
Registered charity number: 207890

As featured in:

See Mathieu Surin, 
Alain M. Jonas et al., 
Chem. Sci., 2023, 14, 9283. 

Showcasing research from Professor Alain Jonas’ laboratory, 
Université catholique de Louvain, Belgium, and Professor 
Mathieu Surin’s laboratory, Université de Mons, Belgium.

Dynamic self-assembly of supramolecular catalysts from 
precision macromolecules

The self-assembly of two complementary precision oligomers 
leads to a collection of linear and cyclic oligomers in which 
di(oligomeric) macrocycles are favored at low concentration. 
In the macrocycles, the fi ve catalytic groups needed for the 
Copper(I)/TEMPO-catalyzed aerobic oxidation of alcohols 
are brought closely together as shown by molecular dynamics 
simulations and network analysis, resulting in high catalytic 
turnover frequencies even at high dilution (cover image). 
The self-assembly of the complementary oligomers and 
their catalytic activity are mathematically described, which 
provides guidelines to further improve self-assembling 
catalytic systems.

rsc.li/chemical-science



Chemical
Science

EDGE ARTICLE
Dynamic self-ass
aInstitute of Condensed Matter and Nanosc

Croix du Sud 1 L7.04.02, Louvain-la-N

uclouvain.be
bLaboratory for Chemistry of Novel Materia

Maistriau, 17, B-7000 Mons, Belgium. E-ma
cCertech, rue Jules Bordet 45, 7180 Seneffe,

† Electronic supplementary information (
synthetic procedures and spectroscopic d
and intermediate products (Sections 1–5)
6); NMR study of copper pairing to base
versus time for the oxidation of al
mathematical models of the compositio
libraries (Section 9); all-atom molecula
molecular network analysis
https://doi.org/10.1039/d3sc03133k

‡ These authors contributed equally to th

§ Present address: State Key Laboratory
Beijing Laboratory of Biomedical Mate
Technology, Beijing 100029, P. R. China.

Cite this: Chem. Sci., 2023, 14, 9283

All publication charges for this article
have been paid for by the Royal Society
of Chemistry

Received 20th June 2023
Accepted 15th August 2023

DOI: 10.1039/d3sc03133k

rsc.li/chemical-science

© 2023 The Author(s). Published by
embly of supramolecular catalysts
from precision macromolecules†

Qian Qin,‡a Jie Li,‡§a David Dellemme,b Mathieu Fossépré,b

Gabriella Barozzino-Consiglio,a Imane Nekkaa,a Adrian Boborodea,c

Antony E. Fernandes,ac Karine Glinel, a Mathieu Surin *b and Alain M. Jonas *a

We show the emergence of strong catalytic activity at low concentrations in dynamic libraries of

complementary sequence-defined oligomeric chains comprising pendant functional catalytic groups and

terminal recognition units. In solution, the dynamic constitutional library created from pairs of such

complementary oligomers comprises free oligomers, self-assembled di(oligomeric) macrocycles, and

a virtually infinite collection of linear poly(oligomeric) chains. We demonstrate, on an exemplary catalytic

system requiring the cooperation of no less than five chemical groups, that supramolecular

di(oligomeric) macrocycles exhibit a catalytic turnover frequency ca. 20 times larger than the whole

collection of linear poly(oligomers) and free chains. Molecular dynamics simulations and network analysis

indicate that self-assembled supramolecular di(oligomeric) macrocycles are stabilized by different

interactions, among which chain end pairing. We mathematically model the catalytic properties of such

complex dynamic libraries with a small set of physically relevant parameters, which provides guidelines

for the synthesis of oligomers capable to self-assemble into functionally-active supramolecular

macrocycles over a larger range of concentrations.
Introduction

In biomolecular catalysts, the various chemical groups involved
in the catalytic site self-assemble in spatially close positions,
leading to optimal availability and oen adaptive activity. This
optimized self-assembly of active groups is intrinsically
dynamic, allowing accessibility to and from the reactive site,
and the realization of the reaction transition state.1,2 Reaching
such an efficiency in the dynamic self-assembly of active groups
and resulting catalytic activity remains challenging in synthetic
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molecular catalysts. Here, we show by molecular dynamics
simulations and experiments that, by designing sequence-
dened oligomeric chains equipped with functional catalytic
groups and complementary recognition units, it is possible to
induce the dynamic self-assembly of supramolecular cyclic
structures displaying unusually high catalytic efficiency at low
concentrations. Importantly, we also show that the catalytic
properties of such oligomers can be accurately predicted by
a compact mathematical model, despite the multiplicity of their
possible assembly congurations.

Attempts to form catalytic sites by self-assembly of synthetic
macromolecules have been reported using peptides,3–7 DNA
scaffolds,8–14 single-chain polymeric nanoparticles (SCNPs),15–20

peptides,21 metal organic frameworks,22,23 supramolecular
polymers,24 foldamers,25 and helical (supramolecular)
polymers.26–29 Additionally, supramolecular and covalent mac-
rocycles have been synthesized to create catalytic sites involving
the concerted action of different functional groups,30–34 because
cyclic congurations decrease the accessible conformational
space and thereby increase the probability to bring catalytically-
active groups in spatially-close positions.

In our approach, we combine these ideas by designing two
precision oligomers (Oa and Ob1 in Fig. 1D) that can self-
assemble in a variety of congurations, including di(oligo-
meric) macrocycles (Fig. 1E). All these supramolecular species
possess the ve cooperative catalytic groups involved in the
copper-catalyzed aerobic oxidation of alcohols, which are
Chem. Sci., 2023, 14, 9283–9292 | 9283
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Fig. 1 Postulated mechanism of the CuI/TEMPO-catalyzed aerobic oxidation of alcohols, and chemical structure of the oligomers and
constitutional libraries. (A) Simplified catalytic cycle, adapted from reference;35 the mechanism requires the cooperative action of 2 Cu(I) atoms, 2
pyridyltriazole ligands (P), 2 imidazole co-ligands (I), and one TEMPO radical (M). (B) Chemical structure of the oligomers (n = 5 or 6). (C)
Hydrogen-bond pairing of the recognition units. (D) Sequence of the oligomers synthesized in this study; two complementary chains of the Oa/
Ob1 system contain all the needed catalytic groups when paired (2× P, 2× I, 1×M), whereas Oa/Ob2 or Oa/Ob3 paired chains lack one functional
group, i.e., 1 P or 1 I, respectively. (E) Equilibrium constitutional library of co-existing species in solutions.
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distributed between the two oligomers. We demonstrate the
emergence of catalytic activity from the formed dynamic
constitutional library at low concentrations, and that this
activity mainly results from supramolecular di(oligomeric)
macrocycles that enable the ideal positioning and connection of
the cooperative catalytic residues within a conned space.
Additionally, a mathematical model is developed to quantita-
tively predict the self-assembly of catalytic species and the
catalytic properties of the constitutional library, thereby
providing designing rules for self-assembled macromolecular
catalytic systems.
Results and discussion

To demonstrate the possibility to self-assemble two properly-
designed precision oligomers into a catalytically-active
9284 | Chem. Sci., 2023, 14, 9283–9292
superstructure, we selected a system developed for the
sustainable aerobic oxidation of alcohols based on 2,2,6,6-
tetramethylpiperidine-1-oxyl (TEMPO) and Cu(I).35–38 Although
the catalytic mechanism is still discussed,39 it was proposed35,38

that the catalytic cycle requires the formation of a binuclear
copper complex involving two bidentate nitrogen ligands (such
as bipyridine) and two auxiliary ligands (such as N-methyl
imidazole, NMI) (Fig. 1A). In support of this hypothesis, recent
ndings have shown the effectiveness of dinuclear copper
complexes in the TEMPO-catalyzed aerobic oxidation of alco-
hols.40,41 As shown in ESI† (Section 12), our results also indicate
that the catalytic cycle involves two Cu(I) atoms, two pyridyl-
triazole bidentate copper ligands (P) and two imidazole auxil-
iary copper ligands (I), in addition to the TEMPO radical (M).

These ve needed functional groups were precisely distrib-
uted between two strands Oa and Ob, each strand having
© 2023 The Author(s). Published by the Royal Society of Chemistry
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intrinsically a very low catalytic activity, if any. Additionally, the
two strands were equipped with complementary hydrogen-
binding recognition units at their ends to favor their assembly
into a variety of congurations, including supramolecular
di(oligomeric) cycles, while avoiding the formation of homo-
oligomeric supramolecular structures (Fig. 1B–E).

The functional groups are attached as side chains to an oli-
go(urethane triazole) backbone (Fig. 1B); the precise sequence
of these complementary oligomers is displayed in Fig. 1D. The
general synthetic procedure (Scheme 1) was demonstrated
before to provide access to sequence-dened stereocontrolled
oligomers.42 Here, we considerably extended the range of
available side chains to include complementary nucleobase
analogs (cytosine C, guanine G, thymine T and 2,6-dia-
midopyridine D) acting as recognition units through G/C and
D/T pairing (Fig. 1C). The catalytic groups comprise two pyr-
idyltriazole (P)–copper complexes, two imidazole co-ligands (I
and I′ having different spacer lengths for optimal accessibility),
and one TEMPO radical (M). Additionally, hexyl side chains (C6)
were added at both ends of the chains to favor solubility in the
acetonitrile : dimethylsulfoxide 95 : 5 v/v solvent system used for
the experiments and possibly contribute to stabilization of the
self-assembled structures. The synthetic procedures and char-
acterization of the intermediary and nal products by NMR,
Scheme 1 Synthesis of the oligomers. The compounds (R)-1, (R)-2 an
work.42–45

© 2023 The Author(s). Published by the Royal Society of Chemistry
mass spectrometry and SEC chromatography are described in
ESI† (Sections 1–5).

The rst strand, Oa, consists of a C6GMPTC6 sequence
(catalytic groups underlined), complementary to the second
strand, Ob1, with a C6CI

0IPDC6 sequence (Fig. 1D). When self-
assembled in a di(oligomeric) cycle in the presence of Cu(I),
the two strands should provide together the ve groups needed
for catalysis (Fig. 1A). To demonstrate the completeness of this
self-assembled active site, two other Ob strands were also
synthesized, both of which can only form an incomplete cata-
lytic site in combination with Oa: a C6CII DC6 ðOb2Þ sequence
that lacks a P group, and a C6CIPDC6ðOb3Þ sequence that lacks
a I group (Fig. 1D). Due to the removal of one unit in one strand
of each of these two systems, the Ob2 and Ob3 chains are one
unit shorter than the Ob1 chain of the complete system. The
libraries of self-assembled congurations that form from these
three systems are shown in Fig. 1E.

Molecular dynamics (MD) simulations of one Oa and one Ob1

chains placed in an effective solvent indicate the rapid assembly
of the oligomers in a stable heteromolecular complex of ca.
1 nm radius of gyration (Fig. 2A; details in ESI Section 10†).
Inside this compact globule, the two strands remain exible
and highly dynamic, allowing the different units to rearrange in
space due to a vast network of interactions involving functional
d (R)-3 were prepared according to the literature and our previous

Chem. Sci., 2023, 14, 9283–9292 | 9285



Fig. 2 Molecular simulations of the self-assembly of Oa and Ob1 oligomers. (A) Molecular dynamics snapshot of a 3D conformation of the
complex, representative of the globular conformation. The two strands, Oa and Ob1, are depicted in pink and blue lines, respectively, and the
functional units are depicted in sticks and coloured according to the ball representation as sketched above. (B) Network representation of the
system, highlighting the persistent contacts observed during the MD simulation (see details in ESI Section 11†). Atoms (except H) constitute the
nodes of the network. The nodes belonging to the strand Oa and Ob1 are circled in red and blue, respectively, with the same color code for the
functional groups. (C) Modular representation of the network. The modules in yellow contain backbone or chain-ends nodes. For clarity, the
primary structures of the two strands are sketched in dashed lines, showing that the sequence order is preserved in this representation, except for
the complementary nucleobase analogs T and D, which are merged in the same module. (D) Distribution of the number of hydrogen-bonding
and stacking interactions for the 20 000 conformations from MD, showing that both H-bonds and aromatic interactions strongly participate to
the stabilization of the system. (E) Heatmaps showing the decomposition of the hydrogen-bonds by pair of residues (see details in ESI, Fig. S165†).
Each square, localized at the crossing of a pair of residues, indicates the number of interactions detected between the two residues over the 20
000 conformations. White squares indicating the highest number of interactions are localized for the pairs G/C and T/D. Interactions are also
found for the pair G/D. (F) Heatmaps showing the decomposition of the enthalpy of binding by pair of residues, similarly as for (E). The most
stabilizing residue–residue interactions (dark blue squares) are localized for the pairs G/D, T/D and G/C.
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moieties (catalytic groups and nucleobase analogs) as well as
the carbamate and triazole moieties of the backbone. Interest-
ingly, the catalytic units are among the less buried residues and
are accessible at the periphery of the globule (Fig. S164†).

Network theory applied to the collection of conformations
generated over a 10 ms timescale indicates that interchain
connectivity arises dominantly through interactions between
complementary bases, whereas intrachain connectivity repli-
cates the primary structure of the chains (Fig. 2B). Other
parameters of the network such as betweenness and average
shortest path length provide further support to the formation of
a globule stabilized by interactions between nucleobases
(Fig. S166†). A modular representation of the network shows
that the catalytic modules (M, I′, I, P in Fig. 2C) are connected
via the connectivity between the bases. Analysis of MD simula-
tions indicates that the formation of this supramolecular
complex is driven both by hydrogen bonding and p-stacking
interactions (Fig. 2D).

Heatmaps enumerating the frequency of hydrogen bonds
(Fig. 2E) show that C/G and D/T pairings provide an impor-
tant but not exclusive contribution to the persistence of the
9286 | Chem. Sci., 2023, 14, 9283–9292
globular assembly, with D/G pairing providing a signicant
but less frequent mechanism of stabilization. Stacking inter-
actions are far less specic, involving numerous residues
including triazole groups from the backbone and aromatic
catalytic units (I′, I, P) (Fig. S163†).

Heatmaps of the enthalpy of binding per residue provide
a detailed view on the stabilization per residue pair, globally
showing the stabilization of the supramolecular complex by
interchain interactions between the different bases. This indi-
cates that when forming the complex, intermolecular interac-
tions outperform the intramolecular interactions of each strand
when alone. The same analysis was performed on the Oa/Ob2

system and provided similar results, with the same type of
interactions stabilizing the formation of a globular complex
(Fig. S165†).

The catalytic systems were tested in the aerobic oxidation of
benzyl alcohol (BnOH) into benzaldehyde (BzH), for different
temperatures between 30 °C and 60 °C and at different molar
concentrations of catalyst. Cu(I) was introduced in stoichio-
metric amount with respect to P groups, and catalyst concen-
tration is expressed as the content in M units relative to the
© 2023 The Author(s). Published by the Royal Society of Chemistry
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molar concentration of introduced alcohol (0.2 mol L−1). Gas
chromatography was used to monitor the appearance of BzH;
no other oxidation product could be found. Previous studies45

indicated that the competition of urethane and triazole motifs
for Cu complexation is limited compared to P; additionally,
competition of base analogs for copper binding is also limited
according to NMR (ESI Section 7†). Results from a typical
catalytic experiment are displayed in Fig. 3A; similar graphs for
all other conditions are in ESI Fig. S158.†

The turnover frequencies (TOFs) measured between 30 and
60 °C for the different oligomeric systems at different concen-
trations are plotted in Fig. 3B–D. The TOF is dened as the slope
versus time of the BzH molar concentration at moderate
conversion rates, divided by the molar concentration in catalyst;
Fig. 3 Catalytic properties of the libraries of self-assembled precise
oligomers. The catalyst concentration is expressed in mol% of M units
relative to a reference concentration of 0.2 M benzyl alcohol (BnOH) in
acetonitrile : DMSO 95 : 5. (A) Typical catalytic experiment: benzalde-
hyde (BzH) yield versus reaction time for the conversion of BnOH (0.2
M) in the presence of oxygen, 2.5 mol% of the complete Oa/Ob1

catalytic system (with CuI), at four different temperatures. The slopes
give the catalytic rates which, once divided by the concentration in
catalyst, provide the turnover frequencies (TOF). (B)–(D). TOF versus
catalyst concentration at four temperatures (colors as indicated), for
(B) the complete Oa/Ob1 system, (C) the incomplete Oa/Ob2 (circles)
and Oa/Ob3 (open triangles) systems, (D) a mixture of monomer units
with the same composition as the complete oligomeric system
(crosses), an equimolar mixture of MP dimers and II′P trimers lacking
the hydrogen-binding groups and hydrophobic C6 units of Oa/Ob1

(pentagons), and single oligomer chains at 2.5 mol% in the presence of
an equimolar amount of CuI (diamonds – blue 30 °C, red 60 °C). The
continuous curves are fits of the model of Fig. 1E to the data, except in
panel D where they are power law fits.

© 2023 The Author(s). Published by the Royal Society of Chemistry
it represents the catalytic efficiency per mole of catalyst at low to
moderate conversion. The catalytic activity of single oligomer
chains is very low (diamonds in Fig. 3D), since they lack part of
the needed catalytic groups; when combined with their
complementary oligomer, they display very different catalytic
activities depending on whether the two chains taken together
comprise or not a complete catalytic system. Indeed, the
collection of poly(oligomers) of the incomplete systems (such as
in Oa/Ob2 solutions) exhibits a very low TOF despite comprising
all the groups needed for catalysis (Fig. 3C); in contrast, the
library of poly(oligomers) of the complete Oa/Ob1 system
exhibits a much higher TOF at low concentration (Fig. 3B).
Additionally, a catalytic system made of all monomer units at
the same concentration as in the complete Oa/Ob1 system was
measured for reference (crosses in Fig. 3D); its performance
rapidly decreases upon dilution, owing to the decrease of the
probability of chance encounter of the catalytic groups. This is
in marked contrast with the complete Oa/Ob1 catalytic system
that resists dilution and intriguingly exhibits an optimum close
to 1 mol% (Fig. 3B). Likewise, the system consisting of the Oa

and Ob1 oligomers devoid of H-binding G, T, D and C units and
of hydrophobic C6 units (the MP dimer and the II′P trimer,
pentagons in Fig. 3D), although very effective at high concen-
trations due to its limited steric crowding, rapidly decreases
with concentration and becomes less efficient than the
hydrogen-bonded system below 1 mol% of catalyst.

The complete Oa/Ob1 system is thus peculiar in its specic
ability to maintain catalytic activity at low dilutions. Whereas
higher catalytic activities can certainly be obtained for the other
systems simply by introducing larger amounts of catalytic
components (such as for the system made of separated mono-
mer units or theMP/II′P system, Fig. 3D), the complete system is
unique in its preservation of catalytic efficiency when diluted.
We ascribe this resistance to dilution to the formation of self-
assembled catalytic di(oligomeric) cycles.

The oligomer chains dynamically bind in a variety of
congurations (Fig. 1E), resulting in the coexistence of different
species including free oligomeric strands, linear poly(oligomer)
s of varying length and chain ends, and di(oligomeric) cycles. In
the incomplete Oa/Ob2 and Oa/Ob3 systems, self-assembly
congurations comprising at least three oligomers generally
contain all groups needed for catalysis, whereas di(oligomeric)
congurations do not; as shown in Fig. 3C, these self-assembly
congurations only provide mediocre catalytic efficiency. The
fully different behavior of the complete Oa/Ob1 system thus
necessarily arises from di(oligomer) assemblies, which now
comprise all needed catalytic groups. Since these di(oligomeric)
assemblies tend to easily form self-assembled macrocycles as
shown by molecular dynamics simulations, it follows that the
high catalytic efficiency at low concentrations of the Oa/Ob1

system arises from the formation of di(oligomeric) cycles.
Despite the virtually-innite number of species in each

constitutional library, their composition and catalytic activity
can be modeled in a compact form by a mathematical model
comprising a small set of physically-meaningful parameters,
common to all libraries, temperatures and concentrations (ESI
Section 9†). These parameters include two binding constants,
Chem. Sci., 2023, 14, 9283–9292 | 9287



Fig. 4 DOSY-measured average diffusion coefficient of the protons of
the oligomers in the complete Oa/Ob1 system, depending on the
concentration in M units (circles). The standard error is smaller than the
point size. The curves are predictions based on the parameters from
the fit of the catalytic activity, assuming either good (continuous curve)
or Q (dotted curve) solvent conditions (ESI Section 9†).

Fig. 5 (Top row) Distribution of Oa oligomers between the different
co-existing species in the Oa/Obi systems (i = 1 or 2), depending on
temperature and concentration, computed from the model. The inset
in the right graph is the average degree of poly(oligomerization) by
number of the linear chains vs. catalyst concentration. (Bottom row)
Contribution of the different co-existing species to the catalytic
turnover frequency, in the complete Oa/Ob1 system.

Chemical Science Edge Article
K1 and K2 associated to chain end pairing and a standard
entropy penalty DS

�
c for cycle formation (Fig. 1E). The concen-

tration in each species can be computed numerically from this
model, as well as their contribution to the turnover frequencies
at each temperature and concentration (ESI Section 9†). This
compact mathematical model was simultaneously tted to all
experimental catalytic turnover frequencies measured at
different temperatures and concentrations, for the two Oa/Ob1

and Oa/Ob2 systems taken together, leading to a quantitative
reproduction of the experimental data (lines in Fig. 3B and C);
parameters are reported in Table S2 (ESI Section 9†).

The possibility to represent at once with a compact mathe-
matical model the catalytic properties of such complex self-
assembling systems is an important outcome of this study.
However, the model needs to be validated by an independent
measurement of the concentration of each species in the solu-
tion (Fig. 1E), especially di(oligomeric) cycles which are of
interest to us. These species are in constant dynamic equilib-
rium and cannot be isolated; furthermore, the oligomers they
contain are involved in similar interactions in all species. Their
concentrations are thus very difficult to measure by any avail-
able technique. However, each species possesses its own
molecular mass and hydrodynamic volume. The diffusion
coefficient of a proton attached to an oligomer included in
a species of the constitutional libraries depends directly on the
hydrodynamic volume of this species, which can be computed
from its composition in each oligomer and from the hydrody-
namic volume of the oligomers (ESI Section 9†). Additionally,
the diffusion coefficient averaged over all co-existing species
only depends on the hydrodynamic radii and concentrations in
solution of these species. Hence, measuring the average diffu-
sion coefficient of the protons provides an elegant way to check
in situ the compositions of the constitutional libraries predicted
by our model.

The diffusion coefficient of the protons of the complete Oa/
Ob1 systemwas thusmeasured by DOSY NMR. A single diffusion
band was seen at all concentrations by DOSY proton NMR
performed in deuterated acetonitrile/DMSO 95 : 5 v/v at 300 K in
the absence of copper (ESI Section 6†), indicating that fast
exchange of the oligomers between the different co-existing
species occurs within the NMR timeframe. In these circum-
stances, the average diffusion coefficient can be computed from
the concentration of each co-existing species by the Stokes–
Einstein equation (ESI Section 9†), with as input parameters K1,
K2, DS

�
c and the hydrodynamic radii of each isolated oligomer,

which were measured by DOSY to be 0.50 ± 0.02 and 0.57 ±

0.02 nm for Oa and Ob1, respectively (Table S1, ESI Section 6†).
The measured and predicted diffusion coefficients of the

complete Oa/Ob1 system were then compared (Fig. 4), using as
parameters for the prediction the t parameters obtained from
the analysis of the catalytic data (Fig. 3). The experimental data
agree very well with the predicted values assuming good solvent
conditions (continuous line in Fig. 4).

This model was thus used to compute the distribution of Oa

oligomers between the different species for the Oa/Ob systems,
depending on temperature and concentration (Fig. 5 top row).
Oligomers are essentially free at very low concentrations,
9288 | Chem. Sci., 2023, 14, 9283–9292
whereas they dominantly belong to linear poly(oligomeric)
chains above 1 mol% of catalyst. The decrease of the binding
constants K1 and K2 with temperature explains why the average
degree of poly(oligomerization) of the linear chains slightly
decreases with temperature (inset in top row of Fig. 5); however,
© 2023 The Author(s). Published by the Royal Society of Chemistry
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the total amount of linear chains is very insensitive to temper-
ature (Fig. 5, top right). Di(oligomeric) cycles slightly dominate
the constitutional libraries at intermediate concentrations and
lower temperatures, but this dominance is progressively lost as
temperature increases. The decreased amount of cycles as
temperature increases essentially results from the increased
free energy cost associated to the entropy penalty for cycle
formation ðDS�

cÞ.
The contributions of each species to the total catalytic turn-

over frequency of the complete Oa/Ob1 system, which is the
product between the amount of Oa in each species and the
turnover frequency per Oa (ESI Section 9†), are collected in the
bottom row of Fig. 5. The contribution of supramolecular di(o-
ligomeric) cycles to the total turnover frequency is the dominant
factor that explains the high catalytic activity of the complete
system, even when the supramolecular cycles do not dominate
the composition (e.g., at 60 °C). At this higher temperature, the
relative proportion of cycles decreases but their catalytic activity
increases due to thermal activation, resulting in an overall
dominance of the cycles in the catalytic performance.

Cycles are thus much better than linear chains to reach
a high catalytic activity, despite both congurations having all
required active groups. At the concentration maximizing di(o-
ligomeric) cycles, the ratio between the contributions to the
catalytic activity of cycles versus all linear chains is ca. 30 and 10,
at 30 and 60 °C, respectively. This is due to the much higher
probability for the catalytic groups to be in an active site when
assembled in a supramolecular cycle, compared to when in
linear chains. This demonstrates that, by assembling the
complementary strands in a supramolecular cycle, and thereby
maximizing the probability that the ve required groups meet
in space, dramatic improvements of the catalytic efficiency by
more than one order of magnitude can be obtained compared
to linear congurations. In contrast, for the incomplete Oa/Ob2

system, supramolecular cycles cannot form complete catalytic
sites and therefore do not contribute to the catalytic activity;
consequently, this system only exhibits low activity associated
to the low probability of formation of complete catalytic sites in
linear poly(oligomeric) chains.

It is tempting to compare the efficiency of our supramolecular
catalyst to other systems based on the same composition, in
which the different catalytic groups are positioned differently in
space.46 Depending on the sequence of units along chains45,47,48

and on their graing congurations when heterogeneized,47,49–51

catalysts based on M, I and P units have been shown to exhibit
very different catalytic efficiencies, as judged from their initial
TOF. Compared to systems graed on porous silica beads, the
current supramolecular cycles are generally slightly inferior,
probably because of a smaller accessibility of the substrates in
the crowded globules of the cycles. In contrast, at 60 °C and
below 1 mol%, the current supramolecular catalysts are better
than any other homogeneous system we tested so far; this
advantage is rapidly lost as concentration increases, because
supramolecular cycles are disfavoured at higher concentrations
while the probability of encounter is increased for other systems.
However, our model can be used to predict directions for a larger
range of conditions favouring the formation of the catalytically-
© 2023 The Author(s). Published by the Royal Society of Chemistry
active self-assembled di(oligomeric) cycles. For instance,
increasing the chain end pairing constants by a factor of ca. 10
compared to their current geometric average value at 30 °Cwould
result in a solution consisting almost exclusively of supramo-
lecular cycles below 1 mol% catalyst. To favour cycles at higher
concentrations, which would result in higher absolute catalytic
rates, a supplementary stabilizationmechanismmust be given to
cycles compared to linear chains. One way to achieve this is to
reduce the entropy cost of cycle formation ðDS�

cÞ, which might be
attained by increasing the rigidity of the oligomer backbones;
however, this might be counter-productive with respect to the
probability to have the catalytic groups meet in space. Another
way would be to provide a supplementary enthalpy of stabiliza-
tion specic to macrocycles, for example by using pairs of
recognition units at each end of each oligomer, which would
create a directionality in the pairing of ends and could thereby
favour cycles over linear chains.

Conclusions

Our study investigated the self-assembly of complementary
oligomers into a dynamic library of poly(oligomeric) species,
most of which contribute little to catalytic activity. In this
dynamic library, di(oligomeric) cycles were demonstrated to be
highly catalytically-active, provided the two chains together
comprise all the needed elements for catalysis, as in the Oa/Ob1

system. When only one element is missing as in Oa/Ob2 and Oa/
Ob3, the activity drops very signicantly, despite all needed
elements are present in the solution. The activity can be
recovered by adding the missing unit as a free component in
solution (Fig. S168†). These results support the assumption35

that ve functional groups, including a dinuclear copper
complex, are involved in the catalytic cycle.

Molecular dynamics simulations demonstrate that these
self-assembled cycles form globules in which different interac-
tions contribute to stabilization, even though the base analogs
at the ends of the strands provide a continuous stabilization
mechanism and connectivity between the catalytic groups, as
shown by network analysis. Measurement of hydrodynamic
radius also provides experimental support for the formation of
di(oligomeric) cycles.

Hence, the primary structure of the oligomers is important
for the emergence of catalytic activity, because the presence or
absence of the needed catalytic groups on the strands directly
affects the efficiency of the di(oligomeric) cycles. However, it is
likely that the sequence order is not a critical factor at this stage,
considering the limited length of the investigated oligomers.
Nevertheless, quaternary structures are crucial for the emer-
gence of catalytic activity, which here arises dominantly from
the self-assembly of the strands in di(oligomeric) cycles. Inter-
estingly, the self-assembly of di(oligomeric) cycles happens in
a relatively dilute range of concentrations, in which cycles
totally outperform simple mixtures of catalytic groups or any
combination of the catalytic groups in linear chains. This
demonstrates that an efficient catalytic activity can be obtained
at rather high dilutions in the presence of properly self-
assembled structures.
Chem. Sci., 2023, 14, 9283–9292 | 9289
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Our study also demonstrates that a small number of exper-
imental parameters is sufficient to describe the complexity of
the dynamic constitutional library of species resulting from the
assembly of complementary oligomers. Indeed, the reproduc-
tion of catalytic activities and diffusion coefficients by
a compact mathematical model is an important outcome of the
present work, showing that the complexity of this system is still
amenable to a deterministic description. Additionally, the
interest of using network theory to interpret molecular
dynamics simulations, and to support assumptions made in the
mathematical model of the system, is another important
outcome of this study.
Data availability
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48 S. Kardas, M. Fossépré, V. Lemaur, A. E. Fernandes,
K. Glinel, A. M. Jonas and M. Surin, Revealing the
Organization of Catalytic Sequence-Dened Oligomers via
Combined Molecular Dynamics Simulations and Network
Analysis, J. Chem. Inf. Model., 2022, 62, 2761–2770.

49 P. Chandra, A. M. Jonas and A. E. Fernandes, Spatial
Coordination of Cooperativity in Silica-Supported Cu/
TEMPO/Imidazole Catalytic Triad, ACS Catal., 2018, 8,
6006–6011.

50 P. Chandra, A. M. Jonas and A. E. Fernandes, Synthesis of
discrete catalytic oligomers and their potential in silica-
supported cooperative catalysis, RSC Adv., 2019, 9, 14194–
14197.

51 A. E. Fernandes, O. Riant, K. F. Jensen and A. M. Jonas,
Molecular Engineering of Trifunctional Supported
Catalysts for the Aerobic Oxidation of Alcohols, Angew.
Chem., Int. Ed., 2016, 128, 11210–11214.
© 2023 The Author(s). Published by the Royal Society of Chemistry


	Dynamic self-assembly of supramolecular catalysts from precision macromoleculesElectronic supplementary information (ESI) available: General...
	Dynamic self-assembly of supramolecular catalysts from precision macromoleculesElectronic supplementary information (ESI) available: General...
	Dynamic self-assembly of supramolecular catalysts from precision macromoleculesElectronic supplementary information (ESI) available: General...
	Dynamic self-assembly of supramolecular catalysts from precision macromoleculesElectronic supplementary information (ESI) available: General...
	Dynamic self-assembly of supramolecular catalysts from precision macromoleculesElectronic supplementary information (ESI) available: General...
	Dynamic self-assembly of supramolecular catalysts from precision macromoleculesElectronic supplementary information (ESI) available: General...
	Dynamic self-assembly of supramolecular catalysts from precision macromoleculesElectronic supplementary information (ESI) available: General...
	Dynamic self-assembly of supramolecular catalysts from precision macromoleculesElectronic supplementary information (ESI) available: General...




