
Burggraaff et al. J Cheminform           (2019) 11:15  
https://doi.org/10.1186/s13321-019-0337-8

RESEARCH

Identification of novel small molecule 
inhibitors for solute carrier SGLT1 using 
proteochemometric modeling
Lindsey Burggraaff1, Paul Oranje2, Robin Gouka2, Pieter van der Pijl2, Marian Geldof2, 
Herman W. T. van Vlijmen1,3, Adriaan P. IJzerman1 and Gerard J. P. van Westen1*

Abstract 

Sodium-dependent glucose co-transporter 1 (SGLT1) is a solute carrier responsible for active glucose absorption. 
SGLT1 is present in both the renal tubules and small intestine. In contrast, the closely related sodium-dependent 
glucose co-transporter 2 (SGLT2), a protein that is targeted in the treatment of diabetes type II, is only expressed in the 
renal tubules. Although dual inhibitors for both SGLT1 and SGLT2 have been developed, no drugs on the market are 
targeted at decreasing dietary glucose uptake by SGLT1 in the gastrointestinal tract. Here we aim at identifying SGLT1 
inhibitors in silico by applying a machine learning approach that does not require structural information, which is 
absent for SGLT1. We applied proteochemometrics by implementation of compound- and protein-based information 
into random forest models. We obtained a predictive model with a sensitivity of 0.64 ± 0.06, specificity of 0.93 ± 0.01, 
positive predictive value of 0.47 ± 0.07, negative predictive value of 0.96 ± 0.01, and Matthews correlation coefficient 
of 0.49 ± 0.05. Subsequent to model training, we applied our model in virtual screening to identify novel SGLT1 inhibi-
tors. Of the 77 tested compounds, 30 were experimentally confirmed for SGLT1-inhibiting activity in vitro, leading to 
a hit rate of 39% with activities in the low micromolar range. Moreover, the hit compounds included novel molecules, 
which is reflected by the low similarity of these compounds with the training set (< 0.3). Conclusively, proteochemo-
metric modeling of SGLT1 is a viable strategy for identifying active small molecules. Therefore, this method may also 
be applied in detection of novel small molecules for other transporter proteins.
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Introduction
Sodium-dependent glucose co-transporters, or sodium-
glucose linked transporters (SGLTs), are solute carriers 
(SLCs) that are responsible for glucose (re)absorption. 
SGLTs are members of the sodium-dependent trans-
porters and are encoded by the SLC5A genes [1]. SGLTs 
are interesting targets in the treatment of diabetes mel-
litus, as their inhibition reduces the risk of hyperglyce-
mia by decreasing glucose (re-)uptake [2]. In the human 

body two SGLT isoforms are involved in glucose trans-
port: SGLT1 and SGLT2 [3]. Both SGLT1 and SGLT2 are 
expressed in the kidney, whereas SGLT1 is also expressed 
in the small intestine [4]. SGLT2 is a high capacity trans-
porter responsible for 90% of glucose reuptake in the 
renal tubules and multiple compounds have been devel-
oped that inhibit this solute carrier [5, 6]. Furthermore, 
SGLT2 inhibition has been shown to decrease blood 
glucose levels in diabetes type 2 patients [7]. In contrast 
to SGLT2, SGLT1 is a low-capacity glucose transporter 
[1]. However, SGLT1 has a higher glucose affinity than 
SGLT2 and is additionally capable of transporting galac-
tose [1]. Dual inhibitors blocking both SGLT1 and SGLT2 
are currently in clinical development [8, 9]. In line with 
previous evidence we suggest that SGLT1 inhibition in 
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the intestine will lower blood glucose levels as well [10, 
11]. Compounds that do not penetrate the intestinal wall 
can achieve selective targeting of SGLT1 in the intestine, 
as they would not reach the renal tubules [12].

The complexity and the hydrophobic nature of trans-
porter proteins make them challenging to crystalize. 
Crystal structures of transporters are scarce and bind-
ing locations of small molecules to these transporters 
are often unknown. For human SGLTs no protein struc-
tures are available negating the use of structure-based 
modeling techniques. However, the publicly available 
compound database ChEMBL includes ligand–protein 
binding information for multiple SGLTs [13–15], allow-
ing the use of statistical modeling techniques such as 
quantitative structure–activity relationship analysis 
(QSAR) and proteochemometrics (PCM) [16]. These 
techniques, which make use of machine learning, do not 
require protein structural information and can therefore 
be applied in the context of SLCs. Although ligand-based 
pharmacophore modeling, QSAR, and PCM have only 
been applied to a few SLCs [17, 18], these techniques are 
well established on other drug targets including mem-
brane proteins such as G protein-coupled receptors 
[19–21].

Unfortunately, the publicly available compound 
interaction data for SGLTs is limited from the point 
of chemical diversity as the major share of ligands are 
glycoside-like compounds and oxopyrrolidine-carbox-
amides. This limited chemical space hence restricts the 
applicability domain of QSAR and PCM models [22]. 
The applicability domain of computational models can 
be interpreted as the theoretical ensemble of molecular 
structures to which a model can be applied accurately. 
This domain is dependent on the model input and can 
therefore be quantified by similarity with the training 
molecules.

In the current work we show how we expanded the 
chemical space of SGLT inhibitors (using an in-house 
dataset [Oranje et  al. manuscript in preparation]), and 
with that the applicability domain of our SGLT models. 
We constructed PCM models based on SGLT1 and its 
closest family members to predict compound activity for 
SGLT1. We successfully identified novel SGLT1 inhibi-
tors that display low similarity towards the training set.

Results and discussion
SGLT chemical space
A public dataset was created based on ChEMBL ver-
sion 23 [13, 15] which includes the target protein 
human SGLT1 (hSGLT1), related protein human SGLT2 
(hSGLT2), and multiple other SGLTs from different spe-
cies. The public dataset encompassed 2063 data points 
and 1683 unique compounds, of which 886 compounds 

had measured hSGLT1 activities. Additionally, this set 
was supplemented with an in-house dataset of 2007 
molecules previously screened for hSGLT1 and hSGLT2 
inhibition [Oranje et al. manuscript in preparation]. This 
in-house dataset is based on the Spectrum Collection 
compound library [23] extended with compounds simi-
lar to primary screening hits and contained natural prod-
ucts and synthetic compounds. The data derived from 
ChEMBL was compared to the in-house dataset: the 
in-house dataset contained an additional 2005 hSGLT1 
activities and 140 hSGLT2 activities, which were not 
present in the public dataset. The difference between the 
public and in-house dataset is graphically represented 
with t-Distributed Stochastic Neighbor Embedding 
(t-SNE) [24] (Fig. 1a, and Additional file 1: Figure S1 for 
graph color-coded on proteins). T-SNE was applied to 
decrease the high dimensionality of the datasets, mak-
ing it possible to visualize them in 2D. The high dimen-
sions are a consequence of the many descriptors that 
are used to describe the data, i.e. FCFP6 fingerprints. 
The t-SNE plot shows that the data derived for proteins 
similar to hSGLT1 extend the chemical space; many 
hSGLT2 compounds from the public domain are not 
tested on hSGLT1 and thus provide additional chemical 
information. The in-house and public datasets consider-
ably differ from each other, with a slight overlap of only 
a few hSGLT1 and hSGLT2 public compounds with the 
in-house dataset. To further investigate the difference 
between the public and in-house dataset, the following 
physicochemical properties were considered: molecular 
weight, ALogP, and number of hydrogen bond donors 
and acceptors. The publicly available data represented 
mainly the drug-like space, following Lipinski’s rule of 
five, likely resulting from the fact that hSGLT2 is a drug 
target investigated by pharmaceutical companies [25]. 
Moreover, the public data mostly includes glycoside-like 
compounds and oxopyrrolidine-carboxamides. In con-
trast, the in-house dataset encompasses more diverse 
molecules and captures a wider value range for the phys-
icochemical properties mentioned above. The molecular 
weight and ALogP are represented in Fig. 1b, where it is 
observed that these properties are more conserved for 
the public dataset than for the in-house dataset. Addi-
tionally, the number of hydrogen bond donors and accep-
tors is lower on average but more diverse in the in-house 
dataset (mean and standard deviation): public dataset 
hydrogen bond donor 3.6 ± 1.6 (vs 2.0 ± 2.6 for the in 
house set), hydrogen bond acceptor 6.3 ± 1.8 (vs 5.1 ± 4.1 
for in the in house set). When screening for compounds 
to target hSGLT1 in the intestine, it is favorable to con-
sider compounds that do not necessarily adhere to Lipin-
ski’s rule of five, as it is preferred to minimize compound 
absorption from the gastrointestinal tract. Therefore, the 
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in-house dataset contributes substantially to the applica-
bility domain and relevant chemical space for the statisti-
cal SGLT model.

Merging different datasets
To merge the public and in-house dataset the difference 
in activity units for both sets had to be resolved. The 
public dataset contains pChEMBL values, representing a 
standardized unit for affinity and potency values such as 
Ki, IC50, EC50, and Kd [26]. The potency values in the in-
house dataset were available as percentage activity com-
pared to (negative) control at a concentration of 50 μM, 
which could not be converted into a pChEMBL value. 
Hence, binary classification models were chosen over 
regression.

Thresholds for compounds being ‘active’ were deter-
mined by grid searching cut-off values for both the pub-
lic and in-house data. Activity thresholds along the grid 
were reviewed using hSGLT1 QSARs and external vali-
dation with a hold-out test set containing 30% of the in-
house hSGLT1 data. The public domain compounds, 
which are mostly glycoside-like compounds and oxopyr-
rolidine-carboxamides, only describe a very conserved 
and small chemical space. However, the molecules of 
interest belonged to the same chemical space as the more 
diverse in-house compounds and therefore only com-
pounds from the in-house set were used in validation. 
The activity threshold grid search showed that an activ-
ity threshold optimum for the in-house data was found 
at activity percentage of negative control < 70%, < 75%, 

and < 80% together with the threshold for public data 
set at pChEMBL > 8.5 (Fig.  2). In further models (see 
research workflow in Additional file  2: Figure S2) the 
activity threshold was set at activity < 70% for in-house 
data and pChEMBL > 8.5 for public data to achieve the 
best performance for predicting hSGLT1 active mole-
cules in the chemical space of the in-house compounds. 
Although these activity thresholds are not similar toward 
each other (e.g. pChEMBL > 8.5 corresponds to an in-
house threshold much lower than 70%), these thresh-
olds were determined optimal for the aim, which is the 
identification of novel (weak) actives that are similar in 

Fig. 1  Chemical space of the public and in-house datasets. a The t-SNE shows molecular structure and affinity (pKi for public data and % of 
(negative) control for in-house data) for representative hSGLT1 compounds. b Molecular weight and ALogP distribution of compounds in the 
training sets

Fig. 2  Activity threshold grid search. Searching the activity threshold 
grid for in-house (activity percentage compared to negative control) 
and public data (pChEMBL value). Model performance was measured 
using Matthews Correlation Coefficient (MCC), which was 0.48 
for the final selected thresholds of < 70% for in-house data and 
pChEMBL > 8.5 for public data
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chemical space as the in-house compounds. The perfor-
mance of the QSAR benchmark model using the selected 
thresholds was: sensitivity 0.76, specificity 0.86, positive 
predictive value (PPV) 0.42, negative predictive value 
(NPV) 0.96, and Matthews correlation coefficient (MCC) 
0.48.

Proteochemometric modeling of hSGLT1
A PCM model was constructed using only public data to 
predict the inhibitory activity of compounds for hSGLT1. 
The performance of the model was tested on in-house 
data as these compounds represented the chemical 
space of interest. The model was validated using five test 
sets composed from in-house hSGLT1 data (5 × 20%). 
The mean performance of the public data model was 
very poor (mean with standard deviation): sensitivity 
0.01 ± 0.01, specificity 0.98 ± 0.00, PPV 0.03 ± 0.06, NPV 
0.91 ± 0.01, and MCC -0.03 ± 0.03 (Table  1). This dem-
onstrates that with public data alone it was impossible 
to identify active compounds and the model defaulted to 
classification of all compounds as ‘inactive’. This behavior 
confirms the large differences in chemical space between 
the two sets as alluded to above.

Next, a PCM model was constructed based on the 
combined full data set consisting of all public and in-
house data. To validate the performance of this model, 
fivefold cross-validation was applied with the same test 
sets as applied in validation of performance of the pub-
lic data model: rotationally 20% of the in-house hSGLT1 
data was used as holdout test set; the remaining 80% was 
used in training. In each case the test set contained com-
pounds not available for training. This resulted in the fol-
lowing performance: sensitivity 0.64 ± 0.06, specificity 
0.93 ± 0.01, PPV 0.47 ± 0.07, NPV 0.96 ± 0.01, and MCC 
0.49 ± 0.05. Overall performance of this PCM model was 
regarded satisfactory for predictions of new compounds 
and was comparable with the QSAR benchmark model 
used for activity threshold determination previously.

Additionally the performance of models trained on in-
house data only was tested to assess the effect of addition 
of public data. Public domain compounds contributed 
slightly to the predictive performance of the model in 
specificity, PPV, and MCC. This was observed by a minor 

decrease in performance upon removal of the public data 
from the training set: sensitivity 0.69 ± 0.07, specificity 
0.89 ± 0.02, PPV 0.38 ± 0.06, NPV 0.97 ± 0.01, and MCC 
0.45 ± 0.05. Although the difference in performances is 
not significant, it is remarkable that the number of false 
positives decreases considerably when public data is 
included in training, whereas the number of true posi-
tives is only slightly negatively affected: false positives 
28 ± 6 versus 43 ± 6, true positives 24 ± 4 versus 26 ± 4 
(with and without public data, respectively). Apparently, 
the public data by itself is not sufficient in predicting 
hSGLT1 activity in the chemical space of the in-house 
compounds but does add favorably to model perfor-
mance when supplemented to the in-house dataset.

Screening for hSGLT1 actives in a commercially available 
compound library
The SGLT PCM model that was trained on public and 
in-house data was applied to a commercially avail-
able library. This library, the Enamine high-throughput 
screening (HTS) library, contains over 1.8 million com-
pounds [27]. The library covers a wide diversity regarding 
molecular weight and ALogP values, and encompasses a 
vast chemical space (Fig. 3). With the PCM model (Addi-
tional file 3), an hSGLT1 activity prediction was assigned 
to all 1,815,674 compounds in the library (model training 
time was 103  s; the screening speed was approximately 
132 s for 10,000 compounds). 155,275 compounds were 
predicted to be in the active class based on a predicted 
class probability of ≥ 0.5 (score, proportion of votes of the 
trees in the ensemble).

To increase confidence in the activity of compounds 
the screened set was pre-filtered by selecting compounds 
with a predicted class probability of ≥ 0.8 on a scale from 
0 to 1. Here, a resulting score of 1 represents compounds 
predicted to be in the ‘active’ class, a score of 0 indicates 
that the compounds are predicted ‘inactive’; ascending 
scores indicate higher certainty of compounds belong-
ing to the ‘active’ class. Additionally, compounds with 
molecular weight ≤ 300 were removed to exclude frag-
ment-like compounds. The final filtered set contained 
672 compounds.

Table 1  Model performance depends on datasets that are used in training

PD public data, IH in-house data, EV external validation on 30% of data, CV fivefold cross validation on 20% of the data per iteration

Model and validation Training Sensitivity Specificity PPV NPV MCC

QSAR (EV) PD + IH 0.76 0.86 0.42 0.96 0.48

Public PCM (CV) PD 0.01 ± 0.01 0.98 ± 0.00 0.03 ± 0.06 0.91 ± 0.01 − 0.03 ± 0.03

In-house PCM (CV) IH 0.69 ± 0.07 0.89 ± 0.02 0.38 ± 0.06 0.97 ± 0.01 0.45 ± 0.05

Combined PCM (CV) PD + IH 0.64 ± 0.06 0.93 ± 0.01 0.47 ± 0.07 0.96 ± 0.01 0.49 ± 0.05
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Based on the model predictions, 40 chemically diverse 
compounds predicted to be active were selected for 
experimental in vitro validation (‘Diverse set’). The com-
pounds in this set were cluster centers resulting from 
clustering of the remaining predicted active compounds 
into 40 clusters. This diverse set was selected to increase 
the probability of detecting chemically novel hSGLT1 
inhibitors. The selected compounds distributed widely 
through chemical space (Fig. 3 and Additional file 4: Fig-
ure S4), thus providing a challenging test for the SGLT 
PCM model. In addition to screening for novel hSGLT1 
inhibitors, compounds were selected to expand the SAR 
around some recently identified hSGLT1 inhibitors from 
the in-house dataset [Oranje et al., manuscript in prepa-
ration]. Based on four hSGLT1 inhibitors (Fig. 4) 3 × 10 
additional compounds were selected from the pre-filtered 
Enamine HTS set that were predicted to be active (with 
top ranking scores) and that resembled bepridil, bupiv-
acaine, and cloperastine. Furthermore 7 compounds were 
selected resembling trihexyphenidyl (‘Cluster set’). These 
compounds were selected based on both model predic-
tion (predicted class probability ≥ 0.8) and the highest 
similarity (Tanimoto, FCFP6) towards their known refer-
ence compound.

The total selection of 77 unique compounds was tested 
in  vitro in cells expressing hSGLT1 in a single point 
measurement at a concentration of 50 μM. From the 40 
diverse predicted hits that were assessed, 15 compounds 
were defined active as they displayed hSGLT1 inhibition 

in  vitro with an activity reaching values below 70% 
compared to the negative control (100%: no inhibition) 
(Additional file 5: Data S5). From the 37 Cluster set com-
pounds, an additional 15 compounds were confirmed to 
be active (Additional file 6: Data S6).

Cytotoxicity of hSGLT1 actives
The potential cytotoxicity of the screening compounds 
(Diverse set and Cluster set) was investigated by analy-
sis of secreted adenylate kinase (AK), a marker of cell 

Fig. 3  Chemical space of the selected compounds compared to the training and screening datasets. a The Diverse set (yellow) and Cluster set 
(green) are displayed compared to the training (orange and red) and Enamine screening set (blue). The Enamine set is represented by a random 
selection of 20,000 out of the total of 1,815,674 compounds (~ 1%) in the screening set to limit t-SNE calculation time. b The molecular weight and 
ALogP of the Diverse and Cluster set compared to the training and screening sets

Fig. 4  Reference hSGLT1 inhibitors for Cluster set and their inhibitory 
activity. Inhibitory activities (compared to negative control, where 
100% is no inhibition) and chemical structures of four recently 
identified novel hSGLT1 inhibitors: bepridil, bupivacaine, cloperastine, 
and trihexyphenidyl



Page 6 of 10Burggraaff et al. J Cheminform           (2019) 11:15 

wall integrity loss. Most compounds did not show any 
indication of cyotoxicity, however one active from the 
Diverse set displayed moderate impairment of the cell 
wall (Z1416510792: activity 43 ± 9%, cytotoxicity 25%). 
The cytotoxicity assay was limited by the available super-
natant from the activity screen. Therefore not all com-
pounds were measured in duplicate and cytotoxicity of 
one active from the Cluster set could not be determined 
(Z817504494: activity 45 ± 3%).

Compound activity for hSGLT2
Both the Diverse set and Cluster set compounds were 
additionally measured for hSGLT2 inhibitory activity to 
assess their selectivity between the two transporters. The 
same cellular screening assay was performed as was used 
for hSGLT1 (single point measurement at a concentra-
tion of 50  μM). More actives were defined for hSGLT2 
compared to hSGLT1 using the same activity threshold 
of 70% activity relative to negative control (100%: no 
inhibition): 22 actives in the Diverse set and 19 in the 
Cluster set. Almost all hSGLT1 actives showed activity 
for hSGLT2 with the possible exception of Z105569118, 
which only marginally surpassed the activity threshold 
for hSGLT2 (activity of hSGLT1 64 ± 4% and hSGLT2 
76 ± 5%). No selective compounds were identified for 
hSGLT1, with 14% being the highest observed difference 
in inhibition (Z46160496: hSGLT1 41 ± 4% and hSGLT2 
55 ± 2%). For hSGLT2 the biggest difference in inhibition 
was found for Z1318177320 that showed a difference of 
39% (hSGLT1 93 ± 20% and hSGLT2 54 ± 0%).

Hit compound analysis
The activities of the hit compounds of the Diverse and 
Cluster set were analyzed. The strongest inhibitors, 
Z163972344 and Z915954934, were derived from the 
Diverse set with activities of 24 ± 1% and 28 ± 4% (100%: 
no inhibition), respectively. Z163972344 has low similar-
ity (0.27 based on Tanimoto FCFP6) with the training set, 
indicating that this is a truly novel inhibitor for hSGLT1. 
The average similarity of actives in the Diverse set com-
pared to training was 0.33, with Z1416510792 being the 
active that is most similar to the compounds in the train-
ing set with a similarity score of 0.61 (this compound 
showed moderate AK secretion in the cytotoxicity assay).

For the Cluster set a total of 15 actives were validated 
for the four different clusters. The cloperastine cluster 
encompassed the most actives (60% actives), whereas the 
trihexyphenidyl and bepridil clusters contained the least 
actives with 29% and 30% actives, respectively. The bupi-
vacaine cluster had an intermediate hit rate of 40%, which 
is comparable with the overall hit rate of the total Clus-
ter set (41%). The variance in hit rates between the four 
clusters is also reflected in the similarity of compounds 

toward their cluster reference: the cloperastine and bupi-
vacaine clusters contained the most similar compounds 
(average similarities towards cluster reference compound 
were 0.43 and 0.42, respectively); the trihexyphenidyl and 
bepridil clusters contained less similar compounds (0.35 
and 0.31, respectively).

Although the cloperastine and bupivacaine clusters 
contained the most similar cluster members, no conclu-
sive SAR could be determined. The cluster members dis-
played variations in methyl substituents, which showed 
an effect for two compounds in the bupivacaine cluster 
[Z46224544 (45 ± 10%) and Z2217101732 (74 ± 8%)]. 
This was however not observed for compounds in the 
cloperastine cluster: Z31367782 (36 ± 4%), Z31371621 
(37 ± 3%), Z31367784 (43 ± 7%), and Z31370217 
(45 ± 10%). The positions of the methyl substituents were 
too distinct to make solid conclusions on their relation-
ship with compound activity.

In general, the novel active entities contain at least one 
aromatic ring and two hydrogen bond acceptors. Only 
two of the 30 actives did not adhere to Lipinski’s rule 
of five, with an ALogP of 5.2 and 6.2 for Z1844922248 
(activity 49 ± 7%) and Z56906862 (activity 38 ± 5%), 
respectively.

Aiming for specific targeting at the gastrointestinal tract
As mentioned in the Introduction, hSGLT1 inhibition at 
the intestinal wall is desired. Based on chemical structure 
and physicochemical properties the identified hit com-
pounds will most likely be absorbed. However, it is sug-
gested that modifications can be introduced to improve 
specific intestinal targeting. These alterations, such as a 
higher molecular weight, can prevent compounds from 
being absorbed or transported by the intestinal wall [28]. 
Intestinal SGLT1 blockers are expected to display less 
renal damage, which is an adverse effect observed for 
SGLT2 inhibitors [6]. Moreover, drug action restricted to 
the gastrointestinal tract also limits other off-target inter-
actions, which were observed for the marketed SGLT2 
inhibitor canagliflozin [29]. An example of a compound 
that was optimized for specific targeting at the gastro-
intestinal tract is LX2761, an inhibitor aimed at intes-
tinal SGLT1 that decreased glucose uptake in mice [30, 
31]. Although SGLT1 inhibition at the intestine may not 
compromise renal function, other adverse effects that can 
result from intestinal targeting need to be considered [32, 
33].

Indications for alternate binding modes
Upon examination of our hSGLT1 actives, a large variety 
in chemical structure and physicochemical properties 
was observed. This indicates that different ligand types 
may bind to different sites on hSGLT1. It is speculated 
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that the glycoside-like hSGLT1 inhibitors, which are 
represented well in the public compound domain, 
bind to the glucose binding site, whereas more chemi-
cally diverse hSGLT1 inhibitors are suggested to bind 
either there or elsewhere on the protein. The hSGLT1 
actives were grouped into ten clusters. Here, the activ-
ity threshold for compounds from the public dataset 
was pChEMBL ≥ 6.5 to include all actives instead of only 
strong binders (pChEMBL > 8.5, which gave the best 
model performance). It was observed that the glycoside-
like compounds cluster together in cluster 2 (Fig. 5). Fur-
thermore, the oxopyrrolidine-carboxamide compounds, 
which are also present in the public domain, are gathered 
in cluster 7. Cluster 4 mainly holds in-house compounds 
and includes the anti-histamine drug moxastine and anti-
depressant amitriptyline besides cloperastine. The dif-
ferences in chemical structure, molecular weight, and 
ALogP of the clusters substantiate the possible existence 
of multiple binding sites. As a further example, cluster 
6 differs considerably in ALogP from the other clusters. 
This suggests that the compounds in this cluster bind to 
a more hydrophilic site. The cluster centers and distribu-
tion of molecular weight, ALogP, number of hydrogen 
bond donors, and number of hydrogen bond acceptors 
for all clusters are shown in Additional file 7: Figure S7. 
Additional pharmacological experiments, beyond the 
scope of this study, are warranted to further investigate 
the existence of multiple binding pockets in SGLT1. 
Attempts have been made to explore the binding sites of 

SGLT1 for substrates and inhibitor phloridzin [34, 35]. 
Although the SGLT structure of vibrio parahaemolyticus 
has been used to generate hypotheses on SGLT1 binding 
pockets, the lack of an hSGLT1 structure hampers the 
detection of potential allosteric binding pockets [36].

Conclusions
We have demonstrated that PCM modeling is a viable 
method to identify novel inhibitors for solute carrier 
hSGLT1 and hence likely any solute carrier protein. A 
predictive SGLT model was built with a MCC value of 
0.49 ± 0.05, estimated with fivefold cross-validation. With 
the optimized model a hit rate of 38% was achieved when 
it was applied to screen for diverse molecules (Diverse 
set). In parallel, the model was used to boost identifi-
cation of actives with a given chemotype (Cluster set). 
Although additional active compounds were identified, 
the data was too ambiguous to gain insight into the SAR 
of hSGLT1 inhibitors.

Diversity was found within the in-house dataset and 
differences were observed between the in-house chemi-
cal space and that of the public dataset. Furthermore, 
the intrinsic variety in chemical structure of active com-
pounds implies that there may be multiple binding sites 
at the transporter protein.

The novel identified inhibitors showed low similarity 
towards the training set and belong to the same chemi-
cal space of the in-house dataset, in contrast to the public 
dataset. Although the inhibitors were not optimized for 

Fig. 5  Clustering of hSGLT1 actives. Active hSGLT1 compounds in the training set clustered into ten chemical clusters (Tanimoto, FCFP6). Molecular 
structure and affinity (pKi for public data and  % of (negative) control for in-house data) for representative cluster compounds are shown. In-house 
compounds with activity < 70% of (negative) control and public compounds with pChEMBL ≥ 6.5 were used in clustering. a t-SNE plot of the 
chemical clusters. b The molecular weight and ALogP distribution of compounds in the chemical clusters
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specific drug delivery to the gastrointestinal tract, it is 
suggested that alterations (such as an increase in molecu-
lar weight and size) can make these inhibitors selective 
for intestinal hSGLT1.

Methods
Compounds and assay materials
DMEM-F12 (Biowest, Cat. No. L0092-500), DMEM 
(Lonza, BE12-604F/U1), Heat Inactivated Foetal Bovine 
Serum (HI-FBS, Biowest, Cat. No. S181H-500) and HBSS 
without Ca and Mg (HyClone, Cat. No. SH30588.01), 
DPBS (HyClone, Cat. No. SH30028.02), isopro-
panol (20,842.312), clear-bottom black 96 well plates 
(Greiner, Cat. No. 655090) and polypropylene 96-well 
plates (Nunc, Cat. No. 151193) were all obtained from 
VWR (Amsterdam, the Netherlands). TrypLE Express 
(Gibco, Cat. No. 12605010), geneticin (Gibco, Cat. No. 
10131027), d-glucose free DMEM (Gibco, Cat. No. 
11966025), water soluble probenecid (Invitrogen, Cat. 
No. P36400), 5000 U/mL penicillin–streptomycin (Gibco, 
Cat. No. 15070063) were all ordered from Thermo Fisher 
Scientific (Breda, the Netherlands). 1-NBD-Glucose 
was custom synthesized by Mercachem (Nijmegen, the 
Netherlands). Bovine serum albumin (Cat. No. A8806), 
poly-l-lysine hydrobromide mol. wt. 30,000–70,000 (Cat. 
No. P2636), cell culture grade DMSO (Cat. No. D2650) 
were all acquired from Sigma-Aldrich Chemie (Zwijn-
drecht, the Netherlands). The hSGLT1 cDNA cloned in 
the pCMV6-neo vector was purchased from Origene 
Technologies (Rockville, USA, Cat. No. SC119918). The 
hSGLT2 cDNA was custom synthesized and cloned into 
the pcDNA3.1 vector by Thermo Fisher Scientific (Breda, 
the Netherlands). The experimentally tested Enamine 
screening compounds were acquired from Enamine 
(Kyiv, Ukraine).

Assay procedure
Two days in advance, CHO-hSGLT1 or CHO-hSGLT2 
cells were seeded in maintenance medium (DMEM-F12 
supplemented with 10% HI-FBS and 400  μg/mL gene-
ticin) at 60,000 cells/well in clear-bottom black 96 well 
plates, pre-coated with 100 μg/mL poly-lysine. Cells were 
washed with 240 μL/well d-glucose free DMEM. Dilu-
tions of test compounds and controls prepared in d-glu-
cose free DMEM with 350  μM 1-NBd-Glucose, 0.3% 
BSA, and 2 mM probenecid were added at 90 μL/well and 
placed in a humidified incubator at 37  °C with 5% CO2 
for 30  min. Subsequently cells were washed once with 
ice-cold DMEM-F12 and once with ice-cold HBSS, both 
at 240 μL/well. Finally, 1-NBd-Glucose was extracted 
from the cells with 100 μL/well isopropanol for 10 min at 
600 rpm on an orbital shaker. Fluorescence was measured 
on a Flexstation 3 (Molecular Devices, San Jose, USA) 

with excitation at 445 nm, emission at 525 nm and cut off 
515 nm. The uptake of 1-NBD-Glucose was normalized 
to the dynamic range between minimal inhibition (0.2% 
DMSO vehicle control) and maximal inhibition (100 μM 
phloridzin, > 100 × SGLT1/2 IC50). Phloridzin is a strong 
inhibitor of SGLT1 and SGLT2 and was used as 0% refer-
ence, with 100% being no inhibition. A concentration of 
100 μM phloridzin was used to ensure full SGLT1/2 inhi-
bition. The Z-factor for the controls was determined and 
only data with Z > 0.4 (average Z SGLT1 assays: 0.8 ± 0.1, 
average Z SGLT2 assays: 0.6 ± 0.1) was used [37].

Cytotoxicity assay
The cytotoxicity of compounds was tested with the 
ToxiLight bioassay kit (Lonza, obtained from VWR, 
Amsterdam, The Netherlands) according to the sup-
plier’s instructions. This non-destructive assay measures 
leakage of the enzyme AK from damaged cells into the 
CHO-hSGLT1/2 inhibition assay media, i.e. the degree 
of cytolysis. AK converts ADP into ATP and the enzyme 
luciferase subsequently catalyzes the formation of light 
from ATP and luciferin. Briefly, 20 mL of CHO-SGLT1/2 
inhibition assay medium was added to 100  mL recon-
stituted AK detection reagent in white 96 wells Cellstar 
plates (Greiner bio-one, obtained from VWR, Amster-
dam, The Netherlands) and incubated for 5 min at room 
temperature. Next, bioluminescence was measured on a 
FlexStation 3 Multi-Mode Microplate Reader (Molecular 
Devices, San Jose, USA) by 1 s integrated reading. Cyto-
toxicity was expressed as the percentage of biolumines-
cence of the 0.5% DMSO vehicle control which was set at 
0%. The average cytotoxicity was calculated from biologi-
cal replicates as indicated and average values > 20% were 
considered toxic (arbitrary threshold).

Dataset
Publicly available data from ChEMBL (version 23) was 
extracted for human SGLT1 (accession: P13866), human 
SGLT2 (P31639), and related proteins human SGLT3 
(Q9NY91), rat SGLT1 (P53790), rat SGLT2 (P53792), 
mouse SGLT1 (Q9QXI6), mouse SGLT2 (Q923I7), and 
mouse SGLT3 (Q8R479). The retrieved compounds 
were standardized by removing salts, keeping the larg-
est fragment, standardizing stereoisomers, standard-
izing charges, deprotonating bases, protonating acids, 
and optimizing the 2D structure by correcting bond 
lengths and angles. Activity values with confidence 
score 7 and 9 were kept and duplicate activity values 
were discarded based on activity standard unit ranking: 
Ki > IC50 > EC50 > Kd. For duplicate compounds with simi-
lar activity standard units (e.g. a compound with two Ki 
values), the average pChEMBL value was calculated.
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An additional in-house dataset was provided by Uni-
lever, Vlaardingen [Oranje et al., manuscript in prepara-
tion]. This dataset was based on the Spectrum Collection 
compound library (MicroSource Discovery Systems) 
extended with additional compounds that were similar 
to primary bioassay screening hits. This dataset consisted 
of compound activity data for hSGLT1 and hSGLT2. The 
activity was expressed as percentage 1-NBD-Glucose 
uptake compared to control at 50 μM, with control being 
the absence of inhibitor (= 100%). Molecular structures 
were standardized in the same manner as the public data. 
The final dataset (public and in-house datasets combined, 
no duplicates) encompassed 3686 unique compounds 
with 4208 derived activities, of which 2888 for hSGLT1.

Compound descriptors
Compounds were described using 512 FCFP6 finger-
print bits and the following physicochemical properties: 
molecular weight, ALogP, number of hydrogen bond 
acceptors, number of hydrogen bond donors, number 
of rotatable bonds, number of bridge bonds, and num-
ber of aromatic rings. Fingerprints and physicochemi-
cal descriptors were calculated in Pipeline Pilot (version 
16.1.0) [38].

Protein descriptors
Protein sequences were aligned using whole sequence 
alignment in Clustal Omega (version 1.2.2) [39]. Sub-
sequently the sequences were converted to protein 
descriptors using Z-scales [40]. The first three Z-scales 
were implemented as protein descriptor as these were 
shown to perform well in previous work [41]. These three 
Z-scales include information on residue lipophilicity, 
size, and polarity.

Machine learning
Models were trained using the Random Forest R com-
ponent in Pipeline Pilot (version 16.1.0). The number 
of trees was 500 and number of variables tried at each 
split was 38 (square root of the number of descriptors). 
Remaining settings were kept default.

T‑distributed stochastic neighbor embedding
T-SNE was calculated on FCFP6 fingerprint descriptors 
that were converted to 2024 bits. The t-SNE component 
in Pipeline Pilot (version 18.1.0) was used to perform 
tSNE. The derived t-SNE values are represented by two 
components: CSNE1 and CSNE2.

Clustering of hSGLT1 actives to explore binding modes
hSGLT1 active compounds in the training set were clus-
tered into ten clusters using the cluster molecules com-
ponent in Pipeline Pilot (version 16.1.0). Compounds 

from the in-house set were included as ‘active’ when 
percentage of (negative) control was < 70%. Compounds 
from the public data set were termed ‘active’ when 
pChEMBL value ≥ 6.5.

Computational hardware
Experiments were performed on a server running Cen-
tOS 6.9 equipped with a dual Xeon E-5 2630 v2 processor 
and 128 GB of RAM.
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