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Abstract 

Remodeling (re-engineering) of a tumor’s stroma has been shown to improve 
the efficacy of anti-tumor therapies, without destroying the stroma. Even though it 
still remains unclear which stromal component/-s and what characteristics hinder 
the reach of nanoparticles deep into cancer cells, we hypothesis that mechanisms 
behind stroma’s resistance to the penetration of nanoparticles rely heavily on extrinsic 
mechanical forces on stromal cells and cancer cells. Our hypothesis has been formu-
lated on the basis of our previous study which has shown that changes in extracellular 
matrix (ECM) stiffness with tumor growth influence stresses exerted on fibroblasts 
and cancer cells, and that malignant cancer cells generate higher stresses on their 
stroma. This study attempts to establish a distinct identification of the components’ 
remodeling on the distribution and magnitude of stress within a tumor tissue which 
ultimately will impact the resistance of stroma to treatment. In this study, our objective 
is to construct a three-dimensional in silico model of a pancreas tumor tissue consist-
ing of cancer cells, stromal cells, and ECM to determine how stromal remodeling alters 
the stresses distribution and magnitude within the pancreas tumor tissue. Our results 
show that changes in mechanical properties of ECM significantly alter the magnitude 
and distribution of stresses within the pancreas tumor tissue. Our results revealed 
that these stresses are more sensitive to ECM properties as we see the stresses reach-
ing to a maximum of 22,000 Pa for softer ECM with Young’s modulus of 250 Pa. The 
stress distribution and magnitude within the pancreas tumor tissue does not show 
high sensitivity to the changes in mechanical properties of stromal cells surrounding 
stiffer cancer cells (PANC-1 with Young’s modulus of 2400 Pa). However, softer cancer 
cells (MIA-PaCa-2 with (Young’s modulus of 500 Pa) increase the stresses experienced 
by stiffer stromal cells and for stiffer ECM. By providing a unique platform to dissect 
and quantify the impact of individual stromal components on the stress distribution 
within a tumor tissue, this study serves as an important first step in understanding 
of which stromal components are vital for an efficient remodeling. This knowledge will 
be leveraged to overcome a tumor’s resistance against the penetration of nanoparti-
cles on a per-patient basis.
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Introduction
Pancreatic cancer is one of most prevalent type of cancer which is expected to become 
the second leading cause of cancer death in the United States by 2030 [1]. Pancreatic 
cancer is often lethal, with 1-year and 5-year survival rates at 24% and 8%, respectively 
[1]. The low survival rate in patients with pancreatic cancer is mainly due to the forma-
tion of a dense and fibrotic barrier by the tumor stroma that literally blocks the pen-
etration of drugs deep into the cancer cells [2–10]. The stroma structurally consists of 
fibroblasts, a basement membrane matrix, an extracellular matrix (ECM), immune 
cells, and a vasculature that evolves over time and varies in patients [2–16]. Although 
our knowledge of the malignant pancreatic cancer and their resistance to drug therapies 
continually improves, the mechanisms involved in overcoming resistance of tumors to 
therapies principally remain a mystery. We very well know that cancer cells alter their 
stroma to support their growth and proliferation [4, 10–16]. Furthermore, we know that 
remodeling (re-engineering) of stroma can improve the efficacy of anti-tumor therapies, 
rather than destroying the stroma [2–35].

In the last 2 decades, several models––including in vitro, in vivo, ex vivo, and math-
ematical (and numerical and cell-based computational)––have been developed to 
improve the understanding of cancer treatment resistance and to use this knowledge 
for personalized treatment [2–35]. However, these models have faced serious challenges 
mainly because they have not been successful in reconstructing human tumor tissue. 
This is mainly due to tumor stroma being highly heterogeneous; it changes by tumor 
growth, and its components and proportion changes inter/intra-personally [2–35]. 
Patient-derived in  vitro models of human cancer were very promising and were sup-
posed to overcome key challenges of in  vivo models. However, their turnaround time 
has not been adequate for clinical application. Furthermore, in in vitro models, including 
2D/3D cell culture and 3D bioprinting, the main challenge is still in modeling of appro-
priate ECM for pancreatic cancer [2–35]. Thus, ex  vivo models have been developed 
with the promise of recapitulating in vivo tumor biology [4, 9, 14]. On the other hand, 
the biggest challenge in translating results of mathematical models to human clinical 
studies stems from the fact they are not calibrated to a particular type of cancer [17–32]. 
These models mostly apply the same criteria for tumor regression patterns associated 
with treatment across a wide range of tumor types, and differences between tumor sites 
and treatment modalities are not considered [19, 23, 29–32]. Another major challenge 
translating the results of these models to clinical studies is that they are based on good-
ness-of-fit criteria to data from a pre-clinical experiment; thus, they may not provide 
the most accurate predictions of treatment outcomes in humans [17–32]. Furthermore, 
these models apply a population estimate approach that cannot provide prognostic 
insights and are limited in offering treatment options at the patient level [19, 23, 29–32]. 
Cell-based computational models, which explore individual cell behaviors within tissue 
environments by simulating individual cells interacting with virtual tissues, constrain 
the flexibility of cell shape and diameter [23, 31, 32]. Most cell-based models couple a 
discrete model to continuum models of the microenvironment whereas the transport of 
drug and other species are simulated using partial differential equations [23, 32]. Taking 
all together, utilizing patient-specific tumor dynamics, rather than using tumors that are 
not patient-derived, to predict the response to treatment will enhance the sensitivity and 
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accuracy of computational models. However, for personalized treatment, deeper under-
standing of tumor physiology and dynamics is required. This demands the incorpora-
tion of tumor tissue’s cellular heterogeneity into the computational models. Recently, we 
reconstructed an idealized model of a tumor tissue representing three different organs 
including breast, kidney, and pancreas where they integrated patient-specific character-
istics of ECM, stroma, and cancer cells [36]. They reported that (A) the stresses within 
tumor tissue are impacted by the organ-specific ECM’s biophysical properties, (B) more 
invasive cancer cells experience higher stresses, (C) in pancreas which has a softer ECM 
(Young’s modulus of 1.0 kPa) and stiffer cancer cells (Young’s modulus of 2.4 kPa and 
1.7  kPa) than breast and kidney, cancer cells experienced significantly higher stresses, 
and (D) cancer cells in contact with ECM experienced higher stresses compared to cells 
surrounded by fibroblasts but the area of tumor stroma experiencing high stresses has a 
maximum length of 40 μm when the cancer cell is surrounded by fibroblasts and 12 μm 
for when the cancer cell is in vicinity of ECM. Based on these findings, we are interested 
to reveal how these significantly high stresses in pancreas will impact the treatment pro-
cess. In this study, we take the first step in developing an idealized in silico model of 
pancreas tumor tissue to dissect and understand how remodeling of each stromal com-
ponents can impact the stress distribution within the pancreas tumor. Without a dis-
tinct identification of the components’ remodeling on the distribution and magnitude 
of stress within pancreas tumor tissue which directly impacts the resistance of stroma to 
nanoparticles’ penetration, all attempts to improve drug therapies’ success will remain 
out of reach.

Nanoparticles have shown to be an effective drug-delivery platform that enhanced 
permeability and retention (EPR) by passively targeting the tumor [37]. Mechanisms that 
impede nanoparticles’ penetration within stroma are still under debate because stroma 
is highly heterogeneous but the inability of nanoparticles to correctly target the tumor, 
limited permeability of nanoparticles within tumor stroma, and nanoparticles non-
uniform distributions in solid tumor tissue should all be considered as limiting factors. 
A study conducted by Ernstring et al., analyzed Cellax nanoparticles treatment effects 
in highly stromal primary patient-derived pancreatic cancer xenografts and in a meta-
static PAN02 mouse model of pancreatic cancer [38]. They found that Cellax nanopar-
ticles were able to deplete CAFs and that the depletion of stroma density led to > tenfold 
increase in tumor perfusion, reduced tumor weight and a reduction in metastasis. Even 
though nanoparticles have been shown to be quite promising in mouse models, but it 
has been shown that variation between organ-specific tumors affect EPR differently and 
that eliminating the stroma barrier is quite complex. This has led to failed clinical trials 
for nanotherapeutics [2, 38]. Furthermore, the extreme depletion of the tumor stroma 
has been reported to promote tumor progression, therefor, finding the balance between 
abundance and depleted stroma would be highly beneficial to pancreatic cancer treat-
ments [2, 39]. Several characteristics of stroma have been reported to be altered during 
its remodeling such as (A) fibroblasts’ shape, size, stiffness, permeability, (B) ECM’s stiff-
ness, density, and plasticity, and (C) crosslinking of collagens [40, 41]. Therefore, under-
standing how biomechanical factors are changing during stroma remodeling will assist 
us with precise design of nanoparticles capable of remodeling of tumor stroma instead 
of eliminating CAFs. The purpose of the present study is to use an in silico model of 
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idealized pancreas tumor tissue to quantify the stress experienced by the stromal and 
cancer cells during remodeling process induced by stroma-targeted drug-therapy. Our 
model will also provide better understanding of the mechanical interactions between 
stromal cells and cancer cells during the remodeling.

Results
Influence of ECM remodeling on stress distribution within pancreatic tumor tissue

Figure 1 demonstrates the von Mises stress magnitude within the pancreas tumor tissue 
with the assumption that tumor remodeling has reflected in changes in ECM stiffness. 
Figures 1A and D show the stresses along the tissue width (x-axis) where the analysis 
domain is limited to the cancer cells’ thickness (y-axis) and length (z-axis); Figs. 1B and 
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Fig. 1  The von Mises stress magnitude within the pancreas tumor tissue, A and D) the stresses along the 
tissue width (x-axis), B and E) the stresses along the tissue thickness (y-axis), C and F) the stresses along the 
tissue length (z-axis). Note that these results represent in silico model of the pancreatic tumor tissue with 
three cancer cells
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E demonstrates the stresses along the tissue length (y-axis) where the analysis domain 
is limited to the cancer cells’ width (x-axis) and length (z-axis); Figs. 1C and F show the 
stresses along the tissue thickness (z-axis) where the analysis domain is limited to the 
cancer cells’ width (x-axis) and thickness (y-axis). In Figs. 1A–C, three PANC-1 are sur-
rounded by ECM and stromal cells while three MIA-PaCa-2 are surrounded by ECM 
and stromal cells in Figs. 1D–E.

Influence of stroma and ECM remodeling on stress distribution within pancreatic tumor 

tissue

Figure 2 demonstrates the von Mises stress magnitude within the pancreas tumor tissue 
with the assumption that tumor remodeling has reflected in changes in ECM and stroma 

Fig. 2  The von Mises stress magnitude within the pancreas tumor tissue, A and D) the stresses along the 
tissue width (x-axis), B and E) the stresses along the tissue thickness (y-axis), C and F) the stresses along the 
tissue length (z-axis). Note that these results represent in silico model of the pancreatic tumor tissue with 
three cancer cells
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stiffness. Figures 2A and D show the stresses along the tissue width (x-axis); Figs. 2B and 
E demonstrate the stresses along the tissue thickness (y-axis); Figs. 2C and F show the 
stresses along the tissue length (z-axis). In Figs. 2A–C, three PANC-1 are surrounded 
by ECM and stromal cells while three MIA-PaCa-2 are surrounded by ECM and stromal 
cells in Figs. 2D–E.

Figures  3A–R show the von Mises stress and the strain distribution within a pan-
creas tumor with three cancer cells. In each panel, there are three parts showing: (i) the 
stresses along the tissue width (x-axis), (ii) the stresses along the tissue length (z-axis), 
and (iii) the strain along the tissue width (x-axis).

Figure 4 demonstrates the von Mises stress magnitude averaged over whole tumor tis-
sue with three cancer cells. In Fig. 4A, cancer cells have a Young’s modules of 2400 Pa 
while in Fig. 4B cancer cells have a Young’s modules of 500 Pa. The x-axis is the ratio of 
fibroblast’s stiffness to ECM’s stiffness.

Figure 5A shows a new model where the stroma is extended over the whole width of 
the ECM. Figures 5B–D demonstrate the stresses along the tissue width (x-axis), the tis-
sue thickness (y-axis); and along the tissue length (z-axis), respectively.

Influence of remodeling on the stress distribution within a pancreas tumor with higher 

number of cancer cells

Figure 6A–F demonstrate the von Mises stress magnitude within the pancreas tumor tis-
sue when higher cancer cells are included. Here, we examine how the stress distribution 
will vary when the remodeling induces changes in both, the stiffness of tumor stroma 
and ECM. Figures 6A and D show the stresses along the tissue width (x-axis); Figs. 6B 
and E demonstrate the stresses along the tissue thickness (y-axis); Figs. 6C and F show 
the stresses along the tissue length (z-axis). Figure 7 demonstrates the von Mises stress 
magnitude within the pancreas tumor tissue with the assumption that tumor remod-
eling has reflected in changes in ECM and stroma stiffness. Figures 7A and D show the 
stresses along the tissue width (x-axis); Figs.  7B and E demonstrate the stresses along 
the tissue thickness (y-axis); Figs. 6C and 7F show the stresses along the tissue length 
(z-axis). In Figs. 6A–C and 7A–C, three PANC-1 are surrounded by ECM and stromal 
cells while three MIA-PaCa-2 are surrounded by ECM and stromal cells in Figs. 6D–E 
and 7D–E.

Discussion
In this study, we have developed an in silico model of a pancreas tumor tissue and 
applied it to investigate how remodeling of tumor tissue components will impact the 
stress magnitude exerted on their surroundings. Mechanical forces exerted on cancer 
cells by their microenvironment have been reported to drive cells toward invasive phe-
notype by altering cells’ motility, proliferation, and apoptosis. It has been shown that 
the mechanical forces, if sufficiently strong, may contribute to loss of membrane integ-
rity, for instance through tumor-induced enzymatic digestion of ECM [58]. These forces 
emanating from overlying differentiated tumor cells may mechanically drive the inva-
sion of tumor-initiating progenitors at the stromal border. The stroma has been reported 
to play a significant role in shaping tumor architecture by altering inherent patterns of 
tumor glands in human pancreas [59]. On the other hand, the failure of most standard 
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therapies in pancreatic cancer, as well as promising immune therapies, rely heavily on 
highly unique and protective stromal microenvironments presenting significant bio-
physical barriers to effective drug delivery [60]. Our in silico model of pancreas tumor 
tissue enabled us to dissect and quantify the role of each tissue components’ remodeling 
on the stress distribution within a pancreas tumor tissue. Previous studies have shown 

Fig. 3  The von Mises stress distribution within the pancreas tumor tissue. i) the stresses (Pa) along the tissue 
width (x-axis), ii) the stresses (Pa) along the tissue length (z-axis), iii) the strain along the tissue width (x-axis)
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that extreme depletion of the tumor stroma promotes tumor progression, therefore, 
finding the balance between abundance and depleted stroma would be highly benefi-
cial to pancreas tumor treatments [39]. On the other hand, nanoparticles have shown 
the capability to remodel stroma and ECM, rather than destroying fibroblasts and col-
lagen fibers. Stiffness of tumor stroma and ECM are among several examined param-
eters which have been reported to be altered during remodeling and impact cancer cells 

Fig. 3  continued
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growth [4, 7, 41, 61]. Therefore, we have examined the impact of remodeling-induced-
alteration in the stiffness of both the ECM and stroma on stress distribution within the 
pancreas tumor tissue. In addition, we have investigated whether number of cancer cells 
in the tumor may change the impact of ECM and stroma remodeling on stress distribu-
tion with the pancreatic tumor tissue.

Fig. 3  continued
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Our results (Figs. 1, 2, 3, 4, 5, 6 and 7) show that the remolding-induced-changes in 
ECM and stroma stiffness impact the von Mises stress distribution within the pancreatic 
tumor tissue. Soft ECM with stiffness of < 1000  Pa when surrounded with soft stroma 
and cancer cells results in dramatically high stresses within the pancreas tumor tissue. In 
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softer ECM (Young’s modulus of 250 Pa), the stresses reach to a maximum of 22,000 Pa 
(shown in Figs. 1B). Furthermore, Figs. 1A–C show that when ECM becomes softer (e.g., 
when ECM’s stiffness drops below 1000 Pa) and stroma has similar stiffness as the can-
cer cells, the stresses within pancreas tumor tissue are increasing dramatically. With 
ECM becoming very soft (Young’s modulus of 250 Pa), the stresses jump dramatically 
to reach a maximum of 11,000, 22,000, and 16,000 Pa for results as seen in Figs. 1A–C. 
The data shown in these figures reveal the fact that the increase in the stress magnitude 
within the pancreas tumor tissue with ECM softening is not linear. Figures 1D–E dem-
onstrate that, in tumor tissue with softer cancer cells (MIA-PaCa-2), ECM and stromal 
cells experience slightly higher stresses, particularly when ECM is stiffer. Results shown 
in Fig. 2A–C demonstrate the fact that softening of stroma doesn’t significantly rise the 
stress magnitude in the tumor tissue. However, stroma’s stiffness becomes more influ-
ential when cancer cells become softer. Our results (Figs. 2D–F) show that softer can-
cer cells (MIA-PaCa-2) causes to higher stresses within ECM and stroma specifically 
when stromal cells are stiffer. Figures 3 represents the stress distribution over the tumor 
microenvironment through a visual representation of the stresses with respect to the 
changing microenvironment stiffness. A comparison between Figs. 1, 2, 3, 4, 5, 6 and 7 
demonstrates that changes in the stresses magnitude and distribution within pancreas 
tumor tissue due to cancer cells and ECM’s stiffness is significantly higher than tumor 
stroma. When the stroma softens, the stresses rise but not significantly (Figs.  2A–F 

Fig. 5  A) In silico model of the pancreas tumor tissue containing stromal cells and three tumor cells, and 
ECM. In this model, the stroma is extended along whole width of the ECM. B-D): The von Mises stress 
magnitude within the pancreas tumor tissue, B) the stresses along the tissue width (x-axis), C) the stresses 
along the tissue thickness (y-axis), D) the stresses along the tissue length (z-axis). Note that these results 
represent in silico model of the pancreatic tumor tissue with three cancer cells
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and Figs. 7A–F). Figure 3 reveals that the stiffness of ECM and cancer cells significantly 
impacts the strain distribution within the pancreas tissue significantly. Higher strain 
magnitude is observed for a tumor tissue with softest ECM (Young’s modulus of 250 Pa) 
and softer cancer cells (MIA-PaCa-2). Lower stresses and strains are observed for stiff-
est ECM (Young’s modulus of 4000 Pa) and stiffer cancer cells (PANC-1). Figure 5 shows 
that extending the stroma to the whole width of the stroma leads to more uniform 
increase across the ECM and larger areas of the tumor experiences higher stresses par-
ticularly for softer ECM. Figures 6 and 7 confirm that the tumor’s size alters the response 
of tumor tissue to remodeling-induced-alteration in stroma and ECM. While in smaller 
tumors the stroma softening seems to have ignorable impact on the stresses experienced 
by tumor tissue, it shows a significant influence in a larger tumor. On the other hand, 
ECM’s stiffness is not showing dependency on the tumor size. Our findings still need to 
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Fig. 6  The von Mises stress magnitude within the pancreas tumor tissue, A and D) the stresses along the 
tissue width (x-axis), B and E) the stresses along the tissue thickness (y-axis), C and F) the stresses along the 
tissue length (z-axis). Note that these results represent in silico model of the pancreatic tumor tissue with 
nine cancer cells
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be validated with in vivo experiments to allow us to reach a general conclusion, but we 
show, in agreement with previously reported studies, that tumor size and stresses expe-
rienced by the tumor tissue components may be introduced as key biomarkers to predict 
a patient-specific tumor’s response to a particular treatment [62–71].

Our study has a few limitations: (A) the three-dimensional in silico model of pancreas 
tumor tissue did not fully represent the patient-specific complexity of the cellular micro-
environment, (B) ECM was assumed as a homogeneous media not including important 
microvascular structures seen within the ECM, such as fiber-forming elements (collagen 
and elastin) surrounded by various filling molecules (glycoproteins and proteoglycans), 
growth factors, and adhesion molecules, and (C) modeling fibroblasts as a hexagon, as 
these cells are often elongated and spindle-shaped, (D) this in silico model of microen-
vironment also did not consider vessels present in tumor microenvironment which is 
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Fig. 7  The von Mises stress magnitude within the pancreas tumor tissue, A and D) the stresses along the 
tissue width (x-axis), B and E) the stresses along the tissue thickness (y-axis), C and F) the stresses along the 
tissue length (z-axis)
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because of the limitations in currently available imaging techniques not detecting small 
vessels formed in the tumor microenvironment. Nonetheless, we have been able to gain 
important quantified insights on the extrinsic mechanical forces on stromal cells and 
cancer cells and how these forces can be controlled by remodeling of tumor compo-
nents. Here, we take the first step in developing a unique platform for building an ideal-
ized, in silico model of pancreas tumor tissue to dissect and understand how remodeling 
of each stromal components can impact the stress distribution within a pancreas tumor 
tissue. Our findings can be applied in developing patient-specific in silico models of dif-
ferent tumor types to design efficient remodeling strategies per patient basis. Developing 
patient-specific in silico models of different organs with tumor types at distinct states 
of malignancy will require advanced imaging methods (such as standard and high defi-
nition Fourier Transform Infrared (FTIR) imaging) being capable of acquiring stromal 
diversity.

Conclusion
This study serves as an important first step in understanding of how the remodeling of 
tumor tissues’ components impact the pancreas tumor tissue and which components are 
vital for an efficient remodeling, by developing an in silico model of pancreas tumor tis-
sue to dissect and quantify the impact of individual components on the stress distribu-
tion within a pancreas tumor tissue. Our results show that the remodeling of stroma 
and ECM will alter the distribution and magnitude of stresses within tumor tissue. Our 
study reveals that the remodeling induced softening of ECM has higher impact on the 
stress magnitude and distribution within the PDASC tissue than softening of stromal 
cells. Our results also show that stiffness of cancer cells in a tumor impacts the stresses 
experienced by ECM and the stroma, but this impact is significant when stroma is stiffer. 
These results confirm our hypothesis that mechanisms behind stroma’s resistance to the 
penetration of nanoparticles rely heavily on extrinsic mechanical forces on stromal cells 
and cancer cells. As a debatable matter, mechanisms impeding nanoparticles in reaching 
cancer cells are at the central attention, specifically by noting that stroma is highly het-
erogeneous, inter-/intra-personally, affected by tumor malignancy. To our knowledge, 
this is the first study on quantifying the impact of tumor tissue components’ remode-
ling, and it will serve as an important first step in establishing unique knowledge on the 
characteristic factors for remodeling of tumor microenvironment’s components with an 
ultimate goal of leveraging this knowledge to overcome a tumor’s resistance against the 
penetration of nanoparticles on a per-patient basis. The three-dimensional, multicom-
ponent, in silico model used in the present study has the potential to further study highly 
complex tumor microenvironments in cancers that are severely understudied and will 
bring light to critical role of physical stresses on tumor growth and understanding of 
complex mechanisms involved in a tumor’s response to drugs and precise assessment of 
alternative drugs.

Methods
In the present study, the geometric model included cancer cells, stromal cells repre-
sented as fibroblasts, and the ECM, as seen in Fig. 8A and B. Cancer cell and fibro-
blasts are represented as a hexagonal shape with length of 8.1 µm (X-axis), a width of 
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7.54 µm (Y-axis), and a height of 8.0 µm (Z-axis) to mimic the size of a typical cells 
[42–45]. The ECM is modeled as a viscoelastic material using the Standard Linear 
Model with the following paraments [46, 47]: Young’s modulus (E) = 250  Pa, shear 
modulus (G) = 63.3 Pa, bulk modulus (K) = 8333.3 Pa, Viscoelasticity relaxation time 
(T) = 0.2245  s; E = 500  Pa, G = 167.2  Pa, K = 16666.6  Pa, T = 0.449  s; E = 1000  Pa, 
G = 334.4 Pa, K = 33333.3 Pa, T = 0.898 s; E = 2000 Pa, G = 668.89 Pa, K = 66666.6 Pa, 
T = 1.796  s; E = 4000  Pa, G = 1337.79  Pa, K = 133333.3  Pa, T = 3.592  s. The cancer 
cells are modeled as: (A) PANC-1which is a common cell-line of pancreatic cancer, 
B) MIA-PaCa-2The cancer cells and stromal cells were all modelled as incompress-
ible elastic material where Young’s modulus of fibroblasts is set to 650, 1250, and 
2500  Pa [23, 48–50], for PANC-1 is set to 2,400  Pa, and for MIA-PaCa-2 is set to 
500 Pa [51–53]. Among two cancer cell lines of pancreas tumors, PANC-1 and MIA-
PaCa-2 which have significant differences in phenotype characteristics, we study both 
where PNAC-1 has been reported to be more invasive than MIA-PaCa2 [3, 4, 53]. The 
viscoelasticity behavior of the ECM was modeled using the viscoelastic material using 

A 

B 

Fibroblasts 

Cancer Cells 

Boundary Load 

Fig. 8  In silico model of the pancreas tumor tissue containing stromal cells and three tumor cells, and ECM. 
The boundary load of 1,300 Pa was applied onto the system represented by the red arrows. A) A 3D model is 
shown, B) A 2D view is presented with details about geometry of the model
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the Standard Linear Model [23, 30–32, 46, 47]. The model is represented by a purely 
viscous damper with viscosity η and by a purely elastic spring with modulus E in par-
allel, relating stress (σ) and strain (ε) [23, 30–32], shown in Eq. (1):

The relaxation time, t*, of a viscoelastic material undergone stress due to Eq.  1 is 
given by Eq. 2 [23, 30–32, 54–56]:

The stress components are then computed and applied to calculate the von Mises 
stress (σVM), normally referred to as the effective stress [3, 23, 42–53], which is calcu-
lated with Eq. 3:

Von Mises stress is a measure of the effective stress, including normal stresses 
(x, y, and z) and the shear stresses that act on a material, which is experienced by a 
material.

A MATLAB code (MATLAB v. R2021b) is applied to generate the geometry of the 
sinusoidal surface of cells. Model geometries are exported to the finite-element method 
solver via COMSOL MULTIPHYSICS v. 5.6 (COMSOL AB, Stockholm, Sweden). The 
tumor tissue geometry (including cancer cells and stromal cells) was then enclosed by 
including ECM. The cancer cells were placed at the center of tumor surrounded by stro-
mal cells (Figs. 8A and B). All cellular components and ECM are assigned with mate-
rial properties and mesh specifications. A boundary load was added to the model to 
represent the blood pressure in capillaries as 10 mmHg (~ 1300 Pa) as seen in Fig. 8A 
[57]. A computational mesh was applied for the ECM and the entire tumor. The tumor 
contained 464,690 tetrahedral elements while ECM contained 991,925 tetrahedral ele-
ments. The computational results for the stresses are determined and examined for 
independence of mesh density. The models are solved using a stationary solver where 
simulations were performed on a Dell PRECISION, 16 processor computer, with 128 GB 
RAM. The postprocessed results obtained for stresses are gathered using post-process-
ing features found in COMSOL MULTIPHYSICS v. 5.6 package. Post-processed results 
for stresses experienced by tumor tissue components are exported to MATLAB_R2021b 
for postprocessing.
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