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Abstract

Viral encoded RNA silencing suppressor proteins interfere with the host RNA silencing machinery, facilitating viral infection
by evading host immunity. In plant hosts, the viral proteins have several basic science implications and biotechnology
applications. However in silico identification of these proteins is limited by their high sequence diversity. In this study we
developed supervised learning based classification models for plant viral RNA silencing suppressor proteins in plant viruses.
We developed four classifiers based on supervised learning algorithms: J48, Random Forest, LibSVM and Naı̈ve Bayes
algorithms, with enriched model learning by correlation based feature selection. Structural and physicochemical features
calculated for experimentally verified primary protein sequences were used to train the classifiers. The training features
include amino acid composition; auto correlation coefficients; composition, transition, and distribution of various
physicochemical properties; and pseudo amino acid composition. Performance analysis of predictive models based on 10
fold cross-validation and independent data testing revealed that the Random Forest based model was the best and
achieved 86.11% overall accuracy and 86.22% balanced accuracy with a remarkably high area under the Receivers Operating
Characteristic curve of 0.95 to predict viral RNA silencing suppressor proteins. The prediction models for plant viral RNA
silencing suppressors can potentially aid identification of novel viral RNA silencing suppressors, which will provide valuable
insights into the mechanism of RNA silencing and could be further explored as potential targets for designing novel antiviral
therapeutics. Also, the key subset of identified optimal features may help in determining compositional patterns in the viral
proteins which are important determinants for RNA silencing suppressor activities. The best prediction model developed in
the study is available as a freely accessible web server pVsupPred at http://bioinfo.icgeb.res.in/pvsup/.
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Introduction

RNA silencing is an evolutionary conserved sequence specific

mechanism of post transcriptional gene silencing in eukaryotes

which confers innate immunity against viruses [1]. In the

evolutionary arms race, viruses have adopted various strategies

to escape host immune systems. RNA silencing suppressors are the

viral encoded proteins evolved with the capability to block host

RNA silencing response [2,3]. To disrupt RNA silencing

machinery, virus encoded RNA silencing suppressors target

several effectors of RNAi silencing pathway, such as viral RNA

recognition, dicing, RISC assembly, RNA targeting and amplifi-

cation [4,5] e.g. P14 of Pothos latent aureusvirus and P38 of Turnip

crinkle virus have been shown to inhibit the processing of dsRNA to

siRNA [6,7]. In another case, the P19 protein of tombusviruses

prevents RNA silencing by siRNA sequestration through binding

ds siRNA with a high affinity [8]. Other RNA silencing

suppressors, such as the Tomato aspermy cucumovirus 2b protein or

B2 of the insect-infecting Flock House virus, also bind ds siRNA in a

size-specific manner [9,10]. P0 of Beet Western Yellow virus directly

interacts with AGO1 promoting its degradation [11]. P6 protein of

Cauliflower Mosaic virus directly interacting with dsRNA binding

protein 4 required for DCL4 functioning [12]. The viral proteins

identified mostly in plants and some insects or mammalian viruses,

show diversity within and across the taxonomic kingdoms [13].

Along with the suppression activity, these viral proteins have

multifunctional and indispensable role in viruses as coat proteins,

movement proteins, replicases, proteases, helper components for

viral transmission and transcription regulation [14]. This makes

exploration of these proteins difficult, as inactivation of these

proteins risks viability of a given virus in virus-targeted RNA

silencing mediated gene knock down experiments. Experimental

screening is performed by agrobacterium mediated in planta assay

systems based on reversal of silencing and enhancement of rolling

circle replication of geminivirus replicon [15]. Non availability of

quick screening method is a major limitation for identification of

viral suppressors of RNA silencing. Hence, not many such proteins

have been reported till date. Thus, apriori knowledge about

endowment of RNA silencing suppression capability of a new

pathogenic viral protein would guide the future drug/vaccine

strategies against the new viruses [16,17], other applications like

PLOS ONE | www.plosone.org 1 May 2014 | Volume 9 | Issue 5 | e97446

http://bioinfo.icgeb.res.in/pvsup/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0097446&domain=pdf


molecular biofarming [18], si/miRNA based antiviral gene

therapy [19] and as biosensors for miRNA [20].

Identification of RNA silencing suppressor activity in viral

proteins has important implications in studying various facets of

viral infection and pathogenesis and understanding the mechanism

and function of RNA silencing machinery [21]. Since, the

experimentally validated viral suppressors exhibit considerable

diversity in its primary sequences, structures, origins, mode of

suppressor action and evolution [4,5]. Owing to its inherent

diversity and complexity, identification of novel RNA silencing

suppressor sequences in virus proteomes using conventional

similarity based bioinformatics approaches is difficult. Existing

approaches to identify RNA silencing suppressor activities

investigate the presence of RNA binding motif and/or motifs

responsible for binding to the components of silencing machinery

– for example GW/WG motif for Argonaute binding [16].

However, the presence of these motifs per se is not a confirmatory

evidence to annotate a viral protein as viral RNA silencing

suppressor.

Machine learning algorithms have been extensively implement-

ed to detect cryptic patterns in disparate biological domains. In

particular, supervised machine learning algorithms, have been

very effective to investigate biological classification problems

[22,23]. The generated classification models have served as

valuable tools to further predict the new cases of the same class.

Absence of any computational algorithm to identify viral RNA

silencing suppressor sequences motivated us to undertake this

study. We have developed prediction models for viral RNA

silencing suppressors protein sequences and evaluated these by

implementing four supervised machine-learning algorithms,

namely- Naı̈ve Bayes, J48, Random Forest and LibSVM. Feature

vector profiles based on various structural and physicochemical

features of experimentally verified viral suppressor proteins of

RNA silencing were used for algorithm trainings. Our present

study marks an effort, to predict unexplored viral RNA silencing

suppressors, which could be potential targets for designing novel

antiviral therapeutics, and enhance our understanding of RNA

silencing. In this direction, we found that among the four machine

learning techniques implemented by us, the classifier model based

on Random Forest algorithm was the best prediction classifier.

Materials and Methods

The general flow of methodology adopted in this study for data

mining, feature calculation, feature selection, analysis, model

building and validation has been schematically represented in

Figure 1.

Data Mining
We generated the training dataset by obtaining protein

sequences by searching UniProtKB database release 2013_06

[24] using combination of different query terms and logical

variables. For example, we obtained positive dataset (X) of ‘viral

protein sequences which have Kingdom Plantae as hosts and are

viral suppressor for RNA silencing’ using the query: ‘taxonomy:-

Viruses reviewed:yes fragment:no host:33090 keyword:KW-0941’.

Similarly, we obtained the negative dataset (X9) as ‘viral protein

sequences which have natural host plant kingdom hosts but are not

viral suppressor for RNA silencing’ by using the query ‘taxono-

my:Viruses reviewed:yes fragment:no host:33090 NOT key-

word:KW-0941’. We limited our selection criterion to include

only experimentally verified and complete sequences. We removed

the sequences annotated as ‘polyprotein’ in sequence headers

information of fasta formatted positive and negative datasets

sequences downloaded from UniProtKB. Further, we manually

analyzed the positive dataset polyprotein sequences to process

fragments into positive (A) and negative (B) polyprotein subsets.

We discarded the polyprotein sequences from the negative dataset

(Y9). Hence, we obtained the final positive dataset Z, as X2Y+A,

and similarly the final negative dataset ‘Z’ as X92Y9+B. We

retrieved the final positive dataset (Dataset S1) and final negative

dataset (Dataset S2) in fasta format by batch retrieval system of the

UniProt database.

PSI-BLAST similarity based Search
We used standalone PSI-BLAST version 2.2.27+ with a

threshold E-value 0.001, number of iterations three over final

positive dataset i.e. 208 viral RNA suppressor sequences by Leave

One Out Cross-Validation (LOO-CV). Each sequence of the

dataset was iterated as the query sequence once against rest

sequences as reference database.

Preparing Non-Redundant Dataset
To prepare a non redundant dataset to avoid over-fitting

problem, we used CD-HIT (Cluster Database at High Identity

with Tolerance) version 4.5.7 [25,26]. CD-HIT works on ’the

longest sequence first’ list removal algorithm for removing

redundant sequences from the dataset. We utilized redundancy

threshold parameter to generate datasets of redundancy 90%,

Figure 1. Methodology flow. Framework of the computational
method used for development of predictions models for plant virus
encoded RNA silencing suppressors.
doi:10.1371/journal.pone.0097446.g001
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70% and 40%. As dataset removing redundancy to 40% reduced

dataset size to less than half (Table 1). Thereby we proceeded to

calculate feature vectors for two redundancy levels 290% and

70% datasets. Figure 2 summarizes the dataset generation and

filtering methodology followed in the study.

Calculation of feature vectors
Performing feature selection is a useful measure to avoid over-

fitting of the models, which also improves model performance,

cost-effectiveness of models, and to understand which features

would be predictive in nature [27,28]. In this study, we calculated

the feature vectors from the dataset sequences using propy 1.0

[29]. Propy is a python based package which calculates

comprehensive structural and physicochemical features from

protein sequences, in five feature groups – Amino Acid

Composition (AAC), Composition Transition and Distribution

(CTD) of various physico-chemical properties, Auto-correlation

Coefficients (AC), Pseudo Amino Acid Composition (PAAC) and

Qausi Sequence Order structure (QSOD) [29]. AAC includes

percentage amino acid composition of each amino acid, i.e. 20

feature vectors along with dipeptide composition of protein

represented by 400 feature vectors. AC incorporates three

subgroups, i.e. normalized Moreau-Broto autocorrelation, Moran

autocorrelation and Geary autocorrelation with feature vector

dimension of 240 each, describing correlation based on specific

structural or physicochemical properties. CTD group represent

amino acid distribution pattern of the following physicochemical

properties: hydrophobicity, normalized van der Waals volume,

polarity, charge, secondary structure, solvent accessibility with

feature vector dimension of 147. QSOD has two sequence-order

sets namely, quasi-sequence-order with 100 feature vectors and

sequence-order-coupling number with 90 feature vectors derived

from Schneider–Wrede physicochemical and Grantham chemical

distance matrix. PAAC consists of 2 subgroups, type I PAAC and

type II PAAC (i.e. amphiphilic PAAC), with feature vector

dimension of 60. Use of features based on Chou’s pseudo-amino

acid compositions have been widely used for development of

machine learning models for predicting protein structural and

functional classes [30–32]. We converted the propy outputs in

dictionary format to comma separated value format with IDs in

rows and feature vectors in corresponding columns. Additionally,

we added a class label ‘Outcome’ as ‘active’ for positive dataset and

as ‘inactive’ for negative dataset. Before calculating descriptors,

propy also validates the protein sequences by Procheck python

module to eliminate protein sequences having non-conventional

amino acids. Further, we performed a random-stratified splitting

of benchmark dataset to generate training-cum-validation

dataset (80%) and independent testing dataset (20%).

Machine Learning
Waikato Environment for Knowledge Analysis (WEKA) version

3.6.10 was used for the data pre-processing, feature selection and

Figure 2. Schematic representation of the dataset generation and filtration steps. The figure shows flowchart for the steps followed for
sequence collection, filtering and redundancy removal for training dataset generation.
doi:10.1371/journal.pone.0097446.g002

Table 1. Number of protein sequences after removing redundant proteins at thresholds of 90%, 70% and 40% using CD-HIT.

Redundancy cut off Positive Dataset (208) Negative Dataset (1321)

90% 142 949

70% 118 815

40% 66 555

doi:10.1371/journal.pone.0097446.t001
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classification experiments [33]. WEKA is a popular suite for

various machine learning algorithms, having various tools for data

pre-processing, classification, regression, clustering, association

rules and visualization.

Data Pre-processing. The testing and training dataset in

comma separated value (CSV) format were converted to attribute-

relation file format (ARFF) files using weka.core.converters, to

convert input files to WEKA readable format.

Feature Selection. To reduce the feature space dimensions,

we combined the filter method ‘‘Correlation based feature

selection’’ with ‘‘Best First search’’ strategy. Correlation based

feature selection is a multivariate analysis to determines the feature

subset that are highly correlated with the class, yet uncorrelated

with each other [34]. ‘‘InfoGainAttributeEval’’ with ‘‘Ranker’’

strategy was implemented to determine contribution of each

feature vector towards class label. We performed optimization of

feature vector space only upon training-cum-validation datasets.

Algorithms for Classification. In the present study, four

different state-of-art supervised machine learning algorithms

namely J48, LibSVM, Naı̈ve Bayes and Random Forest are used

for model generation and comparison. J48 implements C4.5

decision tree learning algorithm [35]. LibSVM is a library of

Support Vector Machines (SVM) implemented as a wrapper

within WEKA [36,37]. SVM algorithm generates a hyperplane in

the feature space with maximum margin distinguishing positive

instances from negative [38]. Naı̈ve Bayes is a classifier based on

Bayes theorem and assumes that evidence based on attributes

which are statistically independent [39]. Random Forest is an

ensemble classifier based on independent decision trees [40].

Initially we employed standard error base classifiers on the

training data. As the dataset is unbalanced, and the base classifiers

assume equal weighting of classes, we trained the models with cost

sensitive learning algorithms optimizing mis-classification costs

[41]. Cost sensitive meta-learning algorithm introduces cost

sensitivity to its base classifier by two ways. This is achieved

either by reweighting the training instances according to the cost

assigned to each class or using minimum expected misclassification

cost for predicting the class [42]. We used the former strategy by

setting the parameter ‘‘Minimize Expected Cost’’ as false in the cost

sensitive classifier.

Training-cum-validation. We developed the prediction

models by training the chosen classifiers on the optimized features

from feature selection and validating by 10 fold cross validation

technique. We added arbitrary costs on the false negative rates to

overcome class imbalance problem in the dataset, with the costs

starting from 2 such that false positive rate would not exceed

threshold of 20%. Further, we compared the model performances

by standard statistical measures.

Independent dataset test. It is recommended to perform

independent data testing to exclude the ‘‘memory’’ effect or bias in

the predictive modelling [31]. In this study, we re-evaluated the

best predictive models by 10 fold cross validation study on

independent dataset. We analyzed and compared the perfor-

mances of the proposed models using standard statistical measures.

Classifier Evaluation
We used different evaluation metrics normally recommended

for evaluating the classifier’s performances- accuracy, sensitivity or

recall, specificity, Balanced Classification Rate (BCR), F-value,

Matthews Correlation Coefficient (MCC) and Area Under

Recievers Operating Characteristic (auROC) curve [43,44].

Accuracy provides the overall effectiveness of the classifier (1).

Sensitivity or Recall determines classifier effectiveness to identify

positive class labels (2). Specificity calculates the classier effective-

ness to identify negative class labels (3). BCR, F-measure and

MCC are the standard evaluation metric, in the case of class

imbalance. BCR, also called as balanced accuracy, is the average

of sensitivity and specificity (4). F measure combines recall and

precision by harmonic mean (5). MCC value ranges from 0 to 1

where 1 is the perfect prediction and 0 is random prediction (6).

Mathematical representation of these expressions is given below,

where TP is the number of True Positive, TN is the number of

True Negatives, FN is the number of False Negatives, and FP is

the number of False Positives for a prediction method. Receiver

Operating Characteristic (ROC) curve is a 2 dimensional

graphical plot of FP rate on X-axis vs. TP rate on Y axis. The

auROC provides a single measure in the case of comparing

performance of several classifiers.

Accuracy~
TPzTN

TPzTNzFPzFN
|100 ð1Þ

Sensitivity=Recall~
TP

TPzFN
|100 ð2Þ

Specificity~
TN

TNzFP
|100 ð3Þ

Balanced Classification Rate~
1

2
SensitivityzSpecificityð Þ ð4Þ

F{value~
2|TP

2|TPzFPzFN
ð5Þ

MCC~
(TP|TN){(FP|FN)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½(TPzFN)|(TNzFP)|(TPzFP)|(TNzFN)�

p ð6Þ

Results and Discussion

PSI-BLAST similarity based Search
Similarity based searches with annotated datasets is the first step

for functional annotation of novel protein sequences. PSI-BLAST

is a remote homology similarity and preferred algorithm for

functional annotation projects. We employed PSI-BLAST, by

leave-one out strategy on final 208 proteins positive dataset and

obtained no significant hits for 20 sequences. This reinforced the

need to develop alternative prediction tools for viral suppressor

proteins.

Feature Selection
The python tool propy yielded 1537 feature vectors from five

different feature groups i.e. AAC, AC, CTD, PAAC, QSOD for

each instance. The dataset was then divided into training-cum-

validation and test dataset (Table 2). Feature vector optimization

performed on training-cum-validation data by correlation based

feature selection reduced the feature vectors from 1537 to 73 in

dataset of 90% redundancy levels and 77 in dataset with 70%

redundancy levels. To have an understanding of which feature

vectors contributed to the optimal subset, we investigated the

distribution of each type of feature for feature group category

Prediction of Plant Virus Encoded RNA Silencing Suppressors
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(Table 3). Intriguingly, we observed that the optimal feature subset

had representation from all feature groups except QSOD. We

have provided the description of the features calculated in each

feature group category, the selected optimal features and the

information gain values as Dataset S3.

Training-cum-validation
To come up with the best prediction model, we compared the

prediction performance of the four machine learning approaches,

namely LibSVM, Random Forest, J48 and Naı̈ve Bayes. We

generated seven training-cum-validation dataset and independent

testing dataset for 90% and 70% redundancy i.e. AAC, AC, CTD,

PAAC, QSOD, all descriptors and optimized feature set. We

performed the initial experiments with standard error base

classifiers and later standardized with meta-learner cost sensitive

classifiers. We introduced misclassification cost on false negatives

and augmented to a threshold of 20% for FP rate. Thereby, we

generated a large number of models with different cost settings. As

expected we observed that introducing cost for FN, decreased the

number of FN and increased FP (data not shown). Hence, cost

sensitive classifiers lead to more robust models as compared to

standard classifiers. We generated all the training models by 10

fold cross validations, the detailed statistical evaluation for 57

generated models is given in Dataset S4. We observed that

prediction models generated with dataset redundancy 70%

performed better than prediction models generated from dataset

redundancy 90%. Within training models generated from dataset

with redundancy 70%, prediction models with optimized feature

vectors performed better than classifiers generated by individual

feature class. Henceforth, we will mainly discuss the training

models generated with 70% redundancy threshold, using 77

feature vectors optimized by correlation based feature selection.

Table 4 shows the misclassification cost, accuracy, sensitivity,

specificity, BCR, F-value, MCC and auROCs of the best

prediction models generated with dataset of 70% redundancy.

We observed that LibSVM required minimum misclassification

cost settings of 18 and Naı̈ve Bayes required a maximum of 4200.

All the classifiers had their accuracies approximately around 80%.

The auROC values determined that the models were predictive in

nature and not random in their performance. Based on the highest

value of calculated statistical evaluators, Random Forest trained

prediction model performed the best amongst the four imple-

mented machine learning techniques.

Independent-dataset Testing
We performed an independent data testing to further assess the

performances of the best prediction models obtained from cross

validation studies on unseen data. The evaluation of comparative

performance of the classifiers has done using standard statistical

measures i.e. accuracy, sensitivity, specificity, BCR, F-measure,

and auROC plot. Table 5 summarizes the results from these

statistical measures. We found the performance of the models with

independent dataset in terms of accuracy and auROC in

coherence with the cross validation results.

Table 2. Number of positive and negative instances in testing and training dataset.

Redundancy (%) Class Training Data Testing Data

90 Positive 107 26

90 Negative 739 185

70 Positive 89 22

70 Negative 633 158

doi:10.1371/journal.pone.0097446.t002

Table 3. Feature distribution of optimal feature subset generated by correlation based feature selection.

Feature Group Feature Feature vectors calculated Feature vectors selected

Redundancy level 90% 70%

AAC Amino acid composition 20 2 3

AAC Dipeptide composition 400 39 43

CTD Composition 21 1 1

CTD Transition 21 1 NA

CTD Distribution 105 10 10

AC Geary autocorrelation 240 6 6

AC Moran autocorrelation 240 5 3

AC Normalized Moreau-Broto autocorrelation 240 1 NA

PAAC Type 1 pseudo-amino acid composition 20 5 5

PAAC Type 2 pseudo-amino acid composition 40 3 5

QSOD Quasi-sequence-order desciptors 100 NA 1

QSOD Sequence-order-coupling number 90 NA NA

1537 73 77

doi:10.1371/journal.pone.0097446.t003
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Sensitivity-specificity plots help identification of the best model

which correctly classifies positive and negative labelled instances

(Figure 3). Specificity of all the models was in the range of 78–

86%, however the prediction model sensitivities varied in a wide

range from a minimum of 68.19% for Naı̈ve Bayes, 77.27% for

LibSVM and 81.82% for J48 to highest 86.36% for Random

Forest algorithm based model.

LibSVM and Naı̈ve Bayes had minimum predictive accuracies

of 78.33%, with 85% of J48 classifiers and maximum accuracy

86.11% for Random Forest (Table 5). Owing to the class

imbalance problem in the training dataset, we also calculated

BCR, F-measure and MCC to precisely evaluate model effective-

ness. F-value of the models was in the range of 0.43–0.60.

Although the models may not have high F value, the remarkably

high sensitivity or recall (92.31%) of the model based on Random

Forest algorithm is noteworthy.

ROC analysis is an established approach for classifier evaluation

in the Machine learning approaches, as it shows the trade-off

between true positive rate and false positive rate. The ROC plot of

the classifiers in Figure 4 and auROC values (Table 5) suggest that

the performance of the Random Forest was the best, followed by

J48, Naı̈ve Bayes and LibSVM. The observed auROC values

(Table 5) were significantly higher than threshold of 0.5 i.e.

random guess as prediction. Thus, ROC analysis assured for the

optimal and robust performance of Random Forest.

Random Forest model ranks above the J48, Naı̈ve Bayes and

LibSVM, as evident from the calculated statistical evaluators.

Hence, the Random Forest algorithm based model is the most

efficient model to classify viral sequences as viral RNA silencing

suppressors and silencing non suppressors with an accuracy of

86.22%, BCR of 86.22%, MCC of 0.57 and remarkably high

auROC of 0.95.

During the preparation of this manuscript, a new plant virus

encoded viral supressor was included in UniProtKB. The protein,

CLINK_BBTVA is encoded in Banana Bunchy top virus,

annotated as viral suppresor of RNA silencing. The sequence

when tested as a new blind independent dataset sequence for the

Random Forest algorithm based prediction models, is correctly

predicted as a suppressor of RNA silencing. The result further

confirms the reliability of the Random Forest based classifier.

Implementation
The best performing Random Forest based prediction model is

implemented as a freely accessible web server pVsupPred (Figure 5,

http://bioinfo.icgeb.res.in/pvsup/). Scripting is done in HTML,

PHP, PERL and shell to develop the user friendly interface. The

server accepts input protein sequences in FASTA format. The

VsupPred web server results are generated in simple tabular

format which includes sequence ID, prediction score and decision

of the model regarding the sequence. The higher prediction scores

indicate better confidence level of prediction.

Perspective
pVsupPred can be potentially used for screening RNA silencing

suppressors in viral proteomes. Since the development and

affordability of next generation sequencing, there lies a huge gap

Table 4. Statistics of best predictive models generated by 10 fold cross-validation of training dataset.

Classifier* CSC J48 CSC LibSVM CSC Naı̈ve Bayes CSC Random Forest

Misclassification Cost 42 18 4200 55.4

Accuracy 79.50 78.25 78.25 80.61

Sensitivity 73.03 62.92 65.17 80.90

Specificity 80.41 80.41 80.09 80.57

BCR
$ 76.72 71.67 72.63 80.73

F-value 0.47 0.42 0.42 0.51

MCC‘ 0.40 0.33 0.34 0.46

auROC# 0.79 0.72 0.79 0.91

*CSC denotes Cost Sensitive Classifier; BCR
$

is Balanced Classification Rate; MCC‘ is Matthews Correlation Coefficient; auROC# is area under Receiver Operating
characteristic curve. Highest numerical value in each row is highlighted as bold.
doi:10.1371/journal.pone.0097446.t004

Table 5. Summary of statistical measures of the best classifiers on re-evaluation with independent dataset.

Classifier* CSC J48 CSC LibSVM CSC Naı̈ve Bayes CSC Random Forest

Accuracy 85.0 78.33 78.33 86.11

Sensitivity 81.82 77.27 68.18 86.36

Specificity 85.44 78.48 79.75 86.08

BCR
$ 83.63 77.88 73.96 86.22

F-value 0.57 0.47 0.43 0.60

MCC‘ 0.53 0.41 0.36 0.57

auROC# 0.84 0.78 0.83 0.95

*CSC denotes Cost Sensitive classifier; BCR
$

is Balanced Classification Rate; MCC‘ is Matthews Correlation Coefficient; auROC# is area under Receiver Operating
Characteristic (ROC) curve. Highest numerical value in each row is highlighted as bold letters.
doi:10.1371/journal.pone.0097446.t005
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between sequencing and annotation projects. pVsupPred is one

such endeavor which can be helpful in the annotation projects of

genomic data of viruses. We anticipate that our implemented

methodology would be useful for experimental biologists and

research community as a whole. In future, with availability of

additional experimentally validated viral suppressor’s sequences,

performance of the models could be further improved.

Conclusion

In this study, we employed a empirical approach to develop a

prediction method for plant viral RNA silencing suppressors by

developing statistical prediction models based on features of the

experimentally verified viral suppressor protein sequences. We

have generated classification models with four supervised learning

classifiers i.e. Naı̈ve Bayes, Random Forest, J48 and LibSVM.

Feature selection by correlation based feature selection increased

the robustness of the models and helped identification of optimal

features which reflects compositional patterns in the viral proteins

responsible for RNA silencing suppressor activities. Further

introducing meta-learning by cost sensitive classifiers led to

enhanced and robust performance of models. Random Forest

predictive model achieved the best performance when compared

with Naı̈ve Bayes, J48 and LibSVM models. We expect that these

prediction models can aid screening of plant viral ORFs for

potential suppressor activity for RNA silencing. Currently, the best

prediction model developed in this study is available as web server

Figure 3. Sensitivity and Specificity plot. The plot compares sensitivity and specificity of the developed predictive models, to determine
effective classifier for identifying positive and negative instances. Random Forest classifier has the highest sensitivity and specificity values as
compared to J48, LibSVM and Naı̈ve Bayes.
doi:10.1371/journal.pone.0097446.g003

Figure 4. ROC curves for the predictive performance of different cost sensitive classifiers. ROC plot depicts a relative trade-off between
true positive rate and false positive rate of the predictions. The diagonal value represents a completely random guess. The corresponding scalar
values of area under curve are given as auROC in table 4.
doi:10.1371/journal.pone.0097446.g004
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pVsupPred. To the best of our knowledge, this is the first exclusive

prediction method for plant viral suppressors of host RNA

silencing.

Supporting Information

Dataset S1 Positive Benchmark dataset. This consists of

208 viral RNA silencing suppressor protein sequences in fasta

format. The file can be viewed using any text editor like wordpad

or Notepad.

(FASTA)

Dataset S2 Negative Benchmark dataset. This consists of

1321 viral protein sequences which are RNA silencing suppressor

in fasta format. The file can be viewed using any text editor like

wordpad or Notepad.

(FASTA)

Dataset S3 Feature Vectors. This contains the information

about the description of total feature vectors calculates and the

ones selected by feature selection in an excel worksheet.

(XLSX)

Dataset S4 Statistical Evaluation of Classifiers. This

contains the information about the statistical evaluators and

parameter details used for generating classifiers by 10 fold cross-

validation and re-evaluation of the classifiers by independent

dataset at redundancy level of 90% and 70%.

(XLSX)
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