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Identification of miRNA-mRNA modules is an important step to elucidate their combinatorial effect on the pathogenesis and
mechanisms underlying complex diseases. Current identificationmethods primarily are based uponmiRNA-target information and
matchedmiRNA andmRNA expression profiles. However, for heterogeneous diseases, the miRNA-mRNA regulatory mechanisms
may differ between subtypes, leading to differences in clinical behavior. In order to explore the pathogenesis of each subtype,
it is important to identify subtype specific miRNA-mRNA modules. In this study, we integrated the Ping-Pong algorithm and
multiobjective genetic algorithm to identify subtype specific miRNA-mRNA functional regulatory modules (MFRMs) through
integrative analysis of three biological data sets: GO biological processes, miRNA target information, and matched miRNA and
mRNA expression data. We applied our method on a heterogeneous disease, multiple myeloma (MM), to identify MM subtype
specificMFRMs.The constructedmiRNA-mRNA regulatory networks providemodular outlook at subtype specificmiRNA-mRNA
interactions. Furthermore, clustering analysis demonstrated that heterogeneous MFRMs were able to separate corresponding MM
subtypes. These subtype specific MFRMs may aid in the further elucidation of the pathogenesis of each subtype and may serve to
guide MM subtype diagnosis and treatment.

1. Introduction

MicroRNAs (miRNAs) are a class of short, noncoding RNAs
of ∼22 nucleotides RNA molecules that play important roles
in gene regulation during physiological or disease-associated
processes [1]. By regulating gene expression, miRNAs are
involved in most biological processes, such as cell cycle
regulation, development, apoptosis, stress response, and
tumourigenesis [2, 3]. Accordingly, miRNA alterations may
contribute to many human diseases [4]. In fact, deregulated
miRNA expression has been observed in various cancer
types, such asmultiplemyeloma (MM) [5, 6].miRNAs can act
as both tumor suppressors and oncogenes, depending on the
context and target genes [7, 8]. The regulatory mechanisms
underlyingmiRNAs and their target mRNAs remain unclear:
a single miRNA is capable of regulating >200 mRNAs, and

a single mRNA may be regulated by multiple miRNAs [9].
Some studies have shown that miRNAs may not primarily
act by repressing a few cancer-related genes but by disturbing
a regulatory network in which these cancer-related genes
play crucial functional roles [10, 11]. Thus, identification of
context-dependent miRNA-mRNA modules is an important
step to elucidate their synergistic effect on the pathogenesis
of complex diseases.

Several computational methods have been previously
developed for the discovery of miRNA-mRNA modules
[12–18]. Early efforts primarily focused on computational
predicted miRNA-mRNA pairs and detection of miRNA
regulatory modules at the sequence level [16]. However,
miRNA and mRNA expression were not taken into consid-
eration. MiRNAs that are regulatory in one experimental
scenario may not be regulatory in another [12]; expression
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information is essential for the identification of biologically
meaningful miRNA-mRNA modules. Recently, integrated
analysis of both sequence information and expression profiles
of miRNAs and mRNAs was proposed to identify functional
miRNA-mRNA regulatory modules [12–15, 19, 20]. Joung et
al. [13, 14] discoveredmiRNA-mRNAmodules using a combi-
nation of putative miRNA-mRNA pairs and expression data;
however, correlations between the expression of miRNAs
and mRNAs were not considered. Liu et al. [15] identified
modules in two steps: (i) discovering the putative networks
given the target information of miRNAs and mRNAs and
(ii) deriving functional miRNA-mRNA regulatory modules
on expression data given the putative networks. Consider-
ing that the computational predicted miRNA targets exhibit
a high false positive discovery rate and that the targeting rela-
tionship betweenmiRNAs and genes is far from complete, the
first step that is based on target information exhibits an innate
defect concerning the identification of modules. Jayaswal et
al. [12] proposed an improved method: first, identification
of miRNA and mRNA clusters using both target informa-
tion and expression data; and second, estimation of the asso-
ciation between the two types of clusters to select potential
regulatory miRNA-mRNA modules with statistically signifi-
cant associations.However, thismethodwas based on expres-
sion correlations under all available conditions rather than
a subset of conditions, and the procedures for identification
of miRNA and mRNA clusters were separated:; thus, it
was limited to identification of miRNA-mRNA functional
modules under the same specific conditions.

For heterogeneous diseases, the miRNA-mRNA regula-
torymechanismmay be different in various subtypes, leading
to differences in clinical behavior. In order to illustrate the
pathogenesis of different subtypes, identification of context-
dependent miRNA-mRNA functional regulatory modules
(MFRMs) is important. In this study, we propose a novel
method (Figure 1) for the genome-wide identification of
MFRMs for different genetic subtypes of heterogeneous
diseases. We applied the novel method on MM, which is
characterized by significant heterogeneity at the molecular
level [21] and divided into several subtypes on the basis of
chromosomal abnormalities, such as t(4;14), t(14;16), t(11;14),
andRB deletion [22].We identified abundant subtype specific
MFRMs associated with MM pathogenesis. The miRNA-
mRNA regulatory networks were constructed based on
MFRMs and provided numerous subtype specific miRNA-
mRNA interactions. Clustering analysis showed that the
MFRMs involved in multiple MM subtypes could sepa-
rate the corresponding MM subtypes, indicating that these
MFRMs could potentially aid in elucidation of the mecha-
nisms underlying differences in clinical behavior.

2. Materials and Methods

2.1. Preparation of the Data Set. The matched expression
profiles of miRNAs and mRNAs of MM were obtained from
the studies of Gutiérrez et al. [23] (GSE16558). According to
cytogenetic abnormalities, the 60 patients were classified into
five subtypes: 17 patientswith t(4;14); 11 with t(11;14); fourwith
t(14;16); 15withRBDEL (RBdeletion as a unique abnormality,

RB deletion, and P53 deletion); and 13 with NFISH (Normal
Fish).

The seven target prediction data sources were obtained
from DIANA-microT [24, 25], PicTar5 [26], RNA22 (R3/R5)
[27], RNAhybrid [28], TargetScan [29, 30], and miRanda
[31, 32]. The MM associated genes (see Table S1 in Supple-
mentaryMaterial available online at http://dx.doi.org/10.1155/
2014/501262) were collected from three databases: Online
Mendelian Inheritance inMan (OMIM), the Cancer Genome
Project (CGP), and Genetic Association Database (GAD).

2.2. MFRMs Identification and Analysis. The methodology
utilized in this study is illustrated in Figure 1. First, we
identified initial comodules on matched mRNA and miRNA
expression profiles using PPA [33]. A comodule is an ensem-
ble of certain miRNAs, mRNAs, and samples, in which
miRNAs and mRNAs exhibit similar patterns of expression
across the same samples. The samples in the comodule imply
the specific conditions under which themiRNAs andmRNAs
act cooperatively. Second, to derive coherent modules asso-
ciated with the pathogenesis of MM, we integrated GO BP
[34] and miRNA target information to identify MFRMs in
each comodule by multiobjective GA. Three optimization
objectives were defined: (i) the minimum enriched 𝑃 value
on MM associated GO terms; (ii) the correlation coefficient
and target coefficient (see Methods 2.3) of the module; and
(iii) variations of expression values of miRNAs and mRNAs
in the module. The multiobjective GA iteratively searched
Pareto optimal solutions with three objectives and obtained
noninferior MFRMs for each comodule. Next, we sorted the
MFRMs according to their scores on three objectives. Finally,
the top modules in the ranking results were identified and
utilized to construct miRNA-mRNA regulatory networks or
for clustering analysis.

2.3. Discovery of Comodules by PPA. We utilized the PPA
[33] to identify comodules. The PPA is a modular analysis
approach operating on two large-scale data sets that share
one commondimension. Kutalik et al. [33] demonstrated that
PPA could identify coherent patterns across paired data sets
more effectively compared to classical approaches like clus-
tering, regression, or SVD. A further advantage is that PPA
provides context-dependent modules across paired data sets.

Let E
𝑁𝐺×𝑁𝐶

and R
𝑁𝐷×𝑁𝐶

represent paired gene expression
data matrix and miRNA expression data matrix, respectively.
𝑁

𝐺
, 𝑁
𝐷
, and 𝑁

𝐶
represent the number of genes, miRNAs,

and samples, respectively. Then the PPA is summarized in
Pseudocode 1, where |x|, 𝜇(x), and 𝜎(x) denote the norm,
mean, and standard deviation of the components 𝑥

𝑖
in the

vector x; x̂ = x/|x|; 𝑡
𝐺
, 𝑡
𝐷
, and 𝑡

𝐶
denote the threshold

of genes, miRNAs, and samples, respectively; E
𝐺
and E

𝐶

represent the gene expressionmatrix normalized across genes
and samples, respectively; R

𝐷
and R

𝐶
represent the miRNA

expression matrix normalized across miRNAs and samples,
respectively.

Starting with the candidate set of genes (g(0)), the mRNA
expression profile (E

𝑁𝐺×𝑁𝐶
) was used to identify samples

(ĉ(𝑛)) in which these genes were coexpressed. Next, the
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Figure 1: Workflow to identify MFRMs and MFRMs analysis.
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ĝ(𝑛) − ĝ(𝑛−1)
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Pseudocode 1

miRNA expression profile (R
𝑁𝐷×𝑁𝐶

) was utilized to select
miRNAs (̂d(𝑛)) that also exhibited a coherent expression in
these samples (ĉ(𝑛)). This set of miRNAs (̂d(𝑛)) was then
utilized to refine the set of samples (̂c̃

(𝑛)

) by eliminating those
which had an incoherent miRNA expression and adding
others that behave similarly across these miRNAs. Finally,
this refined set of samples (̂c̃

(𝑛)

) was used to probe for
mRNAs (ĝ(𝑛)) coexpressed in these samples. This alternating
procedure was reiterated until it converged to stable sets of
mRNAs, samples, and miRNAs: comodules.

2.4. Identification of MM Associated GO BP. To identify MM
associated GO BP, we conducted cumulative hypergeometric
distribution test to identify specific biological processes
enriched with the MM associated genes. A total of 63 MM
associated GO BP were identified (𝑃 < 0.05, Bonferroni
corrected, Table S2).

2.5. Identification of MM Associated MFRMs Based on Mul-
tiobjective GA. To identify biologically meaningful coherent
modules, we utilized a multiobjective genetic algorithm to
extract MFRMs for each comodule. Let 𝑚 be the number of
miRNAs in a comodule and 𝑛 be the number of mRNAs. Our
aim is to extract a subset of miRNAs from the 𝑚 miRNAs
and a subset of mRNAs from the 𝑛 mRNAs and construct
a MFRM in which (i) the extracted subset of mRNAs is
significantly enriched in the MM associated GO BP, (ii)
miRNA expression exhibits a significant negative correlation
with mRNA expression across the samples in the comodule,
and, concurrently, the miRNAs and mRNAs exhibit a strong
targeting relationship, and (iii) their expression values vary
greatly among different subtypes. To this end, we defined
three optimization objectives (i.e., the fitness function) as
follows:

𝐹𝑃 = min
𝑘

𝑃

𝑘
, 𝑘 = 1, 2, . . . , 63,

𝐹𝐶 = ccmod + tcmod,
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)

,

(1)

where 𝑃
𝑘
was the 𝑃 value (Bonferroni corrected) of the 𝑘th

GO term enrichment on the subset of mRNAs. The first
objective function𝐹𝑃 represented theminimum𝑃 value of 63
MM associated GO term enrichments. The second objective
function, 𝐹𝐶, reflected the coherence of the module, where
ccmod and tcmod were the correlation coefficient and target
coefficient of the module, respectively:
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{
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(2)

where 𝑚 and 𝑛 were the number of selected miRNAs and
mRNAs, respectively. The term 𝑐

𝑖𝑗
represented the Pearson

correlation coefficient of the 𝑖th miRNA and 𝑗th mRNA’
expression value across the samples in the comodule (𝑃 value
< 0.05). The term 𝑡

𝑖𝑗
represented the target coefficient of the

𝑖th miRNA and 𝑗th mRNA. The target coefficient between
miRNA and mRNA was defined as the frequency that the
mRNA was predicted as the target of the miRNA in seven
target prediction data sources. The correlation coefficient
ccmod and target coefficient tcmod of a module were defined
as the average correlation coefficient and target coefficient of
allmiRNA-mRNApairs in themodule, respectively.The third
objective function, 𝐹𝐹, denoted the variations of miRNAs
and mRNAs expression in the module, where varmi𝑅

𝑖
and

varm𝑅
𝑗
were the between class variances of the 𝑖th miRNA’s

expression value and 𝑗th mRNA’s expression value across
five subtypes of MM, respectively. Both variances were
normalized to between 0 and 1.
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We used the “bit string” type to encode the individuals in
the population 𝑋. Every individual 𝑥 in 𝑋 was encoded as a
bit string with length𝑚 + 𝑛.

0110 . . . 01100⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚 bits
01011 . . . 001100101⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛 bits
. (3)

The first𝑚 bits represented𝑚miRNAs in the comodule, and
the remaining 𝑛 bits represented 𝑛mRNAs in the comodule.
The “0” represented the miRNA or mRNA selected into
MFRM and “1” represented the miRNA or mRNA not
selected.The number of “1” in the first𝑚 bits and remaining 𝑛
bits was𝑚 and 𝑛, respectively.Themultiobjective optimiza-
tion is formulated as

min
𝑥∈𝑋

𝐹 (𝑥) = [𝐹𝑃 (𝑥) , 𝐹𝐶 (𝑥) , 𝐹𝐹 (𝑥)]

𝑇

s.t. 𝐹𝑃 (𝑥) < 0.05

𝑚


, 𝑛


≥ 1,

(4)

where 𝐹𝑃, 𝐹𝐶, and 𝐹𝐹 are the objective functions defined
as above. The solutions with fitness function 𝐹𝑃(𝑥) ≥ 0.05
were not kept for further investigation as the mRNAs lists of
these solutions were not significantly enriched on any MM
associated biological process.

2.6. Sorting MFRMs. MFRMs can be classified into six
categories according to the condition under which they act:
t(11;14), 𝑅𝐵 DEL, t(4;14), NFISH and t(14;16) subtype specific
MFRMs, and heterogeneousMFRMs.The first five categories
of MFRMs are specific to a single subtype, whereas the last
category is involved inmultiple subtypes (Figure 1).We sorted
the MFRMs in each category separately. First, we sorted the
MFRMs according to each objective and achieved the ranks
𝑅

1
,𝑅
2
, and𝑅

3
on three objectives, respectively.The final score

of aMFRMwas then defined as the weighted sum of the three
ranks:

𝑆 = 𝛼𝑅

1
+ 𝛽𝑅

2
+ 𝛾𝑅

3
. (5)

We set 𝛼 = 𝛽 = 𝛾 = 1/3. Finally, the MFRMs were sorted by
their final scores in descending order.

3. Results

3.1. The Comodules Discovered by PPA. We applied the PPA
to the matched miRNA and mRNA expression profiles of
MM and produced 2204 comodules which contains mRNAs,
miRNAs, and samples. In each comodule, mRNAs and miR-
NAs exhibit coherent expression across the same samples.
These samples imply the specific conditions under which
the miRNA-mRNA module acts. For example, if the samples
in a comodule all belong to subtype t(4;14), we refer to
the miRNA-mRNA module as t(4;14) specific module. The
miRNAs and mRNAs in the t(4;14) specific module are
coexpressed only in t(4;14) samples but not in samples with
other subtypes. Thus, the miRNAs and mRNAs in the t(4;14)
specific module may exhibit a function specific to t(4;14).The
miRNA-mRNA modules can be classified into six categories

according to the condition under which they act, that is,
t(11;14), 𝑅𝐵 DEL, t(4;14), NFISH and t(14;16) subtype specific
modules, and heterogeneous modules (in other words, the
samples in the corresponding comodule belong to different
MM subtypes; Figure S1 shows a heterogeneous module).
Among the 2204 comodules, we identified 14, 58, 41, 15,
and two comodules specific to MM subtype t(11;14), 𝑅𝐵
DEL, t(4;14), and NFISH and t(14;16), respectively. Figure 2
describes the distribution of the number of samples, mRNAs,
and miRNAs attributed to 2204 comodules. The majority of
comodules contained less than 2000mRNAs and 60miRNAs,
and a fewmRNAs andmiRNAs acted as “hubs” by being part
of up to 600 different comodules.

To assess the biological relevance of the mRNAs in
the modules, we tested the functional homogeneity of the
mRNAs in each module. A set of mRNAs is defined as
functionally homogeneous if it is significantly enriched in at
least one GO biological process category [34, 35]. Among the
2204 modules, 1679 (76.2%) were functionally homogeneous
(𝑞-value< 0.05, FDR correction), indicating that themajority
of modules discovered by PPA were biologically meaningful.
Thus, the PPA was reliable to perform on matched miRNA
and mRNA expression profiles and identify biologically
meaningful miRNA-mRNA modules.

3.2. MFRMs Associated with MM Identified by Multiobjective
GA. The miRNA-mRNA modules in the above section were
identified only based on the expression correlation of miR-
NAs and mRNAs. To identify modules that are more biolog-
ically meaningful, there are still two important aspects need
to be considered: the miRNA-target relationships and identi-
fication of modules that associated with the pathogenesis of
given disease. To this end, we applied multiobjective GA on
each comodule to extract MFRMs by integrating miRNA tar-
get information and MM associated GO BP (See Methods).

For each comodule, the multiobjective GA produced a
Pareto optimal solution set of noninferior MFRMs. More
significant expression correlations and stronger target rela-
tionships between the miRNAs and mRNAs were observed
in the extractedMFRMs. For example, themultiobjective GA
got four MFRMs on comodule 1680 (Table 1). Each MFRM
was enriched on MM associated GO BP (𝐹𝑃 < 0.05). Both
the expression correlation coefficient ofmiRNAs andmRNAs
and the target coefficient of the module were optimized. The
second objective 𝐹𝐶 which reflected the expression correla-
tion and target relationshipwas improved from−0.1599 in the
original comodule to −0.1774, −0.2049 and −0.3456 in three
functional modules, respectively. Although 𝐹𝐶 of the third
MFRM was inferior, the variations of miRNAs and mRNAs
expression (𝐹𝐹, the third objective) in this MFRM were the
best. The larger the 𝐹𝐹, the larger the variation of miRNA
andmRNA expression among differentMM subtypes and the
more subtype specific the MFRM. Comodule 1680 contained
four samples: p709, p831, p841 and p1204 which all belonged
to subtype 𝑅𝐵 DEL. This indicated that the miRNAs and
mRNAs in the MFRM were only co-expressed in samples
with MM subtype 𝑅𝐵 DEL. Because the mRNAs in the
MFRMs were significantly enriched on MM associated GO
BP, the MFRMs extracted from comodule 1680 were 𝑅𝐵DEL
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Figure 2: Comodule statistics. (a) The distribution of the number of comodules according to the number of samples, mRNAs, and miRNAs
they contained. (b) The distribution of the number of samples, mRNAs, and miRNAs according to the number of comodules in which they
were included.

Table 1: Multiobjective GA on comodule 1860.

Comodule 1680 MFRM 1860-1 MFRM 1860-2 MFRM 1860-3 MFRM 1860-4
Number of miRNAs 20 14 15 16 3
Number of mRNAs 511 224 347 209 283
FP Nonea 0 0.031 0.024 0.020
FC −0.1599 −0.1774 −0.2049 −0.1442 −0.3456
FF −0.0469 −0.0610 −0.0548 −0.0665 −0.0339
aThe mRNAs were not enriched on any MM associated biological process.

specific MFRMs and may represent a regulatory mechanism
leading to the specific pathogenesis of subtype 𝑅𝐵 DEL.
Similarly, we obtained subtype specific MFRMs for other
MM subtypes, such as t(4;14), t(11;14), t(14;16), and NFISH.
Multiobjective GA may produce more than one MFRM for
each comodule. Figure S2 shows the distribution of the num-
ber of MFRMs extracted from each comodule. Most como-
dules produced nomore than fiveMFRMs.TheMFRMswere
sorted according to the three objectives (see Methods) and
those with the highest rank had priority for further inves-
tigation.

3.3. The miRNA-mRNA Regulatory Networks Provided a
Modular Outlook at Subtype Specific miRNA-mRNA Inter-
actions: Two Case Studies. We obtained abundant subtype
specific MFRMs for each MM subtype. We focused on
the MFRMs that ranked the highest, and then constructed
miRNA-mRNA regulatory networks based on the expression
correlation and target relationship between miRNAs and
mRNAs in theMFRM. AmiRNA-mRNA pair was connected
with an edge if it concurrently satisfied two condition: (i)
the miRNA exhibited a significant negative correlation with
the mRNA across the samples in the comodule; and (ii)



BioMed Research International 7

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Hematopoietic cell lineage
Neurotrophin signaling pathway

Renal cell carcinoma
Shigellosis

Amoebiasis
Circadian rhythm-mammal

Toll-like receptor signaling pathway
Glycerolipid metabolism

Hepatitis C
RNA degradation

Spliceosome

(a) (b)

0.0 0.5 1.0 1.5 2.0

Circadian rhythm-mammal

Apoptosis

Hematopoietic cell lineage

Shigellosis

Spliceosome

(c)

Figure 3: MiRNA-mRNA functional regulatory network of RB DEL specific MFRM 1680-1 and functions of miRNAs and mRNAs. (a)
Significant biological pathways that genes of MFRM 1680-1 identified by multiobjective GA participated in. The 𝑋-axis represents − log 10
transformation of 𝑃 value. (b) miRNA-mRNA functional regulatory network of RB DEL specific MFRM 1680-1. Six miRNAs and 52 genes
were involved in the network. miRNA and mRNA were connected with an edge if and only if the mRNA was targeted by the miRNA and
there was a significant negative correlation between miRNA and mRNA expression. The miRNAs in red color were previously reported to
play key roles in the pathogenesis of MM. (c) Significant biological pathways that genes of miRNA-mRNA functional regulatory network of
RB DEL specific MFRM 1680-1 participated in. The𝑋-axis represents − log 10 transformation of 𝑃 value.

the mRNA was predicted as a target of the miRNA by at
least one miRNA target prediction algorithm. Two cases are
presented below: a 𝑅𝐵 DEL specific MFRM and a t(4;14)
specific MFRM.

3.3.1. RB DEL Specific MFRMs. 𝑅𝐵 DEL was a MM subtype
that exhibited high morbidity rate, increased proliferative
activity, and shorter overall survival [36]. We focused on the
MFRM 1680-1 which ranked first among the 𝑅𝐵DEL specific
MFRMs. Firstly, we performed the functional enrichment
analysis of mRNAs, indicating the functional roles of mRNAs
belonged to this 𝑅𝐵DEL specificMFRM. As shown in Figure
3(a), mRNAs in the MFRM significantly participated in
several biological pathways that directly related with tumor.
For example, Spliceosome is the most significant pathway;
the study of Quidville et al. suggested that the deregulation
of spliceosome induces mTOR Blockade and they provided
the component of spliceosome as new therapeutic target of
tumor [37]. Then, the miRNA-mRNA regulatory network
was constructed based on the reverse expression andmiRNA-
target relationships (Figure 3(b)). There were 6 miRNAs and

52 genes in this MFRM (see Supplementary Materials for
details). The functional enrichment analysis of these genes
indicating that miRNAs and mRNAs in this MFRM signifi-
cantly involved in the spliceosome and apoptosis biological
pathways (Figure 3(c)), which are directly related to the
occurrence and progression of tumor [37, 38]. Among these
6 miRNAs in MFRM, up to four miRNAs including miR-
335, miR-17-5p, miR-451, and miR-301 were involved in a
broad range of cancers [39, 40], such as acute lymphoblastic
leukemia (ALL) [41], acute myeloid leukemia (AML) [42],
and chronic myeloid leukemia (CML) [43]. In particular,
miR-335 and miR-17-5p were connected with 33 and 17
mRNAs, respectively, thus exhibiting the important roles
played in the network. Ronchetti et al. [44] reported thatmiR-
335 was recurrently overexpressed in a fraction of primary
tumors, possibly influencing plasma cell homing and/or
interactions with the bone marrow microenvironment. miR-
17-5p was a key regulator of the G1/S-phase cell cycle transi-
tion [45]. The study of Zhou et al. indicated that miR-17-
5p exhibits a high expression level in myeloma cells and it
may participate in the induction of p21Waf1/Cip1 expression,
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which relevant to the cell-cycle arrest process [46].MYC has
been reported to play a causal role in the progression of
monoclonal gammopathy toMM [47]. EPC1, which interacts
with miR-335 in the miRNA-mRNA regulatory network, has
been shown to participate in growth regulation and has been
suggested to be involved in a MYC-centered regulatory net-
work [48]. CD44 was also directly connected with miR-335
and relevant to tumor. Purushothaman and Toole indicated
CD44 serves as the binding partner of serglycin participate
in the progression of MM [49]. Bjorklund et al. suggested
that CD44 may contribute to the lenalidomide resistance in
MM [50]. Moreover, miR-451 has previously been identified
as one of the signatures capable of accurate discrimination
of ALL from AML [41]. Because ALL, AML, CLL, MM, and
lymphoma are all hematological malignancies, it is likely
that these miRNAs also played special functional roles in
MM. Of the 52 genes, many genes have been reportedly
involved in various cancers, such as HIPK3 [51], RSRC2 [52],
BPAG1 [53], and EPC1 [48]. Eight genes were annotated on
apoptosis process, including BNIP2, CD44, HIPK3, IP6K2,
IL1B, PMAIP1, ROCK1, and TNFRSF10D. They interacted
withmiR-335, miR-17-5p, andmiR-451, further indicating the
central role of these miRNAs in the regulatory network. This
suggests that themiRNAs andmRNAs in the networkworked
together and contributed to the pathogenesis MM subtype
Del RB.

3.3.2. The t(4;14) Specific MFRMs. MM subtype t(4;14),
translocation of a region of chromosome 4 to chromosome 14,
was highly associated with poor prognosis [54–57].We firstly
carried out functional enrichment analysis on mRNAs in
MFRM1121-2which is the top ranked t(4;14) specificMFRMs.
As a result, genes in the module significantly involved
in many biological pathways such as “NOD-like receptor
signaling pathway”, “MAPK signaling pathway”, “apoptosis,”
and “tight junction” that have been known as hallmark
processes of tumor (Figure 4(a)). Then, we constructed the
miRNA-mRNA regulatory network of this t(4;14) specific
MFRM, which including 36 miRNAs, 382 mRNAs and 983
edges (Figure 4(b)). Pathway enrichment analysis were also
performed on these 382 mRMAs, the results suggest that
miRNAs and genes in the MFRM were significantly involved
in the biological pathways that directly related with tumor
(Figure 4(c)). There were eight sub-networks identified, and
mostmiRNAs andmRNAswere incorporated into the largest
subnetwork. In the largest subnetwork, several miRNAs (let-
7a, miR-125a, miR-193b, miR-25, and miR-181c) that acted
as hubs in the network were previously reported to be
associated with MM pathogenesis [6, 58]. Let-7a and mir-
125a played important role in the t(4;14) regulatory network,
in concordance with a previous study by Lionetti et al.
[58]. They found that patients with t(4;14) exhibited specific
overexpression of the miRNA cluster with let-7e, miR-125a,
and miR-99b. Bakkus et al. also reported that Let-7a has a
higher expression level in both theMMpatients and cell lines
[59]. Changes expression of miR-125a and let-7f which is in
the same family of let-7a contributes to the myelomagenesis
and are also relevant to overall prognosis [60]. Furthermore,
the expression of miR-125b which is the same family member

ofmiR-125a is associatedwith the chemotherapeutic-induced
cell death in MM [61]. MiR-193b was a member of the miR-
193b-365 cluster, which was previously identified as part of
the unique miRNA signature in MM [62]. Mir-25 was a
member of the oncogenic clustermiR-106b-25. Pichiorri et al.
[6] determined that the oncogenic cluster miR-106b-25, miR-
181a and miR-181b, which belonged to the same gene family
with mir-181c, was a miRNA signature in the malignant
transformation from MGUS to MM. Upregulation of miR-
25 and miR-181-a/b and inactivation of miR-34, a central
player in a smaller subnetwork, could negatively regulate the
expression of the tumor suppressor gene p53 [6, 63, 64],
and contribute to MM progression. Alteration in miRNA
expression (such as miR-34, miR-25, miR-181a/b, and miR-
30d) during the progression fromMGUS to newly diagnosed
MM could be partially responsible for p53 inactivation [5].
miR-25 is connected with 42 mRNAs. Many of these mRNAs
were cotargeted by other miRNAs in the network, such as
RALA, BAK1, BMF, and JARID2. RALA was targeted by 11
miRNAs. The product of RALA belonged to the oncogene
RAS family of proteins and was involved in the MAPK/ERK
signal transduction pathway which is the hallmark process
of tumor. The study of Lim et al. indicated that activation of
RALA play important role in the Ras-induced tumorigenesis
[65]. BAK1 and BMF were targeted by four and six miRNAs,
respectively. JARID2 is an ortholog of themouse jumonji gene
that negatively regulates cell proliferation: it was targeted by
nine miRNAs in the network, suggesting that it may also play
an important role in human MM. Aside from these genes,
56.3% of genes in the network were targeted by multiple
miRNAs, exhibiting the synergistic regulatory mechanism of
miRNAs; miRNAs, along with genes, comprised the complex
network specific to t(4;14).

3.4.HeterogeneousMFRMsWereAble to SeparateCorrespond-
ing Subtypes. Aside from MFRMs involved in a single sub-
type, we obtained a heterogeneous MFRM collection cover-
ing multiple MM subtypes. We found that some heteroge-
neous MFRMs exhibited differences in corresponding sub-
types. For example, in heterogeneous comodule 1649 (Figure
S1), expression of miRNAs and mRNAs between subtypes
t(14;16) and t(4;14) was negatively correlated. The hetero-
geneous MFRMs extracted from this comodule potentially
contain a mechanism that leads to a difference in subtype.
We performed hierarchical clustering on both miRNAs and
mRNAs in MFRM 1649-2 (ranked first among the MFRMs
extracted from comodule 1649) for all t(4;14) and t(14;16)
samples (Figure 5(a)). The clustering results confirmed that
the 21 miRNAs and 196mRNAs in thisMFRM could separate
t(4;14) from t(14;16) patients. Two miRNAs (hsa-let-7e; hsa-
miR-125a) in this MFRM have been previously reported as
miRNA signatures for their specific overexpression in t(4;14).
Another miRNA miR-25, which was discussed above in
t(4;14) specific MFRM 1121-2, was also incorporated in this
MFRM. The 196 genes were significantly enriched in regu-
lation of cell proliferation (𝑃 value = 6.9 × 10−3), regulation
of ossification (𝑃 value = 8.2 × 10−4), blood vessel morpho-
genesis (𝑃 value = 3.7 × 10−3), blood vessel development (𝑃
value = 8.3 × 10−3), angiogenesis (𝑃 value = 1.3 × 10−2), and
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Figure 4: miRNA-mRNA functional regulatory network of t(4;14) specific MFRM 1121-2 and functions of miRNAs and mRNAs. (a)
Significant biological pathways that genes of MFRM 1121-2 identified by multiobjective GA participated in. The 𝑋-axis represents − log 10
transformation of 𝑃 value. (b) miRNA-mRNA functional regulatory network of t(4;14) specific MFRM 1121-2. There were 36 miRNAs, 382
mRNAs and 983 edges involved in the network.ThemiRNAs in red colorwere previously reported to play key roles in the pathogenesis ofMM.
(c) Significant biological pathways that genes of miRNA-mRNA functional regulatory network of t(4;14) specific MFRM 1121-2 participated
in. The𝑋-axis represents − log 10 transformation of 𝑃 value.

others, suggesting that the functional module contributes to
the difference of t(4;14) and t(14;16). Next, we investigated
the heterogeneous MFRM 1953-3, identified in patients with
RBDEL and patients with t(11;14). Unsupervised hierarchical
clustering showed that the 10 miRNAs and 115 genes could
separate RBDEL from t(11;14), aside from one sample (Figure
5(b)). Interestingly, the heterogeneousMFRM1962-4 acted in
three subtypes: RB DEL, t(11;14), and t(14;16). The expression
of miRNAs and genes was positively correlated between
samples in RB DEL and t(11;14), but negatively correlated
between samples in t(14;16) and RB DEL, t(11;14), suggesting
that this module could lead to functional differences between
t(14;16) and the other two subtypes. Clustering analysis using
integrated miRNA and mRNA expression profiles showed

that seven miRNAs and 138 mRNAs could separate t(14;16)
from RB DEL and t(11;14) patients (Figure 5(c)).

3.5. The MFRMs Revealed Active miRNAs and mRNAs in
Each MM Subtype. Overall, a few miRNAs and mRNAs act
as “hubs” by being part of the majority of MFRMs. Further
investigation of the miRNAs and mRNAs that appeared
most frequently in subtype specific MFRMs will be helpful
to elucidate the pathogenesis underlying each subtype. We
referred to these miRNAs/mRNAs as subtype dependent
active miRNAs/mRNAs. For subtype RB DEL, CCDC50 was
an active gene included in the majority of RB DEL specific
MFRMs. It has been reported that tyrosine phosphorylation
ofCCDC50 is important for inhibition of theNFkB-mediated
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Figure 5: Continued.
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Figure 5: Hierarchical clustering diagrams. (a) The clustering diagram on t(14;16) and t(4;14) samples using the miRNAs and mRNAs in
MFRM 1649-2. (b)The clustering diagram onRBDEL and t(11;14) samples using themiRNAs andmRNAs inMFRM 1653-3. (c)The clustering
diagram on RBDEL, t(11;14) and t(14;16) samples using themiRNAs andmRNAs inMFRM 1962-4. Clustering could separate t(14;16) samples
from other two subtypes. The samples in red color were from respective MFRMs. Although the MFRMs were identified in small subsets of
samples only, they captured the principle characteristics of different MM subtypes.

apoptotic pathway [66] and CCDC50 is required for survival
in mantle cell lymphoma (MCL) and CLL cells [67]. KAT5
was another active gene: Zhao et al. [68] demonstrated that
KAT5 negatively modulated c-Myb transcriptional activity
by recruiting histone deacetylases in human hematopoietic
cells. Other active genes, like NFKBIB, PIK3CA, RELA, LYN,
and MAP2K7, were involved in B cell and T cell receptor
signaling pathways. These genes frequently appeared in RB
DEL specificMFRMs, demonstrating that they played critical
roles in RB DEL. The top 15 miRNAs and 50 mRNAs
frequently included in each type of subtype specific MFRMs
are listed in Table S3.

4. Discussion

Identification of subtype specific miRNA-mRNA modules is
important for the study of heterogeneous diseases. Several
points need to be considered regarding miRNA-mRNA
modules: (i) the mRNAs are targeted by miRNAs in the
same module; (ii) there may be a significant expression
correlation of miRNAs and mRNAs; (iii) the functions that
the miRNA-mRNA modules perform; (iv) the conditions
under which the modules work. Most methods [12–16, 19]
considered (i) and (ii) but ignored (iii) and (iv). Besides, the
methods currently employed assign amiRNA/mRNA to only
one module. However, a miRNA/mRNA may participate in
different biological processes working with different genes

and miRNAs. In this study, we used the PPA algorithm to
identify miRNA-mRNA modules. The advantage of PPA is
twofold. First, it can assign miRNAs and genes to multiple
modules, which is well motivated from the biological point
of view as the same gene can function in multiple processes
under different conditions. Second, the PPA could identify
context-dependent modules in which the miRNAs and genes
are coexpressed in a subset of samples. These modules are
widely ignored by many other clustering algorithms which
calculate correlations over all samples. Another improvement
we propose is the ability to identify condition-relatedMFRMs
associated with predefined biological processes (e.g., MM
associated GO BP). This process utilizes an integrated anal-
ysis of three pieces of biological data: GO BP, miRNA target
information, and expression data based on multiobjective
GA. The first objective 𝐹𝑃 utilizes the predefined MM
associated GO BP to optimize the MFRMs. It ensures that
the MFRMs are biologically meaningful and associated with
the pathogenesis of MM.The second objective 𝐹𝐶 integrates
both expression profiles and miRNA target information.
It guarantees that the miRNA expression is significantly
negatively correlated with the mRNA expression in the
MFRM, and concurrently the miRNAs and mRNAs exhibit
a strong targeting relationship. The last objective 𝐹𝐹 is based
on the intuition that the expression values of miRNAs and
genes which lead to pathogenesis and heterogeneity of MM
may vary greatly among the different subtypes. Our method
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Figure 6: miRNA-mRNA functional regulatory network of breast cancer and functions of miRNAs and mRNAs. (a) miRNA-mRNA
functional regulatory network.ThemiRNAs in red color were reported to relevant with breast cancer inmiR2Disease database. (b) Significant
biological pathways that genes ofmiRNA-mRNA functional regulatory network of breast cancer participated in.The𝑋-axis represents− log 10
transformation of 𝑃 value. (c) The hierarchical clustering diagram on breast cancer dataset using the 38 miRNAs and 418 genes in MFRM.

captures a resource of subtype specificMFRMs that constitute
various specific functional mechanisms in each MM subtype
that may lead to differences in clinical behavior.

In order to examine the robustness and extensive applica-
tion of ourmethod, we performed it on breast cancer data set,
which is RNA-seq data of TCGA including 14 normal samples
and 248 cancer samples (http://cancergenome.nih.gov/). In
total, PPA algorithmobtained 66modules, 4 of thesemodules
(modules 1, 12, 27, and 42) were normal samples specific
indicating the dysregulation of thesemoduleswere associated

with breast cancer. We then constructed the miRNA-mRNA
regulatory network and carried out functional analysis of
module 1. The module 1 regulatory network contained 38
miRNAs, 418 genes, and 537 edges (Figure 6(a)). These miR-
NAs and genes were involved in several biological pathways
that directly associated with tumor such as “focal adhesion”,
“notch signaling pathway”, “purine metabolism,” and “ECM-
receptor interaction” (Figure 6(b)). Of these 38 miRNAs
in the network, up to 16 miRNAs were recoded to be
relevant with breast cancer in miR2Disease database [69].
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For example, the study of Guttilla and White indicate that
the coordinately regulation of FOXO1 by miR-96 and miR-
182 which involved in themiRNA-mRNA regulatory network
was associated with the oncogenic state in breast cancer
cells [70]. Furthermore, regulation of Rac1 signaling by ARF1
which directly interactwithmiR-96 in the regulatory network
is associated with invasive breast cancer cells [71]. We used
two-dimensional hierarchical clustering analysis to visualize
the expression pattern of miRNAs and genes in the MFRM.
As shown in Figure 6(c), these miRNAs and genes exhibit
different expression pattern in normal and tumor samples. In
summary, these results suggest that our method can robustly
capture important MFRMs relevant to diseases when applied
to RNA-Seq data.

We identified a large number of subtype specificMFRMs,
such as MFRM 1680-1, 1121-2. The regulatory networks
built on these two MFRMs were specific to RB DEL and
t(4;14), respectively. The links in the regulatory networks
predicted new potential subtype dependent miRNA-mRNA
interactions. The genes in the two regulatory networks were
significantly enriched inMM associated biological processes,
such as apoptosis, and regulation of cell death. Although
the miRNAs, genes and the regulatory mechanisms were
different, they all contributed to the pathogenesis of their
respective subtypes. Further investigation of other subtype
specificMFRMsmay uncover a different pathogenesis in each
subtype.

For heterogeneous MFRMs involved in multiple sub-
types, the miRNAs and mRNAs acted in different ways
between the subtypes. For example, in MFRM 1649-2,
approximately one third of mRNAs were upregulated in
t(4;14) but downregulated in t(14;16). Clustering on three het-
erogeneous MFRMs showed that these MFRMs could sepa-
rate different subtypes, although this only involved a small
subset of the corresponding subtypes; the reason for this may
be that all of the samples of the corresponding subtypes were
not covered due, in part, to individual differences. Cluster-
ing results indicated that heterogeneous MFRMs captured
natural differences and led to different subtypes. These
MFRMs could potentially be helpful for identifying func-
tional biomarkers of MM subtypes.
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