 31.335 15.177 25.189 14.571
40 37.804 19.256 26.554 11.726 29.406 13.474 24.721 13.829
45 34.174 15.813 39.648 19.574 29.178 16.170 27.489 14.647
50 38.869 17.132 39.191 21.504 30.349 16.173 36.275 16.522

Table 3. Standard deviation (STD) of the CoP coordinates from all samples (50 frames × 25 points) at one measurement
point on every height. The STD value of a single measurement point indicates the resolution of proposed sensor at the
certain height.

Object A Object B Object C Object D
20 mm × 20 mm 30 mm × 30 mm 40 mm × 40 mm 80 mm × 80 mm

Distance (mm) x Axis (mm) y Axis (mm) x Axis (mm) y Axis (mm) x Axis (mm) y Axis (mm) x Axis (mm) y Axis (mm)

5 0.826 0.915 0.503 0.555 0.331 0.364 0.676 0.845
10 1.282 1.388 0.731 0.741 0.583 0.648 0.827 1.025
15 1.558 1.503 1.601 1.192 0.765 0.861 1.187 1.461
20 1.805 1.759 1.424 1.737 1.829 1.917 1.339 1.544
25 2.328 2.400 1.481 1.573 1.877 1.483 1.654 1.838
30 3.030 2.701 1.669 1.993 1.188 1.453 1.560 1.809
35 3.545 2.907 2.221 2.919 1.735 1.878 2.227 2.650
40 2.995 2.540 2.544 2.524 2.266 2.406 2.268 2.650
45 3.770 4.120 2.903 2.679 3.370 2.943 2.597 2.871
50 4.217 3.776 3.052 2.842 2.434 2.550 2.528 2.460

Figure 9. Reconstructed CoP compared with ground truth points in experiment with an 80 mm object. The points and gray
crosses represent the reconstructed CoPs and the ground truths, respectively. Units of graphs is in millimeter mm.
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Figure 10. Sensor performance information on a reference object (object D) and three non-square object (objects E, F,
and G). The first three columns present the position error of each measurement. The points and gray crosses represent
the reconstructed CoPs and the ground truths, respectively. The columns in the middle demonstrate the reconstructed
capacitance density value at CoP of each measurement. The reconstructed image is displayed in the last column. Inside the
image, the object was hovering 10 mm above the central point of the sensor. Units of all graphs is in millimeter mm and
units for capacitance density value is F/mm2.

4.2. Hand-Tracking Application
4.2.1. Measuring Device

To get the ground truth data of the hand, an Intel Realsense Development Kit SR300
depth camera was used to record the hand position simultaneously with our sensor (see
Figure 11). A sleeve made of a material that is invisible to the depth camera was attached
to the arm to restrict the visible area to the hand. First, the point cloud inside the camera
coordinate is calculated from the depth image using the default information given by the
data sheet. These points were then transformed from the camera coordinate (xc, yc, zc) to
the sensor coordinate (xs, ys, zs). From the points in the sensor coordinate, the hand was
then extracted as a set of points that satisfy (|xs| < 300 mm, |ys| < 300 mm, zs < 300 mm).
The contour of the hand inside the depth image was then generated using OpenCV library,
as shown in Figure 11. The center position of the hand was determined by the eclipse
covering the contour. The center of the oval was used as the ground truth value for the hand
position. The camera captures the upper surface of the hand, whereas our sensor detects the
lower surface. Therefore, after getting the center point of the hand’s upper surface zup, we
estimated the height of the lower surface zlow using the relationship zlow = zup − 15 mm.

Figure 11. Hand position recognition process using depth camera.
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To estimate the hand position with the proposed sensor, we used the CoP of a recon-
struction image as X and Y axis’s position estimation of the hand. The capacitance density
at CoP is used to estimate the distance of the hand from the sensor. The human subject did
not touch any grounded object but weakly coupled with the ground. To accomplish the
estimation, the sensor has to be calibrated. The result shown in Figure 9 indicates that the
estimated positions shrink towards the center when the distance gets larger. The estimation
of position is not correlated with the size of the object. As a result, a model was used to fit
the estimated CoP for the ground truth to get a more accurate position. The relationship
between the estimated CoP and ground truth is complicated; however, inside this paper, a
linear model (14) was used to simplify calculation:

x′ = (c1z + c2)xs

y′ = (c1z + c2)ys

z′ = zs

(14)

where c1 and c2 were fitted from the calibration experiment using an 80 mm× 80 mm
object previously mentioned. The calibration took place at ten heights from 10 mm to
100 mm. For each height, 25 points in the horizontal plane, consistent with the previous
experiment, were measured. In addition, (13) was used to fit the output capacitance density
at CoP with the distance of the calibration object.

4.2.2. Results

Three sets of experiment were carried out under three different hand and arm di-
rections. Figure 12 shows the hand position estimation generated by the camera and the
sensor, and Table 4 shows the position difference between the two methods in every set of
experiment. Every data consists of 75 frames hand movement (around 2.5 s). The three
different arm directions are (−1, 1, 0), (0, 1, 0), (1, 1, 0) from the hand center in the sensor
base coordinate. The mean distance between the sensor estimation and the depth camera
was approximately 15% of the sheet side length throughout the three sets of experiments.
In most cases, the correlation coefficient between the proposed sensor and the camera
system is larger than 0.9. Because the arm can also be detected by the sensor, the results
tended to be biased towards the arm at a larger distance from the sensor sheet. Besides,
the error between the linear model (14) and the actual relationship between estimated CoP
and the ground truth might caused the gap between sensor estimation and camera results.
In addition, as the detection area was limited, sensitivity at the perimeter was lower than
that inside the detection area (168 mm× 168 mm) bringing larger error in the result at
perimeter areas.

Figure 12. Comparison of hand trajectories between the sensor and depth camera. The blue and orange lines represent the
sensor and the camera, respectively.
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Table 4. Position difference between camera estimation and sensor estimation.

Experiment Set Set 1 Set 2 Set 3
Arm Direction (−1, 1, 0) (0, 1, 0) (1, 1, 0)

Mean Distance (mm) 46.66 33.38 45.14
Mean X Difference (mm) 32.45 18.7 21.7
Mean Y Difference (mm) 10.62 21.4 23.2
Mean Z Difference (mm) 6.31 9.5 10.4
X Correlation Coefficient 0.905 0.954 0.892
Y Correlation Coefficient 0.949 0.981 0.907
Z Correlation Coefficient 0.851 0.933 0.725

4.3. Discussion

The proposed proximity imaging sensor yielded a prominent result in single object
3D position detection. Inside the performance evaluation experiment, the proposed sensor
achieved horizontal errors of 10.0–19.8% of the sheet length and variations of the proximity
at approximately 10%. For the hand-tracking task, the proposed system successfully es-
timated the hand position in 3D space. As shown in Table 4, the system reached a PE of
33.4–46.6 mm, which is smaller than half a hand-width. In most cases the correlation coef-
ficient between the depth camera and the proposed system was larger than 0.9. Therefore,
we conclude that the proposed sensor successfully estimated the 3D position information.

As shown in Table 2, the precision of positioning a single object was similar with
differently sized objects. This means that using a larger sensor for the same object would
not improve the positioning accuracy. However, the detection range might change with the
shape of the sheet. Particularly, increasing the size of the sheet might help detect the same
object at a larger distance.

Besides, the position accuracy of the proposed sensor can be improved. The contact
impedance at the electrodes might affect the distribution of current inside the sensor
material, resulting in distortion of the CoP from ground truth inside Figure 9. The error
caused by contact impedance can be addressed by applying scaling function comparing
with the simulation data [18]. Furthermore, for single object detection, a more precise
fitting model substituting (14) can be used to increase position accuracy.

The temporal characteristic of the sensor is mainly concerned with the sampling speed
of ADC, switching speed, and signal frequency. In this work, the imaging frame rate of
the sensor was 30 Hz due to software limitations. With a more integrated software system,
the theoretical frame rate could reach 60 Hz using the current hardware setup. On the
other hand, the signal frequency is hard to increase because it affects the performance of
the sensor, and higher frequency might also be difficult for portable ADC.

Although the experiment conducted herein exhibited the feasibility of the proposed
sensor, some limitations must be acknowledged. First, it is difficult to find a universal
function for relating proximity and capacitance density. Inside the proposed system,
a function was hypothesized specifically for flat-bottom objects. However, for complex
objects, this method is very approximate, restricting the precision of the sensor. In future
works, we will first try to figure out how to discern the size of the object based on the
acquired data.

Second, as the sensing area is directly exposed to the environment, environmental
noise affects the performance of the proposed system. If the voltage change triggered
by the object is smaller than noise, the object is undetectable. Currently, a simple signal
processing was applied in order to exclude the effect of the phase change in obtaining the
amplitude of the signal. In future works, the resolution of the sensor might increase by
adapting more sophisticated signal processing techniques.

Last, multiple objects detection is difficult to realize with the current reconstruction
algorithm. When two objects were hovering very close to the sensor (closer than 1 mm),
the algorithm could distinguish two objects in the reconstructed image. However, dis-
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tinguishing these objects was infeasible at a larger distance. Applying different Jacobian
matrices for different heights or implementing different reconstruction approaches like
the D-Bar method [26] and deep learning method [27–30] might help solve this issue in
the future.

5. Conclusions

In this paper, we presented a proximity imaging sensor based on the tomographic
approach using a low-cost conductive sheet. A novel theoretical model to image prox-
imity using capacitance–proximity coupling was proposed to achieve the design of the
sensor. A prototype sensor using the proposed model was implemented and tested. The
position accuracy evaluation performed on the prototype revealed that the sensor reached
a horizontal localization error rate of 10.0–15.8% at different height conditions inside the
detection range. A hand-tracking application was carried out on the proposed sensor.
Compared with the depth camera system, the proposed system achieved a position error
of 33.38–46.66 mm, proving its feasibility. Therefore, the proposed system is expected to be
used in various robotic applications, such as teleoperation, input interface, and interaction
between human, machine, and environments.
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