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Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules which foment inflammation and are associ-
ated with disorders in sepsis and cancer. Thus, therapeutically targeting DAMPs has potential to provide novel and effec-
tive treatments. When establishing anti-DAMP strategies, it is important not only to focus on the DAMPs as inflammatory 
mediators but also to take into account the underlying mechanisms of their release from cells and tissues. DAMPs can be 
released passively by membrane rupture due to necrosis/necroptosis, although the mechanisms of release appear to differ 
between the DAMPs. Other types of cell death, such as apoptosis, pyroptosis, ferroptosis and NETosis, can also contribute 
to DAMP release. In addition, some DAMPs can be exported actively from live cells by exocytosis of secretory lysosomes 
or exosomes, ectosomes, and activation of cell membrane channel pores. Here we review the shared and DAMP-specific 
mechanisms reported in the literature for high mobility group box 1, ATP, extracellular cold-inducible RNA-binding protein, 
histones, heat shock proteins, extracellular RNAs and cell-free DNA.
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Introduction

Damage-associated molecular patterns (DAMPs) are endog-
enous molecules which serve as potent activators of the 
immune system [1]. Examples of DAMPs include nuclear 
and mitochondrial DNA, RNA, nucleotides and nucleosides, 
DNA-binding molecules, temperature-shock proteins, and 
uric acid [1–3]. DAMPs normally reside inside the cell 
playing diverse roles in homeostasis, but are released to 

the extracellular space when cells are exposed to stress [1]. 
Cellular stressors that can lead to DAMP release include a 
wide array of physical (trauma, radiation), chemical (tox-
ins, osmolarity), metabolic (ischemia/reperfusion), and 
infectious (viruses, bacteria, protozoa) factors [1, 4, 5]. 
Once outside the cell, DAMPs are recognized by other cells 
via their interaction with cellular receptors such as pattern 
recognition receptors (PRRs), which then upregulate stress 
response mechanisms that often converge to form a positive 
feedback loop of tissue injury and inflammation [1]. Indeed, 
the relevance of DAMPs to various diseases is supported 
by a number of studies. In sepsis, circulating DAMPs cor-
relate with disease severity and their inhibition has been 
shown to improve the outcomes in experimental models 
of sepsis [1]. During cancer different types of DAMPs can 
promote tumor establishment and progression as well as 
metastasis [6]. DAMPs are upregulated systemically and 
locally in patients with autoimmune diseases such as rheu-
matoid arthritis and their neutralization has shown to prevent 
the disease progression in animal models [7]. Therefore, 
DAMP-inhibiting molecules have the potential to signifi-
cantly attenuate inflammation and in the future may yield a 
novel class of anti-inflammatory drugs able to finally treat 
trauma, ischemia/reperfusion injury, sepsis, neuroinflamma-
tion, and other pathophysiological conditions irresponsive 
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to existing immune modulatory drugs. Indeed, molecules 
targeting a number of DAMPs are already in the process of 
being developed as potential therapeutic agents [8]. At the 
moment, the predominant strategies to decrease the effects 
of DAMPs consist of antibody neutralization, competitive 
antagonism, and enzymatic inactivation [1, 8]. An alterna-
tive approach at a more fundamental level is to actively sup-
press the cellular release of DAMPs. While thorough under-
standing of the mechanisms of DAMP release may lead to 
new treatments to attenuate the proinflammatory activity 
of DAMPs, it might also help to overcome the difficulties 
we are facing with other forms of immunotherapy such as 
cytokine removal [9].

Here we review the mechanisms of DAMP release that 
have been reported. We first summarize universal mecha-
nisms affecting most if not all DAMPs (i.e., different types 
of cell death, lysosomal- and exosomal-exocytosis) (Fig. 1). 
We then outline the mechanisms that have been described 
for selected DAMPs individually, including high mobility 
group box 1 (HMGB1), ATP, extracellular cold-inducible 
RNA-binding protein (eCIRP), histones, heat shock pro-
teins (HSPs), extracellular RNAs (exRNAs) and cell-free 
DNA (cfDNA), as they have been well-studied among other 
DAMPs (Table 1).

Universal mechanisms of DAMP release

Different DAMPs share common mechanisms for their 
release. The release mechanisms can be largely divided into 
two categories: passive release mainly due to cell death and 

active release from live cells represented by exocytosis. To 
be precise, with the exception of necrosis, the other forms 
of cell death are not entirely passive but rather a regulated 
process, and some of the mechanisms described under cell 
death do not always lead to cell death (e.g., NETosis can be 
suicidal and vital). Thus, it has to be noted that the follow-
ing categorization is not completely clear-cut and somewhat 
vague with overlap.

Passive release (cell death)

DAMPs are well known to be released during different 
types of cell death. Necrosis is the most common cell death 
to cause passive release of DAMPs, whereas necroptosis, 
apoptosis, pyroptosis, ferroptosis and extracellular traps can 
also contribute to DAMP release. Theoretically, necrosis can 
cause the release of mixed DAMPs since the cell boundary is 
lost due to membrane rupture and any cellular components 
would be released. On the other hand, different forms of 
cell death can be rather specific to the types of DAMPs as 
to their release according to the mechanisms. For example, 
apoptosis leads to the release of nuclear DAMPs following 
chromatin condensation and DNA fragmentation. Extracel-
lular traps released during NETosis contain DAMPs which 
are mainly nuclear molecules and antimicrobial enzymes. 
Conversely, DAMPs can give clues to by which cell death 
they were released. The fragment length of cfDNA is differ-
ent according to the type of cell death; cfDNA originating 
from apoptotic cells is ~ 180 bp due to the fragmentation, 
while cfDNA released from necrotic cells can be as long 
as > 10,000 bp [10]. HMGB1 released by pyroptosis via 

Fig. 1    Universal mechanisms 
of DAMP release. Common 
mechanisms of DAMP release 
from the cells are represented by 
necrosis/necroptosis, apoptosis, 
pyroptosis, ferroptosis, extracel-
lular traps, secretory lysosomes 
and exosomes. RIPK receptor-
interacting serine/threonine-
protein kinase, MLKL mixed 
lineage kinase domain like 
pseudokinase, GSDMD gasder-
min D, GPX4 glutathione per-
oxidase 4, ROS reactive oxygen 
species, PAD4 peptidylarginine 
deiminase 4, Me methylation, 
Ac acetylation, P phosphoryla-
tion, Cit citrullination
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inflammasome pathway is hyperacetylated, which is not 
seen when it is released from necrotic or apoptotic cells. In 
addition, the redox state of HMGB1 is in the disulfide form 
after pyroptosis, in the fully reduced or disulfide form after 
necrosis, and in the fully oxidized form (sulfonyl HMGB1) 
after apoptosis [11]. Different DAMPs can be released at 
the different stages even within the same type of cell death. 
During apoptosis, ATP is released at the pre-apoptotic stage 
while HMGB1 is released at the late stage [12, 13]. Besides 
the preceding DAMPs, it still largely remains elusive and 
further studies are awaited as to the types and stages of the 
cell death of their origin.

Necrosis and necroptosis

Passive release of DAMPs is typically described to occur 
as a result of necrosis. Necrosis is commonly caused by 
extreme chemical or physical insults such as the presence 
of toxins or trauma, and is characterized by cell swelling and 
plasma membrane rupture [14]. Tissue ischemia and hypoxia 
also trigger necrosis by depleting intracellular ATP to unbal-
ance the pump-leak mechanism leading to an influx of Na+ 
and water, which causes cell swelling. Reperfusion can fur-
ther damage the cells by inducing the generation of multiple 
oxidants and free radicals [15]. A number of DAMPs have 
been found to be released by necrosis including, but not lim-
ited to, HMGB1, ATP, histones, HSPs, exRNAs, cfDNA, 
and possibly eCIRP [1, 3, 5, 10, 16–22].

Although cytoplasmic membrane rupture can be uncon-
trolled accidental (mechanical or chemical) events, it can 
also be a regulated process governed by specific caspases 
and kinases. For instance, necroptosis occurs as a result 
of receptor-interacting serine/threonine-protein kinase 1 
(RIPK1) activation followed by RIPK3-dependent phospho-
rylation of mixed lineage kinase domain like pseudokinase 
(MLKL) to induce MLKL oligomerization, which results 
in plasma membrane rupture [14]. DAMP release has been 
significantly less studied in the context of necroptosis than of 
necrosis. However, as membrane integrity is lost in necrop-
tosis in a fashion similar to necrosis, theoretically necropto-
sis also results in the release of DAMPs and other cellular 
components to the extracellular space [23].

Apoptosis

Apoptosis is a regulated cell death without loss of plasma 
membrane. Morphological features of apoptosis are cytosolic 
shrinkage, membrane blebbing, chromatin condensation, 
and DNA fragmentation [14]. The sequential activation of 
cysteine proteases and endonucleases is the main mechanism 
of apoptosis, which consists of extrinsic and intrinsic path-
way. Extrinsic pathway is induced by caspase-8/caspase-10 
or caspase-9 activated by death receptor- or dependence Ta
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receptor-stimulation, respectively. Intrinsic pathway, on the 
other hand, is initiated by mitochondrial outer membrane 
permeabilization followed by the release of mitochondrial 
proteins, which subsequently causes caspase-9 activation. 
Both pathways converge on common effector caspases, i.e., 
caspase-3, caspase-6 and caspase-7, to induce apoptosis 
[24]. In its early stages, apoptosis is traditionally consid-
ered a non-immunogenic form of cell death that prevents the 
release of intracellular contents because there is no loss of 
membrane integrity. However, recently it has been revealed 
that apoptosis can be immunogenic under stress conditions 
such as chemotherapy or physical modalities. This form of 
apoptosis is named “immunogenic cell death” (ICD) and is 
characterized by DAMP release [25]. Indeed, apoptosis has 
been shown to cause nuclear substances to get exposed at the 
cell surface and released to the extracellular space and thus 
act as DAMPs [26]. In the line with its mechanism, nuclear 
molecules, such as HMGB1, histones, exRNAs and cfDNA 
as well as ATP have been shown to be released by apoptosis 
[1, 10, 26–30]. Release mechanisms during apoptosis can be 
different between DAMPs. Histone release from apoptotic 
cells is highly associated with DNA fragmentation, which is 
mediated by caspase-activated DNase/DNA fragmentation 
factor [28]. ATP has shown to be released from apoptotic 
cells induced by ER stress in a protein kinase R-like endo-
plasmic reticulum kinase (PERK) dependent manner [12]. 
cfDNA and exRNAs have been found in the microparticles 
released from apoptotic cells [30]. Despite the preceding 
studies, elucidation of more detailed mechanisms for each 
DAMP release is awaited in apoptosis.

Pyroptosis

Another form of caspase-dependent cell death is pyroptosis, 
which is induced via the activation of caspase-1 following 
that of inflammasomes such as NLRP3 or via caspase-4/5/11 
activation typically initiated by intracellular LPS [24, 31]. 
The inflammatory caspase (−1, −4, −5, −11) activation 
further induces the cleavage of gasdermin D (GSDMD) 
to promote pore formation in the membrane, allowing the 
release of intracellular molecules [24, 31]. A recent study 
has revealed that intracellular protein DDX3X promotes 
NLRP3 inflammasome activation, which can be inhibited 
by the induction of stress granules causing the sequestration 
of DDX3X, thus acts as a live-or-die checkpoint in stressed 
cells [32]. Pyroptosis is typically known for the release of 
IL-1ß, though some other DAMPs such as HMGB1, ATP 
and cfDNA can be released by cells undergoing this type of 
cell death [1, 33–37]. Even sharing the same signaling path-
way, IL-1ß is well known to be released through GSDMD 
pore whereas a study has shown HMGB1 was released as 
a result of cell lysis during pyroptosis [38]. In addition, 

post-translational modifications are required prior to pyrop-
tosis for the release of HMGB1 as described later [39].

Ferroptosis

Ferroptosis is a programmed cell death accompanied by 
iron accumulation and lipid peroxidation. Its morphological 
features include a loss of membrane integrity, cytoplasmic 
swelling, swelling of cytoplasmic organelles and moderate 
chromatin condensation [40]. Intracellular iron accumula-
tion, which can be induced by ferroptosis activators such as 
erastin and RSL3, causes oxidative stress directly by gener-
ating reactive oxygen species (ROS) via the Fenton reaction 
as well as activating the enzymes responsible for lipid per-
oxidation and oxygen homeostasis. Glutathione peroxidase 
4 (GPX4) is an anti-oxidative enzyme which plays a major 
role in regulating ferroptosis by preventing lipid peroxida-
tion. Thus, inhibition of GPX4 is a well know mechanism 
for inducing ferroptosis [40]. Although it is a relatively 
new concept and less has been elucidated yet, HMGB1 and 
cfDNA have been regarded to be released by ferroptosis [40, 
41]. A study has shown that HMGB1 release during fer-
roptosis was due to HMGB1 acetylation induced by histone 
deacetylase (HDAC) inhibition mediated by autophagy [41].

Extracellular traps

Neutrophil extracellular traps (NETs) are web-like chroma-
tin-based structures released by neutrophils primarily for 
pathogen clearance via a regulated process, called NETosis 
[1]. It is typically described that in the neutrophils undergo-
ing NETosis activated peptidylarginine deiminase 4 (PAD4) 
citrullinates histones leading to chromatin decondensation 
accompanied by the dissolution of nuclear and granule 
membranes. DNA and histones mix with granule-derived 
antimicrobial peptides in the cytoplasm and are extruded 
into the extracellular space [1]. Conventionally NETosis was 
regarded to be a suicidal process leading to cell death (i.e., 
suicidal NETosis), however later it was found that NETs 
can also be released from live cells (i.e., vital NETosis) 
[1]. NETs can be detrimental as they contain not only typi-
cal DAMPs, such as histones, cfDNA and eCIRP, but also 
antimicrobial enzymes, such as neutrophil elastase (NE) 
and myeloperoxidase (MPO), both of which can directly 
cause tissue damage [1, 42]. In fact, DNA, histones, NE 
and MPO are commonly used to identify NETs in experi-
ments or human samples [1, 43]. Though extracellular traps 
are most clearly observed with neutrophils supported by a 
numerous amount of studies, similar structures were found 
to be released from other cell types including macrophages 
(METs), mast cells (MCETs), eosinophils (EETs) and even 
B- and T-cells [44–46].
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Active release

Besides the different types of cell death, DAMPs can be 
released from living or normal cells as well. Many types of 
DAMPs cannot be released by the typical secretory pathway 
for proteins consisting of endoplasmic reticulum (ER) and 
Golgi apparatus as they are nucleotides or proteins without 
a signal peptide. Well studied carriers of DAMPs during 
their active release are secretory lysosomes and exosomes, 
both of which are typically secreted by exocytosis. Even 
though exocytosis is a regular process even under steady 
state, increased DAMP release has been observed in this 
mechanism under stress condition [47–53].

Secretory lysosomes

Some DAMPs have been reported to be released via lyso-
somal exocytosis [36, 47, 50, 51]. The lysosomal import 
of soluble contents such as hydrolases, which unlike mem-
brane proteins lack sorting signals, is at least in part medi-
ated by their modification with mannose-6-phosphate, which 
is recognized by mannose-6-phosphate receptor proteins to 
be loaded into lysosomes [54]. Lysosome secretion can be 
initiated by the stimulation of cell-surface receptors leading 
to the increase of intracellular Ca2+, which is detected by 
synaptotagmin (Syt). Syt mobilizes the lysosomes toward 
microtubule organizing center (MTOC), where the lys-
osomes associate with a kinesin motor. The motor further 
transports lysosomes near to the site of secretion, where the 
lysosomes use actin-based movement to travel to the docking 
site. Docking and fusion of the lysosomes with the plasma 
membrane are mediated by RABs and SNARE complexes, 
respectively [54]. Lysosomal secretion is typical of cells that 
are stressed and has been identified as one of the release 
mechanisms of HMGB1, ATP and eCIRP [36, 47, 50, 51].

Exosomes

Another mechanism by which DAMPs are released from 
living cells is via exosomes. Exosomes are extracellular 
vesicles containing proteins, lipids and nucleic acids to 
facilitate intercellular communication. Intraluminal vesicles 
(ILV)—the future exosomes—are formed by inward budding 
of endosomes to form multivesicular bodies (MVBs) [55]. 
A well-studied regulator of exosome biogenesis and of the 
import of its components is the Endosomal Sorting Complex 
Required for Transport (ESCRT), which works along with 
its related proteins VPS4, VTA1, ALIX [56, 57]. MVBs are 
transported to the plasma membrane via interaction with 
actin, cortactin, microtubule skeleton and RAB proteins 
[56]. Similar to secretory lysosomes, the MVB docking to 
the plasma membrane and fusion with it are facilitated by 
RAB proteins and SNARE complexes, respectively [57]. 

A large number of DAMPs have been found to be present 
inside or on the surface of exosomes as we have previously 
reviewed [58]. Exosomal DAMPs include but are not limited 
to HMGB1, ATP, histones, HSPs, exRNAs and cfDNA [48, 
52, 53, 58–61].

DAMP receptors

Released DAMPs are recognized by their corresponding 
receptors including, but not limited to, Toll-like recep-
tors (TLRs), NOD-like receptors (NLRs), receptor for 
advanced glycation end products (RAGE), triggering 
receptors expressed on myeloid cells (TREMs) and P2X 
receptors (P2XRs). Activation of DAMP receptors induces 
inflammatory response such as cytokine and chemokine pro-
duction among other effector functions [62]. In addition, 
the stimulation of the receptors by DAMPs in turn causes 
DAMP release. For instance, HMGB1 has shown to be 
released upon NLR and TLR stimulation both passively by 
cell death and actively by exocytosis [48, 62]. Even though 
not all the studies about the preceding receptors and DAMP 
release actually used DAMPs as stimuli of the receptors in 
the experimental design, theoretically DAMPs may also 
cause the similar phenomena by acting on the receptors to 
induce the downstream signaling pathways. Above all, there 
do exist studies showing that ATP activates P2X7 to induce 
HMGB1 release via the activation of inflammasome as well 
as p38MAPK/NF-κB signaling accompanied by ROS accu-
mulation [63, 64].

Characteristics and release mechanisms 
for specific DAMPs

HMGB1

HMGB1 is a nuclear protein capable of binding chromo-
somal DNA to fulfill its nuclear functions in stabilizing 
nucleosomal structure and stability and regulating gene 
expression. As a prototypical DAMP, HMGB1 can be pas-
sively released by somatic cells undergoing cytoplasmic 
membrane destruction due to accidental necrosis or regu-
lated cell death processes such as necroptosis, pyroptosis 
ferroptosis, or apoptosis [16, 23, 27, 34–36, 41, 65, 66]. In 
addition, HMGB1 can also be actively secreted by innate 
immune cells in response to microbial infections. Lack-
ing a leader peptide sequence, HMGB1 cannot be actively 
secreted through classical ER - Golgi exocytotic pathways. 
Instead, its active secretion is generally regulated by two 
signaling steps. The first step, translocation from the nucleus 
to cytoplasm, is induced by JAK/STAT-1 mediated acety-
lation of the nuclear localization sequences (NLS) within 
HMGB1 [39]. The translocation has also shown to be 
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mediated by the interaction with HSP90AA1 (heat shock 
protein 90 alpha family class A member 1) and XPO1 [49]. 
The second step, secretion from the cytoplasm to the extra-
cellular space, is dependent on the activation of inflammas-
omes and caspases as described earlier under pyroptosis 
[34–36]. The latter step is at least partially controlled by 
double-stranded RNA-activated protein kinase R (PKR) 
[67]. A recent study has shown that unlike IL-1ß the release 
of HMGB1 by inflammasome activation was not through 
GSDMD pore but due to membrane rupture even though 
it was indeed GSDMD dependent [38]. In addition to its 
release by pyroptotic cells, HMGB1 is also released by liv-
ing cells by exocytosis of lysosomes or exosomes [36, 47, 
48]. HMGB1 has been found inside secretory lysosomes 
and it has also reported to be released via exosomes in a 
TLR4 and caspase-11/gasdermin D dependent manner [36, 
47, 48]. Another study has shown that HMGB1 secretion 
was induced by autophagy machinery and MVB formation, 
resulting in its release in the form of exosomes [49].

ATP

ATP is a nucleotide essential for cellular metabolism, how-
ever extracellular ATP works as a DAMP via P2XRs [1]. 
Dosch et  al. recently reviewed the mechanisms of ATP 
release intensively [68]. Like other DAMPs, ATP can be 
released passively from damaged tissues and dying cells 
undergoing necrosis or apoptosis and pyroptosis [17, 29, 
37, 68]. Mainly two mechanisms have been reported for 
active ATP release; exocytosis and channel pores. ATP has 
been detected inside secretory lysosomes and vesicles and 
it has been proposed to be released via exocytosis [50, 61, 
69]. The vesicular nucleotide transporter (VNUT) protein 
is responsible for the vesicular storage of ATP [69]. ATP 
is also exported via the pores of connexin and pannexin 
hemichannels [37, 68, 70, 71]. Connexins and pannexins are 
both four-pass transmembrane proteins and are represented 
by connexin 43 and pannexin 1, respectively. While they are 
likely to be closed under homeostatic conditions, connexin 
and pannexin hemichannels open in response to various trig-
gers [68]. The state of connexin 43 is regulated by intracel-
lular calcium concentrations, positive cell membrane voltage 
changes and phosphorylation of its serine residues. Moreo-
ver, the expression of connexin 43 is induced by TLR stimu-
lation followed by ERK/AP-1 signaling [68, 72]. Pannexin 
1 channels are opened by mechanical stress, increased intra-
cellular calcium or extracellular potassium, and the cleav-
age of the C-terminal tail of pannexin-1 proteins induced 
by activated caspase-3/caspase-7 and caspase-11 during 
apoptosis and pyroptosis, respectively [37, 68]. To induce 
a more effective localized release of ATP, pannexin 1 has 

been reported to translocate to the leading edge of polarized 
neutrophils or the immune synapse of T-cells [71, 73, 74].

eCIRP

CIRP is an RNA chaperone protein which plays a role in the 
regulation of a variety of cellular stress responses. Extracel-
lular CIRP (eCIRP) is a DAMP that perpetuates inflamma-
tion and contributes to various diseases [5]. An in vitro study 
showed that passive release by necrosis might not be a major 
source of eCIRP, although passive release is a likely impor-
tant source of CIRP in conditions such as trauma, ischemia-
reperfusion injury, and sepsis [5, 51]. Extracellular traps 
have also shown to be sources of eCIRP [42]. Like HMGB1, 
CIRP does not contain a signal peptide, thus its release is 
unlikely to be mediated by ER-Golgi dependent classical 
pathway. The nuclear to cytoplasm translocation of CIRP 
requires post-translational modifications such as methylation 
and phosphorylation [75, 76]. The phosphorylation of CIRP 
was shown to be mediated by GSK3β and casein kinase II 
(CK2) [76]. CIRP migrates from the nucleus to cytoplas-
mic stress granules under certain conditions such as oxida-
tive stress, ER stress, hyperosmotic, and heat shock [75]. 
Stress granules are RNA-protein complexes that assemble 
when cells undergo polysome disassembly effectively inter-
rupt protein translation in response to the conditions such 
as those above. When the offending condition is controlled, 
stress granules disassemble and translation resumes [77–79]. 
Stress granules interact with the inflammasome pathway as 
they inhibit NLRP3 inflammasome assembly by sequester-
ing DDX3X protein [32]. Studies have shown stress gran-
ule proteins can be released via extracellular vesicles such 
as exosomes, though it’s still not clear whether CIRP can 
be released through the same pathway [80–82]. Exocytosis 
of secretory lysosomes is also likely to contribute to CIRP 
release as a study showed CIRP was enriched at the lysoso-
mal compartment of macrophages subjected to hypoxia [51].

Histones

Histones are components of chromatin in the nucleus 
together with DNA, but can act as DAMPs by binding to 
PRRs once they are released to the extracellular space [1]. 
Histones can be released passively by necrosis like other 
DAMPs [1, 18]. Upon apoptotic signaling, core histones 
(H2A, H2B, H3, and H4) and a link histone (H1) undergo 
post-translational modifications (e.g., H2B phosphoryla-
tion at serine 14, H2B acetylation at lysine 15, etc.), which 
have been reviewed in depth by Füllgrabe et al. [83]. During 
apoptosis, the modified histones separate from the genomic 
DNA and translocate to the cytoplasm. The histones pro-
trude from the plasma membrane to be exposed at the cell 
surface and released to the extracellular space through a 
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mechanism that has not yet been elucidated [26]. One of 
the main components of NETs, citrullinated histones, medi-
ated by PAD4, are released by the NETosis mechanisms 
described earlier [1]. Histones can also be secreted actively 
from living cells via exosomal exocytosis. A study has 
shown that histones were present on the outer surface of 
exosomes released from LPS-challenged macrophages and 
interacted with TLR4 directly [52].

HSPs

HSPs are a family of molecular chaperones maintaining cel-
lular homeostasis [84]. Extracellular HSPs act as DAMPs 
and correlate with the severity of several disorders such 
as sepsis and trauma [85, 86]. HSPs can be released pas-
sively by necrosis [19, 53]. HSPs lack a secretory signal, 
thus are unlikely to be released via ER-Golgi transporta-
tion. Proposed mechanisms for active HSP release include 
secretion via ATP-binding cassette (ABC) transporter in the 
lysosomal pathway and via secretory granules [53, 87, 88]. 
Above all, the most accepted mechanism of HSP release is 
via extracellular vesicles. HSPs are found in two types of 
extracellular vesicles; exosomes and ectosomes [53]. While 
exosomes are released by the mechanism described in the 
earlier section, ectosomes are formed by the outward bud-
ding of plasma membrane in response to the increase of 
cytosolic free Ca2+ and are released directly to the extra-
cellular space. Ectosomes are also called microvesicles or 
microparticles [89]. Different types of HSP family, such as 
HSP27, HSP60, HSP70 and HSP90, have been found to be 
released via extracellular vesicles as reviewed by Maio et al. 
[53]. While HSPs might be located within the vesicle lumen, 
multiple studies showed HSPs were at least in part present 
on the surface of the extracellular vesicles, allowing them to 
interact with surface receptors directly [90–94].

exRNAs

While some exRNAs are known to have beneficial effect, 
other act as DAMPs to aggravate inflammation [95]. Though 
exRNAs can be released by necrosis and apoptosis, they 
are regarded to be more stable when encapsulated within 
extracellular vesicles, typically in exosomes, to avoid deg-
radation by RNases in biological fluids such as saliva, breast 
milk, blood, cerebrospinal fluid, follicular fluid, and urine 
[22, 30, 60]. The import of exRNAs, specifically miRNAs, 
to extracellular vesicles is mediated by the association with 
argonaute 2 (Ago2) regulated by KRAS-MEK-ERK signal-
ing [96]. Other RNA binding proteins (RBPs), such as Y-box 
protein 1 (YBX1), hnRNPA2B1 and SYNCRIP (hnRNPQ), 
have also been reported to play a role in the sorting of miR-
NAs [97–100]. RNAs loaded to the extracellular vesicles 
are released via exocytosis to become exRNAs. RBPs not 

only mediate the import but also act as carriers of exRNA in 
the circulation even without the encapsulation by extracel-
lular vesicles [101, 102]. It is still unknown whether RBP/
exRNA complexes in the blood are predominantly released 
passively by cell death or exported actively via an independ-
ent pathway.

cfDNA

DNA in the extracellular space can serve as a DAMP. Vari-
ous types of cell death, such as necrosis, apoptosis, pyrop-
tosis ferroptosis, and NETosis are known to release DNA 
[1, 10, 20, 26, 30, 33, 40]. Its mechanisms of release differ 
according to the pathogenic condition exemplified by NETo-
sis in sepsis patients and necrotic cells in trauma patients 
[20]. A recent study showed that cellular senescence was a 
major determinant of cfDNA kinetics by negatively regulat-
ing its release. The elimination of senescent cells through 
apoptosis recovered cfDNA release [103]. In addition to the 
passive release by cell death, DNA can be released actively 
via extracellular vesicles, including exosomes and ectosomes 
[104]. A study suggests that majority of cfDNA in the blood 
is present in the form of exosomes, thus avoiding its deg-
radation by nucleases [59]. Besides nuclear DNA, cell-free 
mitochondrial DNA (cf-mtDNA) also acts as a DAMP [105]. 
Cf-mtDNA was found in platelet-driven ectosomes along 
with phospholipase A2 (PLA2). PLA2 is a bactericidal 
enzyme found to digest the cellular membrane leading to 
the leakage of mtDNA into the extracellular space [106].

Conclusions and future prospects

DAMPs represented here by HMGB1, ATP, eCIRP, histones, 
HSPs, exRNAs and cfDNA can be released by several differ-
ent active and passive mechanisms such as exocytosis of lys-
osomes/exosomes, necrosis/necroptosis, apoptosis, pyropto-
sis, ferroptosis, and extracellular traps. Some mechanisms 
such as necrosis are shared with more DAMPs, while others 
are relatively DAMP-specific, e.g., channel pores for ATP.

Despite the detailed mechanisms reviewed here, clearly 
a lot still remains to be elucidated. A more comprehensive 
understanding of the mechanisms DAMP release and their 
regulation will not only enable the design of new investiga-
tive tools but may also result in new potential therapeutic 
approaches to attenuate inflammation and tissue injury and 
thus to improve the outcomes of pathological conditions 
associated with excessive DAMP release.
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