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Abstract Neural circuits coordinate with muscles and sensory feedback to generate motor

behaviors appropriate to an animal’s environment. In C. elegans, the mechanisms by which the

motor circuit generates undulations and modulates them based on the environment are largely

unclear. We quantitatively analyzed C. elegans locomotion during free movement and during

transient optogenetic muscle inhibition. Undulatory movements were highly asymmetrical with

respect to the duration of bending and unbending during each cycle. Phase response curves

induced by brief optogenetic inhibition of head muscles showed gradual increases and rapid

decreases as a function of phase at which the perturbation was applied. A relaxation oscillator

model based on proprioceptive thresholds that switch the active muscle moment was developed

and is shown to quantitatively agree with data from free movement, phase responses, and previous

results for gait adaptation to mechanical loadings. Our results suggest a neuromuscular mechanism

underlying C. elegans motor pattern generation within a compact circuit.

Introduction
Animal display locomotor behaviors such as crawling, walking, swimming, or flying via rhythmic pat-

terns of muscle contractions and relaxations. In many animals, motor rhythms originate from net-

works of central pattern generators (CPGs), neuronal circuits capable of generating rhythmic outputs

without rhythmic input (Cohen and Wallen, 1980; Grillner, 2003; Kiehn, 2011; Kristan and Calabr-

ese, 1976; Marder and Calabrese, 1996; Pearce and Friesen, 1984; Yu et al., 1999). CPGs typi-

cally generate rhythms through reciprocal inhibitory synaptic interactions between two populations.

In vertebrates, motor rhythms arise from half-center oscillator modules in the spinal cord

(Marder and Calabrese, 1996).

Although isolated CPGs can produce outputs in the absence of sensory input, in the intact animal

sensory feedback plays a critical role in coordinating motor rhythms across the body and modulating

their characteristics (Friesen, 2009; Grillner and Wallén, 2002; Mullins et al., 2011; Pearson, 2004;

Wen et al., 2012). Sensory feedback allows animals to adapt locomotor patterns to their surround-

ings (Andersson et al., 1981; Brodfuehrer and Friesen, 1986) and adapt to unexpected perturba-

tions (Ekeberg and Grillner, 1999). In leeches (Cang et al., 2001; Cang and Friesen, 2000) and

Drosophila (Akitake et al., 2015; Mendes et al., 2013), specialized proprioceptive neurons and sen-

sory receptors in body muscles detect sensory inputs to regulate and coordinate the centrally gener-

ated motor patterns. In limbed vertebrates, proprioceptors located in muscles, joints, and/or skin
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detect body movements and interact with premotor interneurons to coordinate limb movements

(Pearson, 2004). Sensory inputs induced by electric stimulation of receptor cells (Yu and Friesen,

2004) or by mechanical perturbation of body segments (Grillner et al., 1981) can entrain an animal’s

motor behavior to imposed patterns, demonstrating the flexibility of motor systems in responding

to feedback.

Animal movements are driven not only by active muscle contractions but also by passive mechani-

cal forces including elastic recoil of muscles and other body structures, internal damping forces, and

forces from the interaction with the external environment. Efficient locomotion in vertebrates

depends on storage of elastic energy in tendons and muscles (Roberts and Azizi, 2011). In insects,

elasticity in the leg joint plays an important role in generating forces for walking and jumping

(Ache and Matheson, 2013). A comprehensive understanding of animal locomotion should there-

fore encompass not only neural activity, muscle activity, and sensory feedback, but also biomechani-

cal forces within the animal’s body and between the animal and its environment (Figure 1A;

Borgmann et al., 2009; Grillner and Wallén, 2002; Kiehn, 1998).

Here, we study mechanisms of locomotor rhythm generation and its modulation by sensory feed-

back in the nematode Caenorhabditis elegans. With its easily quantifiable behavior (Croll, 1971),

well-mapped nervous system (Cook et al., 2019; White et al., 1986), genetic manipulability (Barg-

mann, 1998; Brenner, 1974; Hobert, 2003), and optical transparency, this worm is a unique model

for obtaining an integrative understanding of locomotion.

C. elegans forward locomotion consists of anterior-to-posterior dorsoventral undulations

(Croll, 1971). These movements are mediated by a neuromuscular circuit consisting of interneurons,

excitatory cholinergic motor neurons, inhibitory GABAergic motor neurons, and body wall muscles.

Laser ablation studies have shown that the cholinergic B-type motor neurons are required for for-

ward locomotion (Chalfie et al., 1985). The GABAergic D-type motor neurons provide dorsoventral

cross-inhibition to the body wall muscles and are essential for maintaining normal wave shape and

frequency during forward locomotion (Deng et al., 2021; McIntire et al., 1993). A set of premotor

interneurons (AVB, PVC, AVA, AVD, and AVE) regulate forward and reverse movements

(Chalfie et al., 1988; Driscoll and Kaplan, 1997; Von Stetina et al., 2006). Ablation of all premotor

interneurons or the D-type motor neurons does not deprive C. elegans of the ability to move for-

ward (Chalfie et al., 1985; Gao et al., 2018; Kawano et al., 2011), suggesting that a network con-

sisting of excitatory motor neurons and muscles may be sufficient to generate rhythmicity.

Optogenetic and lesion experiments have shown that multiple oscillators exist in the ventral nerve
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Figure 1. Rhythm generation in C. elegans. (A) Motor neurons generate neuronal signals to control the activation

of body wall muscles (BWM), which generates movement subject to internal and external environmental

constraints. Sensory input provides feedback about body position and the environment. (B,C) Two possible

models for locomotory rhythm generation in C. elegans. (B) In a reflex loop model, sensory neurons (SN) detect

body postures and excite motor neurons (MN) to activate body wall muscles. (C) In a central pattern generator

(CPG) model, network of motor neurons generates basic rhythmic patterns that are transmitted to body wall

muscles while sensory feedback modulates the CPG rhythm. Diagrams (B-C) are adapted from Figure 1 in

Marder and Bucher, 2001.
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cord (Fouad et al., 2018). However, the mechanisms that give rise to these oscillators are still poorly

understood.

Proprioceptive feedback is crucial for C. elegans motor behavior. Studies have identified several

neuron classes that have proprioceptive roles. The B-type motor neurons mediate proprioceptive

coupling between anterior to posterior bending during forward locomotion (Wen et al., 2012). The

SMDD motor neurons, localized at the head, have been identified as proprioceptive regulators of

head steering during locomotion (Yeon et al., 2018). Both the B-type motor neurons and the SMDD

head motor neurons have long asynaptic processes hypothesized to have proprioceptive function

(White et al., 1986) and have been suggested as candidate locomotor CPG elements

(Kaplan et al., 2020). In addition, two types of neurons, the DVA and PVD interneurons, have also

been described as having proprioceptive roles in the regulation of worm’s body bend movement.

The cell DVA has been shown to exhibit proprioceptive properties with a dependence on a mecha-

nosensitive channel, TRP-4, which acts as a stretch receptor to regulate the body bend amplitude

during locomotion (Li et al., 2006). In another study, body bending was shown to induce local den-

dritic calcium transients in PVD and dendritic release of a neuropeptide encoded by nlp-12, which

appears to regulate the amplitude of body movements (Tao et al., 2019).

To experimentally probe mechanisms of rhythmic motor generation, including the role of proprio-

ceptive feedback, we measured the phase response curve (PRC) upon transient optogenetic inhibi-

tion of the head muscles. We found that the worms displayed a biphasic, sawtooth-shaped PRC with

sharp transitions from phase delay to advance.

We used these findings to develop a computational model of rhythm generation in the C. elegans

motor circuit in which a relaxation-oscillation process, with switching based on proprioceptive feed-

back, underlies the worm’s rhythmic dorsal-ventral alternation. Computational models for C. elegans

motor behavior have long been an important complement to experimental approaches, since an

integrative understanding of locomotion requires consideration of neural, muscular, and mechanical

degrees of freedom, and are often tractable only by modeling (Boyle et al., 2012; Bryden and

Cohen, 2008; Denham et al., 2018; Izquierdo and Beer, 2018; Johnson et al., 2021;

Karbowski et al., 2008; Kunert et al., 2017; Olivares et al., 2021). We sought to develop a phe-

nomenological model to describe an overall mechanism of rhythm generation but not the detailed

dynamics of specific circuit elements. We aimed to incorporate biomechanical constraints of the

worm’s body and its environment (Fang-Yen et al., 2010; Gray and Lissmann, 1964; Wal-

lace, 1968), as well as account for how sensory feedback is incorporated. To improve predictive

power, we aimed to minimize the number of free parameters used in the model. Finally, we sought

to optimize and test this model with new experiments as well as with published findings.

Our model reproduces the observed PRC and describes the locomotory dynamics around opto-

genetic inhibitions in a manner that closely fits our experimental observations. Our model also

agrees with results on gait adaptation to external load and the asymmetry in time-dependent curva-

ture patterns of undulating worms. Our experimental findings and computational model together

yield insights into how C. elegans generates rhythmic locomotion and modulates them depending

on the environment.

Results

C. elegans forward locomotion exhibits a stable and nonsinusoidal limit
cycle
To gain insight into wave generation, we first sought to examine the quantitative behavioral charac-

teristics of worms during forward locomotion. First, we measured the undulatory dynamics of body

bending by computing the time-varying curvature along the centerline of the body (Fang-Yen et al.,

2010; Leifer et al., 2011; Pierce-Shimomura et al., 2008; Wen et al., 2012) from analysis of dark

field image sequences of worms exhibiting forward locomotion. In order to quantitatively treat the

drag between the body and its environment, we examined locomotion of worms in dextran solutions

of known viscosity (see Appendix; Fang-Yen et al., 2010). The normalized body coordinate is

defined by the distance along the body centerline divided by the body length (Figure 2A). The cur-

vature k at each point along the centerline of the body is the reciprocal of local radius of curvature

(Figure 2A), with a positive (negative) curvature representing ventral (dorsal) bending. We further
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Figure 2. Undulatory dynamics of freely moving worms. (A) Worm undulatory dynamics are quantified by the time-

varying curvature along the body. The normalized body coordinate is defined by the fractional distance along the

centerline (head = 0, tail = 1). The curvature k is the reciprocal of the local radius of curvature with positive and

negative values representing dorsal and ventral curvature, respectively. (B) Curvature as a function of time and

body coordinate during forward movement in a viscous liquid. Body bending curvature K is represented using the

nondimensional product of k and body length L. (C) Curvature (black) in the anterior region (average over body

coordinate 0.1-0.3) and the time derivative of curvature (dashed purple). Red circles mark four representative

phases (0, p=2, p, and 3p=2). The curve is an average of 5041 locomotory cycles from 116 worms. (D) Phase

portrait representation of the oscillatory dynamics of the anterior region, showing the curvature and the time

derivative of the curvature parameterized by time. Images of worm correspond to the phases marked in (C). Arrow

indicates clockwise movement over time. Dash-boxed region of the worm body indicates the 0.1–0.3 body

coordinates. h: head; t: tail; v: ventral side; d: dorsal side. Gray curves are individual locomotory cycles from freely

moving worms (10 randomly selected cycles are shown). (Inset) waveform of the scaled active muscle moment,

estimated by equation Ma ¼ K þ t u
_K. Both curves were computed from the data used in (C).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Phase portrait representations of the oscillatory bending dynamics for various body
coordinates.
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define the dimensionless or scaled curvature K ¼ k � L, where L is the length of the worm. Using this

metric, we quantified the worm’s forward movement by calculating scaled curvature as a function of

body coordinate and time (Figure 2B).

We used this behavioral data to generate phase portraits, geometric representations of a dynam-

ical system’s trajectories over time (Izhikevich, 2007), in which the time derivative of the curvature is

plotted against the curvature. If the curvature were sinusoidal over time, as it is often modeled in

slender swimmers (Fang-Yen et al., 2010; Gray, 1933; Guo and Mahadevan, 2008; Niebur and

Erdös, 1991), the time derivative of curvature would also be sinusoidal, with a phase shift of p=4

radians relative to the curvature, and the resulting phase portrait would be symmetric about both

the K and dK=dt axes. Instead, we found that the phase portrait of the bending movement in the

worm’s head region (0.1–0.3 body coordinate) during forward locomotion is in fact non-ellipsoidal

and strongly asymmetric with respect to reflection across the K or dK=dt axes (Figure 2D). Plots of

both the phase portrait (Figure 2D) and the time dependence (Figure 2C) show that K and dK=dt

are strongly non-sinusoidal.

In addition to the head, other parts of the worm’s body also display nonsinusoidal bending move-

ments (Figure 2—figure supplement 1). In this paper, we focus on curvature dynamics of the

worm’s head region (0.1–0.3 body coordinate) where the bending amplitude is largest and the non-

sinusoidal features are most prominent (Figure 2—figure supplement 1).

We asked whether the phase portrait represents a stable cycle, that is whether the system tends

to return to the cycle after fluctuations or perturbations away from it. To this end, we analyzed the

recovery after brief optogenetic muscle inhibition. We used a closed-loop system for optically tar-

geting specific parts of the worm (Fouad et al., 2018; Leifer et al., 2011) to apply brief pulses of

laser illumination (0.1 s duration, 532 nm wavelength) to the heads of worms expressing the inhibi-

tory opsin NpHR in body wall muscles (via the transgene Pmyo-3::NpHR). Simultaneous muscle inhi-

bition on both sides causes C. elegans to straighten due to internal elastic forces (Fang-Yen et al.,

2010). Brief inhibition of the head muscles during forward locomotion was followed by a maximum

degree of paralysis approximately 0.3 s after the end of the pulse, then a resumption of undulation

(Figure 3A,B; Video 1).

To quantify the recovery dynamics, we defined a normalized deviation d describing the state of

the system relative to the phase portrait of normal oscillation (see Appendix), such that d ¼ �1 at

the origin, d ¼ 0 at the limit cycle, and d>0 outside the limit cycle. We found that the deviation fol-

lowing optogenetic perturbation (Figure 3—figure supplement 1) decays toward zero regardless of

the initial deviation from the normal cycle, indicating that the worm tends to return to its normal

oscillation after a perturbation. These results show that C. elegans head oscillation during forward

locomotion is stable under optogenetic perturbation. The dynamics of these perturbed worms also

allow us to reconstruct the phase isochrons and vector flow fields (Figure 3—figure supplement 2)

of the worm’s head oscillation, two other important aspects of an oscillator (see Appendix).

Taken together, these results show that during forward locomotion, head oscillation of a worm

constitutes a stable oscillator containing a nonsinusoidal limit cycle.

Transient optogenetic inhibition of head muscles yields a slowly rising,
rapidly falling phase response curve
The phase response curve (PRC) describes the change in phase of an oscillation induced by a pertur-

bation as a function of the phase at which the perturbation is applied, and is often used to character-

ize biological and nonbiological oscillators (Izhikevich, 2007; Pietras and Daffertshofer, 2019;

Schultheiss et al., 2011). We performed a phase response analysis of the worm’s locomotion upon

transient optogenetic inhibitions.

Using data from 991 illuminations (each 0.1 s in duration) in 337 worms, we analyzed the animals’

recovery from transient paralysis as a function of the phase at which the illumination occurred. We

define the phase such that it equals to zero at the point of maximum ventral bending (Figure 3D).

When inhibition occurred with phase in the interval 0;p=6½ �, the head typically straightened briefly

and then continued the previous bend, resulting in a phase delay for the oscillation (Figure 3C–E).

When inhibition occurred with phase in the interval p=3;p=2½ �, the head usually appeared to discon-

tinue the previous bend movement, which resulted in a small phase advance (Figure 3F–H). When

inhibition occurred with phase in the interval 2p=3; 5p=6½ �, the head response was similar to that

within the interval 0;p=6½ �, and also resulted in a phase delay (Figure 3I–K).
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Figure 3. Analysis of phase-dependent inhibitions for head oscillation using transient optogenetic muscle

inhibition. (A) Images of a transgenic worm (Pmyo-3::NpHR) perturbed by a transient optogenetic muscle

inhibition in the head during forward locomotion. Green shaded region indicates the 0.1 s laser illumination

interval. h: head; t: tail; v: ventral side; d: dorsal side. (B) Effect of muscle inhibition on mean absolute curvature of

the head. Black curve represents control ATR+ (no light) group (3523 measurements using 337 worms). Brown

curve represents control ATR- group (2072 measurements using 116 worms). Red curve represents ATR+ group

(1910 measurements using 337 worms). Green bar indicates 0.1 s light illumination interval starting at t ¼ 0. (C-E)

Perturbed dynamics around light pulses occurring in the phase range 0;p=6½ �. (C) Kymogram of time-varying

curvature K around a 0.1 s inhibition (green dashed box). (D) Mean curvature dynamics around the inhibitions

Figure 3 continued on next page
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Combining the data from all phases of inhibition yielded a sawtooth-shaped PRC with two sharp

transitions from phase delay to advance as well as two relatively slow ascending transitions from

phase advance to delay (Figure 3L,M). In control worms, which do not express NpHR in the body

wall muscles (see Materials and methods), the resulting PRC shows no significant phase shift over

any phases of illumination (Figure 3—figure supplement 3). In worms perturbed with shorter pulses

(0.055 s duration), we observed a similar sawtooth-shaped PRC (Figure 3—figure supplement 4).

In addition to phase response analyses with perturbations to the worm’s anterior region, we con-

ducted similar analyses for the dynamics across the body by optogenetically inhibiting body wall

muscles of other regions (Figure 3—figure supplement 5). We found that the sawtooth feature of

PRC tends to decrease monotonically as the perturbation occurs further away from the head (Fig-

ure 3—figure supplement 5A,E,I).

Next, we asked whether the sharp downward transitions in the PRC represent a continuous

decrease or instead result from averaging data

from a bimodal distribution. When we plotted

the distribution of the same data in a 2-D repre-

sentation we found that the phase shifts display

a piecewise, linear increasing dependence on

the phase of inhibition with two abrupt jumps

occurring at f»p=3 and 4p=3, respectively

(Figure 3M). This result shows that the sharp

decreasing transitions in PRC reflect bimodality

in the data rather than continuous transitions.

In addition to examining PRCs induced by

muscle inhibition, we also calculated PRCs with

respect to inhibitions of cholinergic motor neu-

rons. We performed similar experiments on

transgenic worms in which the inhibitory opsin

NpHR is expressed in either all cholinergic neu-

rons (Punc-17::NpHR::ECFP) or B-type motor

neurons (Pacr-5::Arch-mCherry). In both strains,

Figure 3 continued

(green bar, aligned at t ¼ 0) from ATR+ group (red curve, 11 trials using 4 worms) and control ATR+ (no light)

group (black curve, eight trials using three worms). Gray curves are individual trials from ATR+ group (10 randomly

selected trials are shown). (E) Mean phase portrait graphs around the inhibitions (green line) from ATR+ group

(same trials as in D) and control group (ATR+, no light, 3998 trials using 337 worms). Gray curves are individual

trials from ATR+ group. (F-H) Similar to (C-E), for phase range p=3;p=2½ �. (I-K) Similar to (C-E), for phase range

2p=3; 5p=6½ �. (L) PRC from optogenetic inhibition experiments (ATR+ group, 991 trials using 337 worms, each point

indicating a single illumination of one worm). The curve was obtained via a moving average along the x-axis with

0:16p in bin width and the filled area represents 95% confidence interval within the bin. (M) A 2-dimensional

histogram representation of the PRC using the same data. The histogram uses 25 bins for both dimensions, and

the color indicates the number of data points within each rectangular bin.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Normalized deviation to the normal cycle (the unperturbed oscillation) for the head
oscillation of the perturbed worms.

Figure supplement 2. The isochron map overlaid with the vector field for the worm’s head oscillation.

Figure supplement 3. Phase response curve of Pmyo-3::NpHR worms (ATR- control group).

Figure supplement 4. Phase response curve of Pmyo-3::NpHR worms perturbed by a 0.055 s optogenetic muscle
inhibition during normal locomotion.

Figure supplement 5. Phase response curves of Pmyo-3::NpHR worms induced by a 0.1 s optogenetic muscle
inhibition, perturbed and measured at various body regions.

Figure supplement 6. Phase response curve of transgenic worms that express NpHR in all cholinergic neurons
(Punc-17::NpHR::ECFP).

Figure supplement 7. Phase response curve of transgenic worms that express Arch in the B-type motor neurons
(Pacr-5::Arch-mCherry).

Figure supplement 8. Phase response curve of transgenic worms that express NpHR in the body wall muscles but
lack the GABA receptor for the D-type motor neurons (Pmyo-3::NpHR; unc-49(e407)).

Video 1. Transient illumination of the anterior region of

a freely moving Pmyo-3::NpHR worm. Green-shaded

region indicates timing and location of illumination.

https://elifesciences.org/articles/69905#video1
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we again observed sawtooth-shaped PRCs (Figure 3—figure supplements 6 and 7), with variations

only in the magnitudes of phase shifts. These experiments show that the sawtooth-shaped feature of

PRC is maintained for motor neuron inhibition, suggesting that the transient muscle and neuron inhi-

bition interrupt the motor circuit dynamics in a similar manner.

The GABAergic D-type motor neurons provide a dorsoventral reciprocal inhibition of opposing

muscles during locomotion. We asked whether the D-type motor neurons are required for the

observed sawtooth shape of the PRC. We examined transgenic worms that express NpHR in the

body wall muscles but have mutations unc-49(e407), a loss-of-function mutant of GABAA receptor

that is required by the D-type motor neurons (Bamber et al., 1999). After performing optogenetic

inhibition experiments, we found that the PRC also displays a sawtooth feature (Figure 3—figure

supplement 8). This result shows that D-type motor neurons are not necessary for the motor rhythm

generator to show the sawtooth-shaped PRC.

Sawtooth-shaped PRCs are observed in a number of systems with oscillatory dynamics, including

the van der Pol oscillator (Cestnik and Rosenblum, 2018), and may reflect a phase resetting prop-

erty of an oscillator with respect to a perturbation (Izhikevich, 2007; Schultheiss et al., 2011). Fur-

ther interpretation of the PRC results is given below.

Worm muscles display a rapid switch-like alternation during locomotion
As a first step in interpreting and modeling our findings, we estimated the patterns of muscle activity

in freely moving worms, in part by drawing on previous biomechanical analyses of nematode move-

ment (Fang-Yen et al., 2010; Gray and Lissmann, 1964; Wallace, 1968).

In mechanics, a moment is a measure of the ability of forces to produce bending about an axis.

Body wall muscles create local dorsal or ventral bending by generating active moments across the

body. In addition to the active moments from muscles, there are also passive moments generated

by the worm’s internal viscoelasticity and by the forces due to the interaction of the worm with its

external environment.

We estimated the output patterns of the active muscle moment that drives the head oscillations

of freely moving worms immersed in viscous solutions. Following previous analyses of C. elegans

locomotor biomechanics under similar external conditions (Fang-Yen et al., 2010), the scaled active

muscle moment can be described as a linear combination of the curvature and the time derivative of

the curvature (Equation 1; also see Methods and Appendix). We observed that in the phase portrait

graph (Figure 2D), there are two nearly linear portions of the curve. We hypothesized that these lin-

ear portions correspond to two bouts during which the active muscle moment is nearly constant.

Using fits to the phase plot trajectory (see Materials and methods and Appendix) we estimated

the waveform of the active muscle moment as a function of time (Figure 2D Inset). We found that

the net active muscle moment alternates between two plateau regions during forward locomotion.

From the slope of the steep portions on this curve, we estimated the time constant for transitions

between active moments to be t m » 100ms. This time constant is much smaller than the duration of

each muscle moment plateau period ( » 0:5 s), suggesting that the system undergoes rapid switches

of muscle contractions between two saturation states.

A relaxation oscillator model explains nonsinusoidal dynamics
We reasoned that the rapid transitions of the active muscle moment might reflect a switching mech-

anism in the locomotory rhythm generation system. We hypothesized that the motor system gener-

ates locomotory rhythms by switching the active moment of the muscles based on proprioceptive

thresholds.

To expand further upon these ideas, we developed a quantitative model of locomotory rhythm

generation. We consider the worm as a viscoelastic rod where the scaled curvature K(t) varies

according to:

K tð Þþ t u
dK tð Þ
dt

¼Ma tð Þ; (1)

where t u describes the time scale of bending relaxation and Ma tð Þ is the time-varying active muscle

moment scaled by the bending modulus and the body length (see detailed derivations in Appendix).

We note that in a stationary state (dK=dt¼ 0), the curvature would be equal to the scaled active
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muscle moment. That is, the scaled active moment represents the static curvature that would result

from a constant muscle moment.

We define a proprioceptive feedback variable P as a linear combination of the current curvature

value and the rate of change of curvature. In our model, once this variable reaches either of two

thresholds Pth and �Pth (Figure 4D), the active muscle moment undergoes a change of sign

(Figure 4E), causing the head to bend toward the opposite direction (Figure 4B).

Our model has 5 parameters: (1) t u, the bending relaxation time scale, (2) t m, the muscle switch-

ing time scale, (3) M0, the amplitude of the scaled active muscle moment, (4-5) b and Pth, which

determine the switch threshold. The first three parameters were directly estimated from our experi-

mental results from freely moving worms (see Appendix). Parameters b and Pth were obtained using

a two-round fitting procedure by fitting the model first to the freely moving dynamics (first round)

and then to the experimental phase response curve (second round) (see Appendix).

With this set of parameters, we calculated the model dynamics as represented by the phase por-

trait (Figure 4C) as well as curvature waveform in one cycle period (Figure 4F). We found that in

both cases the model result agreed with our experimental observations. Our model captures the

asymmetric phase portrait trajectory shape found from our experiments (Figure 2D). It also

describes the asymmetry of head bending during locomotion: bending toward the ventral or dorsal

directions occurs slower than straightening toward a straight posture during the locomotory cycle

(Figure 4F Inset).

Considering the hypothesized mechanism under the biomechanical background (Equation 1), our

model provides a simple explanation for the observed bending asymmetry during locomotion.

According to the model, the active muscle moment is nearly constant during each period between

transitions of the muscle moment. Biomechanical analysis under this condition predicts an approxi-

mately exponential decay in curvature, which gives rise to an asymmetric feature during each half

period (Figure 4F).

Relaxation oscillator model reproduces responses to transient
optogenetic inhibition
We performed simulations of optogenetic inhibitions in our model. To model the transient muscle

paralysis, the muscle moment is modulated by a bell-shaped function of time (Figure 4—figure sup-

plement 1; also see Appendix) such that, upon inhibition, it decays toward zero and then recovers

to its normal value, consistent with our behavioral observations (Figure 3B).

From simulations with different sets of model parameters, we found that the model PRCs consis-

tently exhibited the sawtooth shape found in experiments, although differing in height and timing of

the downward transitions. In addition to the model parameters t u, M0, and t m that had been explic-

itly estimated from free-moving experiments, we performed a two-round fitting procedure (see

Appendix) to determine the other parameters (including b, Pth, and parameters for describing the

optogenetically induced muscle inhibitions (see Figure 4—figure supplement 1)) to best fit the

freely moving dynamics and the experimental PRC, respectively, with a minimum mean squared error

(MSE) (Figures 4F and 5A; also see Appendix). For the parameters b and Pth, the optimization esti-

mated their values to be b ¼ 0:046 s and Pth ¼ 2:33, as shown on the phase portraits (gray dashed

lines in Figures 4C, 5B and D).

The threshold-switch mechanism model provides an explanation for the observed sawtooth-

shaped PRC. By comparing model phase portrait graphs around inhibitions occurring at different

phases (Figure 5B–E), we found that the phase shift depends on the relative position of the inhibi-

tion with respect to the switch points on the phase plane. (1) If the effect of the inhibition occurs

before the system reaches its switch point (Figure 5B), the system will recover by continuing the pre-

vious bend and the next switch in the muscle moment will be postponed, thereby leading to a phase

delay (Figure 5C). (2) As the inhibition progressively approaches the switch point, one would expect

that the next switch in the muscle moment will also be progressively postponed; this explains the

increasing portions of the PRC. (3) If the inhibition coincides with the switch point (Figure 5D), the

muscle moment will be switched at this point and the system will recover by aborting the previous

bend tendency, resulting in a small phase advance (Figure 5E). This switching behavior explains the

two sharp downward transitions in the PRC.
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Figure 4. Free-running dynamics of a bidirectional relaxation oscillator model. (A) Schematic diagram of the

relaxation oscillator model. In this model, sensory neurons (SN) detect the total curvature of the body segment as

well as the time derivative of the curvature. The linear combination of the two values, P ¼ K þ b _K, is modeled as

the proprioceptive signal which is transmitted to motor neurons (MN). The motor neurons alternatingly activate

dorsal or ventral body wall muscles (BWM) based on a thresholding rule: (1) if P<� Pth, the ventral body wall

muscles get activated and contract while the dorsal side of muscles relax; (2) if P>Pth, vice versa. Hence,

locomotion rhythms are generated from this threshold-switch process. (B) Time-varying curvature K of the model

oscillator. The time axis is normalized with respect to oscillatory period (same for D, E, and F). (C) Phase portrait

graph of the model oscillator. Proprioceptive threshold lines (gray dashed lines) intersect with the phase portrait

graph at two switch points (red circles) at which the active moment of body wall muscles is switched. (D) Time-

varying proprioceptive feedback P received by the motor neurons. Horizontal lines denote the proprioceptive

thresholds (gray dashed lines) that switch the active muscle moment at switch points (red circles, intersections

between the proprioceptive feedback curve and the threshold lines). (E) Time-varying active muscle moment. Blue-

dashed square wave denotes target moment (Mt ) that instantly switches directions at switch points. Black curve

denotes the active muscle moment (Ma) which follows the target moment in a delayed manner. (F) Time varying

curvature in the worm’s head region from experiments (red, 5047 cycles using 116 worms) and model (black).

Model curvature matches experimental curvature with an MSE » 0.18. (Inset) Bar graph of U (time period of

bending toward the ventral or dorsal directions) and D (time period of straightening toward a straight posture).

Vertical bars are averages of fractions with respect to undulatory period T0 of U and T (*** indicates p<0.0005

using Student’s t test).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Bell-shaped function for modeling the optogenetic muscle inhibition (Equation A14).
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Relaxation oscillator model predicts phase response curves for single-
side muscle inhibition
As a further test of the model, we asked what PRCs would be produced with only the ventral or dor-

sal head muscles being transiently inhibited. In the model, the muscle activity is represented using
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Figure 5. Simulations of optogenetic inhibitions in the relaxation oscillator model. (A) Phase response curves

measured from experiments (blue, same as in Figure 3L) and model (orange). Model PRC matches experimental

PRC with an MSE » 0.12. (B,C) Simulated dynamics of locomotion showing inhibition-induced phase delays in the

model oscillator. (B) Simulated phase portrait graphs around inhibition occurring at p=6 phase of cycle for

perturbed (red) and unperturbed (black) dynamics. Green bar indicates the phase during which the inhibition

occurs. (C) Same dynamics as in (B), represented by time-varying curvatures. The time axis is normalized with

respect to oscillatory period (same for E). (D,E) Simulated dynamics of locomotion showing inhibition-induced

phase advances in the model oscillator. (D) Simulated phase portrait graphs around inhibition occurring at p=2

phase of cycle for perturbed (red) and unperturbed (black) dynamics. (E) Same dynamics as in (D), represented by

time-varying curvatures.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Performance of model oscillators: threshold-switch (column 1), van der Pol (column 2),
Rayleigh (column 3), and Stuart-Landau (column 4).
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the scaled active moment of muscles. We conducted model simulations (see Appendix) to predict

the PRCs for transient inhibitions of muscles on the dorsal side (Figure 6A, Upper) and ventral side

(Figure 6B, Upper), respectively.

To experimentally perform phase response analysis of single-side muscle inhibitions, we visually

distinguished each worm’s dorsoventral orientation (via vulval location) and targeted light to either

the ventral or dorsal side of the animal. Transiently illuminating (0.1 s duration) dorsal or ventral

muscles in the head region of the transgenic worms (Pmyo-3::NpHR) induced a brief paralyzing

effect when the segment was bending toward the illuminated side but did not induce a significant

paralyzing effect when the segment was bending away from the illuminated side (Figure 6—figure

supplement 1).

Combining the experimental data from all phases of dorsal-side or ventral-side inhibition yielded

the corresponding PRCs (Figure 6A,B, respectively), from which we found that both PRCs show a

peak in the phase range during which the bending side is illuminated but shows no significant phase

shift in the other phase range. The experimental observations are qualitatively consistent with model

predictions.

We found that the PRC of dorsal-side illumination shows a smaller paralytic response than that of

ventral-side illumination. This discrepancy may be due to different degrees of paralysis achieved dur-

ing ventral vs. dorsal illumination (Figure 6—figure supplement 1), possibly due to differences in

levels of opsin expression and/or membrane localization. We therefore modulated the parameter for

describing degree of paralysis when simulating the PRC of the dorsal-side illumination to qualita-

tively account for this discrepancy (see Appendix).

Experiment

Model

Dorsal-side illumination Ventral-side illumination

A B

Figure 6. The model predicts phase response curves with respect to single-side muscle inhibitions. (A) (Upper) a

schematic indicating a transient inhibition of body wall muscles of the head on the dorsal side. (Lower) the

corresponding PRC measured from experiments (blue, 576 trials using 242 worms) and model (orange). (B) (Upper)

a schematic indicating a transient inhibition of body wall muscles of the head on the ventral side. (Lower) the

corresponding PRC measured from experiments (blue, 373 trials using 176 worms) and model (orange). For the

two experiments, each point indicates a single illumination (0.1 s duration, 532 nm wavelength) of one worm.

Experimental curves were obtained using a moving average along the x-axis with 0:16p in bin width. Filled area of

each experimental curve represents 95% confidence interval with respect to each bin of data points.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Paralyzing effect analysis of muscle inhibitions induced by illumination on different sides of
the worm’s head segment.

Figure supplement 2. Phase response curves with respect to single-side muscle inhibition, simulated from model
oscillators: threshold-switch (column 1), van der Pol (column 2), Rayleigh (column 3), and Stuart-Landau (column 4).
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Our model is consistent with the dependence of wave amplitude and
frequency on external load
C. elegans can swim in water and crawl on moist surfaces, exhibiting different undulatory gaits char-

acterized by different frequency, amplitude, and wavelength (Figure 7A). Previous studies

Berri et al., 2009; Fang-Yen et al., 2010 have shown that increasing viscosity of the medium indu-

ces a continuous transition from a swimming gait to a crawling gait, characterized by a decreasing

undulatory frequency (Figure 7C) and an increasing curvature amplitude (Figure 7D). We asked

whether our model is consistent with this load-dependent gait adaptation.
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Figure 7. Model reproduces C.elegans gait adaptation to external viscosity. (A) Dark field images and the

corresponding undulatory frequencies and amplitudes of adult worms (left) swimming in NGM buffer of viscosity 1

mPa�s, (right) crawling on agar gel surface. The worm head is to the right in both images. (B) Phase portrait graphs

measured from worm forward movements in fluids of viscosity 10 mPa�s (blue, 3528 cycles using 50 worms), 120

mPa�s (red, 5050 cycles using 116 worms), and 5400 mPa�s (yellow, 1364 cycles using 70 worms). (C,D) The model

predicts the dependence of undulatory frequency (C) and curvature amplitude (D) on external viscosity (black) that

closely fit the corresponding experimental observations (red). (E) Phase portrait graphs predicted from the model

in three different viscosities (same values as in B). Gray dashed lines indicate threshold lines for dorsoventral

bending. The intersections (red circles 1, 2, 3) between the threshold line and phase portrait graphs are switch

points for undulations in low, medium, high viscosity, respectively. (F) Theoretically predicted PRCs in fluids of the

three different viscosities show that PRC will be shifted to the right as the viscosity of environment increases. (G)

PRCs measured from optogenetic inhibition experiments in the three viscosities. Experimental PRCs were

obtained using a moving average along the x-axis with 0:16p in bin width and filled areas are 95% confidence

interval. The tendency of shift observed in experimental PRCs verified the model prediction.
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We incorporated the effect of external viscosity into our model through the bending relaxation

time constant t u (see Appendix). We ran our model to determine the dependence of model output

on viscosity with varying viscosity h. We found that model results for frequency and amplitude

dependence on viscosity of the external medium are in quantitative agreement with previous experi-

mental results (Fang-Yen et al., 2010; Figure 7C,D).

We sought to develop an intuitive understanding of how the model output changes with increas-

ing viscosity. We recall that the model generates a proprioceptive feedback variable in the form

P ¼ K þ b _K (Figure 4A), and that the active muscle moment in our model undergoes a change of

sign upon the proprioceptive feedback reaching either of two thresholds, Pth and �Pth. As the viscos-

ity increases, one expects that a worm will perform a slower undulation due to the increase in exter-

nal load. That is, the term b _K becomes smaller. To compensate for this effect, the worm needs to

undulate with a larger curvature amplitude to maintain the same level of proprioceptive feedback.

Next, we asked how the PRC depends on external viscosity. Model simulations with three differ-

ent viscosities produced PRCs with similar sawtooth shape but with sharp transitions delayed in

phase as the external viscosity increases (Figure 7F). We also measured PRCs from optogenetic inhi-

bition experiments in solutions of three different viscosities (Figure 7G). Comparing the relative

locations of the transitions in PRCs between the model and the data, our prediction also quantita-

tively agrees with the experimental results.

These results further support the model’s description of how undulatory dynamics are modulated

by the external environment.

Evaluation of alternative oscillator models
Although our computational model agrees well with our experimental results, we asked whether

other models could also explain our findings. We examined three alternative models based on well-

known mathematical descriptions of oscillators (van der Pol, Rayleigh, and Stuart-Landau oscillators)

and compared them with our original threshold-switch model and with our experimental data.

First, we tested the van der Pol oscillator, the first relaxation oscillator model (Van der Pol, 1926)

which has long been applied in modeling neuronal dynamics (Fitzhugh, 1961; Nagumo et al.,

1962). It is based on a second-order differential equation for a harmonic oscillator with a nonlinear,

displacement-dependent damping term (see Appendix). By choosing a set of appropriate parame-

ters, we found that the free-running waveform and phase plot of the van der Pol oscillator are highly

asymmetric, but in an inverted manner (Figure 5—figure supplement 1B,F), compared with the

experimental observations (Figure 2C,D). Transiently perturbing the system with the bell-shaped

modulatory function over all phases within a cycle produced a similar sawtooth-shaped PRC as that

observed experimentally (Figure 5—figure supplement 1N). However, the perturbed system was

found to recover toward its limit cycle with a much slower rate than that of the experiments (Fig-

ure 5—figure supplement 1J). Simulations of single-side muscle inhibitions to the system produced

single-sawtooth-shaped PRCs similar to those found experimentally (Figure 6—figure supplement

2B,F).

Next, we examined the Rayleigh oscillator, another relaxation oscillator model which was origi-

nally proposed to describe self-sustained acoustic vibrations such as vibrating clarinet reeds (Ray-

leigh, 1896). It is based on a second-order differential equation with a nonlinear, velocity-

dependent damping term and it can be obtained from the van der Pol oscillator via a variable differ-

entiation and substitution (see Appendix). From its free-running dynamics, we observed that the sys-

tem exhibits a highly asymmetric waveform and phase plot that are similar to the experimental

observations (Figure 5—figure supplement 1C,G). Additionally, the Rayleigh oscillator also produ-

ces similar sawtooth-shaped PRCs with respect to transient muscle inhibitions of both sides (Fig-

ure 5—figure supplement 1O), dorsal side (Figure 6—figure supplement 2C), and ventral side

(Figure 6—figure supplement 2G), respectively, and system’s recovery rate after the perturbation

was shown to be similar to that of the experiments (Figure 5—figure supplement 1K).

Finally, we considered the Stuart-Landau oscillator, a commonly used model for the analysis of

neuronal synchrony (Acebrón et al., 2005). Its nonlinearity is based on a negative damping term

which depends on the magnitude of the state variable defined in a complex domain (see Appendix).

The negative damping of the system constantly neutralize the positive damping on a limit cycle,

making its free-running dynamics a harmonic oscillation which shows a sinusoidal waveform
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(Figure 5—figure supplement 1D,H). Moreover, PRCs with respect to transient muscle inhibitions

are constant with respect to phase (Figure 5—figure supplement 1P), contrary to the experiments.

We compared the results of our models with the experimental results. In the van der Pol oscilla-

tor, the free-running waveform displays a different asymmetry (Figure 5—figure supplement 1B,F)

compared with the experimental observations and the perturbed system was shown to recover

toward its limit cycle with a much slower rate than that of the experiments (Figure 5—figure supple-

ment 1J). The Rayleigh oscillator reproduces a free-running waveform similar to experimental ones

(Figure 5—figure supplement 1C,G) and its recovery rate toward limit cycle upon perturbation was

close to that of the experiments (Figure 5—figure supplement 1K). However, its PRC (Figure 5—

figure supplement 1O) showed weaker agreement with the experimental PRC compared with the

threshold-switch model (Figure 5—figure supplement 1M) or the van der Pol model (Figure 5—fig-

ure supplement 1N). Of all the models tested, the threshold-switch model showed the least mean-

square error with the PRC data (Figure 5—figure supplement 1M–P). We conclude that of these

models, our threshold-switch model produced the best overall agreement with experiments.

We also found that two important experimental findings, the nonsinusoidal free-moving dynamics

and the sawtooth-shaped PRCs can be achieved in our original model, the van der Pol and Rayleigh

oscillators, which are all relaxation oscillators, but not in the Stuart-Landau oscillator, which is not a

relaxation oscillator. Taken together, these results are consistent with the idea that a relaxation oscil-

lation mechanism may underlie C. elegans motor rhythm generation.

Discussion
In this study, we used a combination of experimental and modeling approaches to probe the mecha-

nisms underlying the C. elegans motor rhythm generation.

Our model can be compared to those previously described for C. elegans locomotion. An early

model (Niebur and Erdös, 1991) assumes that a CPG located in the head initiates dorsoventral

bends and that a combination of neuronal and sensory feedback mechanisms propagates the waves

in the posteriorward direction. In this model, sensory feedback plays a modulatory role in producing

smoother curvature waves but is not explicitly required for rhythm generation itself. Other computa-

tional models have aimed to describe how the motor circuit generates rhythmicity. Several neural

models for the forward-moving circuit (Karbowski et al., 2008; Olivares et al., 2021) incorporating

of all major neural components and connectivity have been developed. These models included a

CPG in the head based on effective cross-inhibition between ventral and dorsal groups of interneur-

ons. In contrast, Bryden and Cohen, 2008 developed a neural model in which each segment along

the body is capable of generating oscillations. In this model, a circuit of AVB interneurons and

B-type motor neurons suffices to generate robust locomotory rhythms without cross-inhibition.

Other models have examined how C. elegans adapts its undulatory wavelength, frequency, and

amplitude as a gait adaptation to external load (Boyle et al., 2012; Denham et al., 2018;

Izquierdo and Beer, 2018; Johnson et al., 2021). To account for these changes, these models com-

bined the motor circuit model with additional assumptions of stretch sensitivity in motor neurons,

and worm body biomechanical constraints, to create a model that reproduced the changes in undu-

latory wave patterns under a range of external conditions.

Previous detailed models of C. elegans locomotion have employed a relatively large number of

free parameters (up to 40; Boyle et al., 2012; Karbowski et al., 2008). In our work, we sought to

develop a compact phenomenological model to describe an overall mechanism of rhythm genera-

tion but not the detailed dynamics of specific circuit elements. To improve predictive power, we

aimed to minimize the number of free parameters used in the model. Our model has only five free

parameters, yet accurately describes a wide range of experimental findings including the nonsinusoi-

dal dynamics of free locomotion, phase response curves to transient paralysis, and dependence of

frequency and amplitude on external viscosity.

Our phase portrait analysis of worm’s free locomotory dynamics has described a previously unde-

scribed methods for measuring the bending relaxation time scale t u and the muscle moment transi-

tion time scale t m (see Appendix for details), which may be compared with previous studies of worm

biomechanics (Fang-Yen et al., 2010; Berri et al., 2009) and neurophysiology (Milligan et al.,

1997). Fang-Yen et al., 2010 measured out a linear relationship between the bending relaxation

time scale and the external viscosity by deforming the worm body in Newtonian fluids with varied
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viscosities in the range 1–25 mPa�s. Through an extrapolation based on that linear relationship, the

relaxation time scale in 17% dextran NGM fluid (approximately 120 mPa�s in viscosity) is estimated

to be » 282ms, which is quite close to our measured result, t u » 260ms. Furthermore, our measure-

ment of the muscle moment transition time scale (t m » 100ms) is consistent with a previously mea-

sured value for muscle time scale (Milligan et al., 1997) that has been widely adopted for other

detailed models of nematode locomotion (Boyle et al., 2012; Bryden and Cohen, 2008;

Butler et al., 2015; Chen et al., 2011; Denham et al., 2018; Izquierdo and Beer, 2018;

Johnson et al., 2021; Karbowski et al., 2008; Olivares et al., 2021; Wen et al., 2012).

In our model, the mechanism for generating rhythmic patterns can be characterized by a ‘relaxa-

tion oscillation’ process which contains two alternating sub-processes on different time scales: a long

relaxation process during which the motor system varies toward an intended state due to its biome-

chanics under a constant active muscle moment, alternating with a rapid period during which the

active muscle moment switches to an opposite state due to a proprioceptive thresholding

mechanism.

The term ‘relaxation oscillation’, as first employed by van der Pol, describes a general form of

self-sustained oscillatory system with intrinsic periodic relaxation/decay features (Van der Pol,

1926). The Fitzhugh-Nagumo model (Fitzhugh, 1961; Nagumo et al., 1962), a prototypical model

of excitable neural systems, was originally derived by modifying the van der Pol relaxation oscillator

equations. These and similar relaxation oscillators have been characterized in various dynamical sys-

tems in biology and neuroscience (Izhikevich, 2007). For example, the dynamics exhibited from the

action potentials of barnacle muscles in their oscillatory modes were found to yield ‘push-pull’ relax-

ation oscillation characteristics (Morris and Lecar, 1981). The beating human heart was found to

behave as a relaxation oscillator (Der pol b, 1940). Several studies of walking behavior in stick

insects (Bässler, 1977; Cruse, 1976; Graham, 1985; Wendler, 1968) proposed that the control sys-

tem for rhythmic step movements constitutes a relaxation oscillator in which the transitions between

leg movements is determined by proprioceptive thresholds.

Key properties shared by these relaxation oscillators are that their oscillations greatly differ from

sinusoidal oscillations and that they all consist of a certain feedback loop with a ‘discharging prop-

erty’. They contain a switch component that charges an integrating component until it reaches a

threshold, then discharges it again (Nave, 2007), then repeats. Many relaxation oscillators, including

the van der Pol and Rayleigh models, exhibit sawtooth-shaped phase response curves (Der pol b,

1940; also see Figure 5—figure supplement 1). As shown in our experimental and model results,

all the above properties have been revealed in the dynamics of C. elegans locomotive behavior, con-

sistent with the idea that the worm’s rhythmic locomotion also results from a type of relaxation

oscillator.

In our computational model, a proprioceptive component sensing the organism’s changes in pos-

ture is required to generate adaptive locomotory rhythms. What elements in the motor system could

be providing this feedback? Previous studies have suggested that head and body motor neurons,

including the SMDD head motor neurons and the B-type motor neurons, have proprioceptive capa-

bilities (Wen et al., 2012; Yeon et al., 2018) and may also be involved in locomotory rhythm gener-

ation (Fouad et al., 2018; Gao et al., 2018; Kaplan et al., 2020; Xu et al., 2018). This possibility is

consistent with earlier hypothesis that the long undifferentiated processes of these cholinergic neu-

rons may function as proprioceptive sensors (White et al., 1986). In particular, recent findings

(Yeon et al., 2018) have revealed that SMDD neurons directly sense head muscle stretch and regu-

late muscle contractions during oscillatory head bending movements.

In our model, the proprioceptive feedback variable depends on both the curvature and the rate

of change of curvature. Many mechanoreceptors are sensitive primarily to time derivatives of

mechanical strain rather than strain itself; for example, the C. elegans touch receptor cells exhibit

such a dependence (Eastwood et al., 2015; O’Hagan et al., 2005). The ability of mechanosensors

to sense the rate of change in C. elegans curvature has been proposed in an earlier study

(Butler et al., 2015) in which it was hypothesized that the B-type motor neurons might function as a

proprioceptive component in this manner. Mechanosensors encoding a simultaneous combination of

deformation and velocity have been observed in mammalian systems including rapidly-adapting (RA)

and intermediate-adapting (IA) sensors in the rat dorsal root ganglia (Rugiero et al., 2010). Proprio-

ceptive feedback that involves a linear combination of muscle length and velocity was also sug-

gested by a study of C. elegans muscle dynamics during swimming, crawling, and intermediate

Ji, Fouad, et al. eLife 2021;10:e69905. DOI: https://doi.org/10.7554/eLife.69905 16 of 31

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.69905


forms of locomotion (Butler et al., 2015). In our phenomenological model, the motor neuron con-

stituent may represent a collection of neurons involved in motor rhythm generation. Therefore, the

proprioceptive function posited by our model might also arise as a collective behavior of curvature-

sensing and curvature-rate-sensing neurons.

Further identification of the neuronal substrates for proprioceptive feedback may be possible

through physiological studies of neuron and muscle activity using calcium or voltage indicators. Stud-

ies of the effect of targeted lesions and genetic mutations on the phase response curves will also

help elucidate roles of specific neuromuscular components within locomotor rhythm generation.

In summary, our work describes the dynamics of the C. elegans locomotor system as a relaxation

oscillation mechanism. Our model of rhythm generation mechanism followed from a quantitative

characterization of free behavior and response to external disturbance, information closely linked to

the structure of the animal’s motor system (Gutkin et al., 2005; Nadim et al., 2012;

Schultheiss et al., 2011; Smeal et al., 2010). Our findings represent an important step toward an

integrative understanding of how neural and muscle activity, sensory feedback control, and bio-

mechanical constraints generate locomotion.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Strain, strain
background (E. coli)

OP50 CGC Fang-Yen Lab Strain
Collection: OP50
RRID:WB-STRAIN:WBStrain00041971

OP50

Strain, strain
background (C. elegans)

YX148 Fouad et al., 2018 Fang-Yen Lab Strain
Collection: YX148

qhIs1[Pmyo-3::NpHR::eCFP; lin-15(+)];
qhIs4[Pacr-2::wCherry]

Strain, strain
background (C. elegans)

YX119 Fouad et al., 2018 Fang-Yen Lab Strain
Collection: YX119

qhIs1[Pmyo-3::NpHR::eCFP; lin-15(+)];
unc-49(e407)

Strain, strain
background (C. elegans)

YX205 Leifer et al., 2011 Fang-Yen Lab Strain
Collection: YX205

hpIs178[Punc-17::NpHR::eCFP; lin-15(+)]

Strain, strain
background (C. elegans)

WEN001 Fouad et al., 2018 Fang-Yen Lab Strain
Collection: WEN001

wenIs001[Pacr-5::Arch::mCherry;
lin-15(+)]

Worm strains and cultivation
C. elegans were cultivated on NGM plates with Escherichia coli strain OP50 at 20˚C using standard

methods (Sulston and Hodgkin, 1988). Strains used and the procedures for optogenetic experi-

ments are described in the Key resources table and Appendix. Preparation of OP50 and OP50-ATR

plates were as previously described (Fouad et al., 2018). All experiments were performed with

young adult (< 1 day) hermaphrodites synchronized by hypochlorite bleaching.

Locomotion and phase response analyses
To perform quantitative recordings of worm behavior, we used a custom-built optogenetic targeting

system as previously described (Fouad et al., 2018; Leifer et al., 2011). Analysis of images for

worm’s body posture was performed using a previously developed custom software (Fouad et al.,

2018). The anterior curvature is defined as the average of the curvature over body coordinate 0.1–

0.3; excluding the range from 0 to 0.1 avoided measurement of high-frequency movements of the

worm’s anterior tip. Descriptions of the apparatus and image analyses are available in Appendix.

For phase response experiments, opsin-expressing worms were illuminated using a brief laser

pulse (532 nm wavelength, 0.1 or 0.055 s duration, irradiance 16 mW/mm2) in the head region (0–

0.25 body coordinate). A total of 10 trials with 6 s interval between successive pulses were per-

formed for each animal. Trials in which the worms did not maintain forward locomotion were cen-

sored. To generate the phase response curve (PRC), we calculated the phase of inhibition of each

trial and the resulting phase shift. Details of calculations for the averaged PRC are given in

Appendix.
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All the data and image analysis codes used in the manuscript are available at Dryad (archived at

https://doi.org/10.5061/dryad.wwpzgmsk2).

Computational modeling
Our primary model is based on a novel neural control mechanism incorporated with a previously

described biomechanical framework (Fang-Yen et al., 2010; Gray and Lissmann, 1964; Wal-

lace, 1968). A proprioceptive signal is defined by a linear combination of bending curvature and

rate of change of curvature. When the signal reaches a threshold, a switching command is initiated

to reverse the direction of muscle moment. The worm’s curvature relaxes toward the opposite direc-

tion, and the process repeats, creating a dorsoventral alternation. Detailed descriptions of imple-

mentation and fitting procedure of this model and alternative models are available in Appendix. All

codes for modeling analyses are available at Dryad (https://doi.org/10.5061/dryad.wwpzgmsk2).
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Appendix 1

Strains and plates preparations
Transgenic strains used in this study are listed as follows: YX148 qhIs1[Pmyo-3::NpHR::eCFP;lin-15

(+)];qhIs4[Pacr-2::wCherry], YX119 unc-49(e407);qhIs1[Pmyo-3::NpHR::eCFP;lin-15(+)], YX205

hpIs178[Punc-17::NpHR::eCFP;lin-15(+)], WEN001 wenIs001[Pacr-5::Arch::mCherry;lin-15(+)].

For optogenetic experiments, worms were cultivated in darkness on plates with OP50 containing

the cofactor all-trans retinal (ATR). For control experiments and free-moving experiments, worms

were cultivated on regular OP50 NGM plates without ATR. To make OP50-ATR plates, we added 2

mL of a 100 mM solution of ATR in ethanol to an overnight culture of 250 mL OP50 in LB medium

and used this mixture to seed 6 cm NGM plates.

Locomotion analysis
To analyze worm locomotion in viscous fluids, we placed worms in dextran solutions in chambers

formed by a glass slide and a coverslip separated by 125-mm-thick polyester shims (McMaster-Carr

9513K42). For viscosity-dependence experiments, we used 5%, 17%, and 35% (by mass) solutions of

dextran (Sigma-Aldrich D5376, average molecular weight 1,500,000–2,800,000) in NGMB. These sol-

utions were measured to have viscosities of 10, 120, and 5400 mPa�s (Fang-Yen et al., 2010),

respectively. We used a 17% dextran solution for all other experiments. NGMB consists of the same

components as NGM media (Stiernagle, 2006), but without agar, peptone, or cholesterol.

We recorded image sequences using a custom-built optogenetic targeting system based on a

Leica DMI4000B microscope under 10X magnification with dark field illumination provided by red

LEDs. Worm images were recorded at 40 Hz with an sCMOS camera (Photometrics optiMOS). We

used a custom-written C++ software (Fouad et al., 2018) to perform real-time segmentation of the

worm during image acquisition. The worm was identified in each image by its boundary and center-

line calculated from a binary image. Anterior-posterior orientation was noted visually during the

recording. Segmentation information, including coordinates of the worm boundary and centerline,

was saved to disk along with the corresponding image sequences.

Post-acquisition image analysis was performed using a custom MATLAB (Mathworks) similar to

previous reports (Fouad et al., 2018). The worm centerline of each image was smoothed using a

cubic spline fit. We calculated curvature k as the dot product between the unit normal vector to the

centerline and derivative of the unit tangent vector to the centerline with respect to the body coordi-

nate. Dimensionless curvature K was calculated as the product of k and the worm body length L rep-

resented by length of the centerline. Since the segmentation was relatively noisy at the tips of the

worm, we excluded curvature in the anterior and posterior 5% of the body length. The worm’s direc-

tion of motion was identified by calculating the gradients in the curvature over time and body coor-

dinate, and image sequences in which the worm performed consistent forward movement (lasting at

least 4 s) were selected for analysis. The anterior curvature K tð Þ was defined as the average of the

dimensionless curvature over body coordinate 0.1-0.3; this range avoided high-frequency move-

ments of the anterior tip of the animal.

To quantify oscillatory dynamics during forward locomotion, we identified undulatory cycles from

the time sequence of anterior curvature in each worm. Local extrema along each sequence were

identified and portions between consecutive local maxima were defined as individual cycles. To mini-

mize the effects of changes in the worm’s frequency, we excluded cycles whose period deviated by

more than 20% from the average period of all worms’ undulations in each experimental session.

For the ease of computing average dynamics, we converted individual cycles from a time-depen-

dent to a phase-dependent curvature by uniformly rescaling each cycle to a phase range of 2p. The

averaged curvature within one cycle was then computed by averaging all individual cycles in the

phase domain: K fð Þh i ¼
PN

i¼1
Ki fð Þ=N. Similarly, the averaged phase derivative of curvature within

one cycle was calculated as dK=dfh i ¼
PN

i¼1
dKi=dfð Þ=N.

Stability of the worm’s head oscillation
To examine the stability of the worm’s head oscillation during forward locomotion, we analyzed

head oscillations of worms that were optogenetically perturbed with 0.1 s muscle inhibitions and
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estimated their recovery dynamics after being deviated from the normal oscillation due to the

perturbation.

To illustrate the oscillation dynamics, we use a two-dimensional variable, x ¼ K; � _K
� �

in the unit of

curvature where � ¼ 0:135s is a scaling factor. In Figure 3—figure supplement 2, we depicted the

closed trajectory (black) in the plane spanned by the variables K and � _K for the head oscillation of

unperturbed moving worms (this coordinate plane is in fact a linearly scaled version of the phase

plane spanned by the variables K and _K), which we call as the normal cycle of the worm’s head

oscillation.

Next, we defined an amplitude variable d that represents the normalized deviation to the normal

cycle. If the oscillator is stable, the closed orbit for the unperturbed dynamics is usually called the

stable limit cycle. Here, we stick to the notion of normal cycle instead of using ‘limit cycle’ to avoid

any confusion on the stability of the worm’s head oscillation. For any phase state of an individual

oscillation, the normalized deviation to the normal cycle is defined as d fð Þ ¼ D fð Þ � DC fð Þð Þ=DC fð Þ.

Here, D fð Þ is distance to the center of oscillation on the phase plane, which is set to the origin, such

that D fð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K fð Þ2þ � _K fð Þ
� �2

q

where f denotes the phase value of the current state estimated by

the four-quadrant inverse tangent of the variable pair K; � _K
� �

. In this expression, DC fð Þ denotes the

distance to the center of oscillation that is evaluated exactly on the normal cycle at phase f.

Using the deviation to the normal cycle to describe the amplitude of the worm’s head oscillation,

we collected the amplitude dynamics over time for all periods of the worm’s head oscillations during

which no illumination pulse occurs, that is, all periods of locomotion between two consecutive illumi-

nation pulses. We grouped the amplitude dynamics into bins according to their initial amplitudes

and then calculated the collective amplitude dynamics for each bin. As shown in Figure 3—figure

supplement 1, the collective amplitude variable d converges to zero after roughly 0.5 s regardless

of the initial amplitude. This result indicates that the worm’s head oscillation returns to its normal

oscillation after being perturbed and that the normal cycle may represent a stable limit cycle for the

oscillation.

Phase isochron map and vector field for the worm’s head oscillation

On the normal cycle we define the phase of the oscillation as fC tð Þ ¼ !0 � tmodT0 , where !0 ¼ 2p=T0 is

the angular frequency of normal oscillation (the calculation of T0 will be described in the next subsec-

tion) and we determined the initial phase (fC ¼ 0) to be when K reaches local maximum (or

x ¼ Kmax; 0ð Þ) and hence fC ¼ p to be when K reaches local minimum (or x ¼ Kmin; 0ð Þ). In this way,

we parameterized the normal cycle by defining a bijective map between phases and state points

F x
Cð Þ ¼ fC.

The map F xð Þ ¼ f has been well defined for all the state points on the normal cycle C. We next

estimate the phases for points off the normal cycle. By definition (Izhikevich, 2007), if x0 is a point

on the normal cycle and y0 is a point off the normal cycle, then y0 will have the same phase as x0 if

the trajectory starting at the initial point y0 off the normal cycle converges to the trajectory starting

at the initial point x0 on the normal cycle as time goes to infinity. Here, we define the set of all state

points off the normal cycle having the same phase as a point x0 on the normal cycle as the isochron

(Winfree, 2001) for phase f0 ¼ F x0ð Þ.

In our analysis, it was not possible to define an isochron according to the theoretical definition

since data were always recorded in a finite time period during experiments. We used an alternative

way to estimate all isochrons on the phase plane for the worm’s head oscillation. For each individual

trial of illumination, we observed that, due to the optogenetic inhibition, the variable _K quickly

decayed toward zero value immediately after the illumination and then recovered after approxi-

mately 0.3 s as the oscillation converged to a normal oscillation. Therefore, by finding the local mini-

mal of _K immediately after each illumination pulse, we located the point at which the paralyzing

effect is just removed and after which the oscillation starts a free resumption to normal oscillation.

We call this point the ’notch point’ xN as it can be clearly seen from the phase plot (as shown

in Figure 3E, H and K). After the notch point xN , the oscillation will proceed to its next phase states

x f ¼ 0ð Þ and x f ¼ pð Þ (or vice-versa), both of which can be easily identified through peak finding

from the curvature dynamics K. Hence, we obtained two sub-trajectories from the oscillation: one
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xN ! x f ¼ 0ð Þ, and the other xN ! x f ¼ pð Þ. Next to determining the timing of the notch point

t xNð Þ, we determined the phase of the notch point in the following steps: (1) we computed the phase

of the state on the normal cycle at time t xNð Þ as if the perturbation had not occurred, which is

fu x
C
N

� �

¼ !0 t xNð Þ � t x f ¼ 0ð Þð Þð ÞmodT0 , or fl x
C
N

� �

¼ !0 t xNð Þ � t x f ¼ pð Þð Þð ÞmodT0�p. Here, f x
C
N

� �

was

computed twice using phase states x f ¼ 0ð Þ [subscripted with u] and x f ¼ pð Þ [subscripted with l] as

references, respectively; (2) we calculated the induced phase shift PRC tillumð Þ and the phase of the

notch point is f xNð Þ ¼ f x
C
N

� �

� PRC tillumð Þ. After obtaining the sub-trajectories xN ! x f ¼ 0ð Þ and

xN ! x f ¼ pð Þ and calculating the phase of xN , we then estimated the phase values for all the points

within each of the two sub-trajectories through linear interpolation.

Following the above steps, we calculated the phase values for all the state points on the phase

plane that have been recorded from the optogenetic experiments. We then applied a 2-D moving

average (using the angular statistics method) for the obtained phase values over the phase plane to

smooth out the isochron map. Finally, we used a linear 2-D interpolation to obtain a phase isochron

map with a finer resolution as shown in Figure 3—figure supplement 2.

To compute the vector field of the worm’s head oscillation, we collected all the sub-trajectories

xN ! x f ¼ 0ð Þ and xN ! x f ¼ pð Þ that are defined above and took derivative of the trajectories with

respect to time. Thus, by collecting all the phase states K; � _K
� �

and their corresponding time deriva-

tives dK=dt; d � _K
� �

=dt
� �

that describe the tangent vectors of trajectories, we generated the raw form

of vector field for the worm’s head oscillation. Again, we applied a 2-D moving average for the raw

outcome over the phase plane to smooth out the vector field. We used a linear 2-D interpolation to

obtain a vector field with an appropriate number of quivers to be displayed (Figure 3—figure sup-

plement 2).

Phase response analysis
To generate phase response curves (PRCs) from optogenetic inhibition experiments, each trial’s illu-

mination phase f, as well as the induced phase shift F, were calculated. To calculate the two varia-

bles, the animal’s phase of oscillation was estimated based on timings of local extrema identified

from the time-varying curvature profiles via a peak finding method. Specifically, (i) the occurrence of

illumination of the trial was set to t ¼ Tillum; t ¼ 0 was set at the beginning of each experiment. (ii)

Around the illumination, timings of the two local maxima of curvature immediately before and after

were identified as the two zero-phase points of the oscillation before and after the illumination,

respectively. Here, the timings are denoted as TZ�2, TZ�1, TZþ1, and TZþ2, in the ascending order of

time. (iii) Similarly, timings of the two local minima of curvature immediately before and after the illu-

mination were identified as the two half-cycle-phase points before and after the illumination, respec-

tively. Here, the timings are denoted as TH�2, TH�1, THþ1, and THþ2, in the ascending order of time.

(iv) With these measurements, cycle period T0 was computed as

T0 ¼ TZþ2 � TZþ1 þ TZ�1 � TZ�2 þ THþ2 � THþ1 þ TH�1 � TH�2ð Þ=4, so the angular frequency of

undulation !0 ¼ 2p=T0 (T0 was computed as the average of differences of adjacent local maxima/

minima before and after illumination; multiple cycles were used here to reduce noise). In addition,

the illumination phase f of each individual trial was computed as fu ¼ !0 Tillum � TZ�1ð ÞmodT0 ,

fl ¼ !0 Tillum � TH�1 þ T0=2ð ÞmodT0 , and the corresponding phase shift F was computed as

Fu ¼ !0 TZþ1 � TZ�1ð ÞmodT0�p, Fl ¼ !0 THþ1 � TH�1 þ T0=2ð ÞmodT0�p. Here, phase of illumination and

the corresponding phase shift were computed twice using zero [subscripted with u] and half-cycle

[subscripted with l] phase points as references, respectively.

We generated 2-D scatter plots for all trials with illumination phase as x coordinate and the corre-

sponding phase shift as y coordinate. To visualize the distribution of the scatter points we generated

bivariate histogram plots by grouping the data points into 2-D bins with 25 bins on both dimensions

covering the range 0; 2p½ � for x and range �p;p½ � for y. To indicate average tendency of phase shift

depending on phase of illumination, we calculated a mean-curve representation of PRCs via a mov-

ing average operation. In this process, each mean was calculated over a sliding window of width

0:16p along the direction of f from 0 to 2p. The 95% confidence interval relative to each window of

data points was also computed and an integral number of them were displayed as filled area around

the PRC. Through the computation, all statistical calculations followed the rules of directional statis-

tics (Fisher et al., 1993) since f and F are circular variables defined in radians.
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Phase response curves from perturbations of other body regions
We asked how phase responses for the other regions of the body would compare to that of the

anterior region. We conducted optogenetic experiments that inhibited Pmyo-3::NpHR transgenic

worms by transiently illuminating 0.1–0.3 (anterior), 0.4–0.6 (middle), and 0.6–0.8 (posterior) of the

body length, respectively. We found that the amplitude of the sawtooth feature of PRC tends to

decrease as the perturbation occurs further from the head (Figure 3—figure supplement 5A,E,I).

We also noticed that, for the same perturbed region, the PRC shape remains unaffected regardless

of the region at which the dynamics were analyzed (see Figure 3—figure supplement 5A–C,D–F,G–

I, respectively), suggesting that posterior regions of a freely moving worm follow their anterior

neighbors with a constant phase offset. Taken together, these results suggest that a main rhythm

generator may operate near the head of the worm to produce primary oscillations during forward

locomotion. The sawtooth-shape feature of the PRC becomes stronger if the perturbation hits closer

to the rhythm generator (Figure 3—figure supplement 5A) or becomes weaker if the perturbation

indirectly affects it (Figure 3—figure supplement 5E,I)

The relaxation oscillator model for locomotor wave generation
We first developed a relaxation oscillator model to simulate the rhythm generation during C. elegans

forward locomotion. In this model, we incorporated a novel neuromuscular mechanism with a previ-

ously described biomechanical framework (Fang-Yen et al., 2010). Here, we only simulated the

bending rhythms generated from the head region; the wave propagation dynamic is out of the

scope of our study. Our phenomenological model does not contain detailed activities of individual

neurons but focus on describing key neuromuscular mechanisms and their contributions to the

rhythm generation.

To produce model variables that can be directly compared with experimental observations of

moving animals, a biomechanical framework was first developed to describe worm’s behavioral

dynamics in its external environments. Following previous derivations for C. elegans biomechanics

(Fang-Yen et al., 2010), the relationship between animal behavioral outputs and the active muscle

moments can be described as follows:

CN
qy

qt
þ a q

2k
qs2

þ av
q

qt
q
2k
qs2

� �

¼ma: (A1)

In Equation A1, the first term indicates the external viscous force that is transverse to the body

segment where CN is the coefficient of viscous drag to the transverse movement and y denotes the

lateral displacement of body segment; the second term indicates the internal elastic force where a is

the bending modulus of the worm body; the third term indicates the internal viscous force where av

is the coefficient of the body internal viscosity. On the right side of Equation A1 is the active muscle

moment ma.

Taking the second partial derivative with respect to body coordinate s on both sides of

Equation A1 and, using the linear relation under the small-amplitude approximation, k» yss, we

arrive at:

CN
qk
qt
þ a q

4k
qs4

þ av
q

qt
q
4k
qs4

� �

¼ q
2ma

qs2
: (A2)

Under the assumptions of small-amplitude undulations and a fixed wavelength l down the worm

body, k can be considered as a travelling sinusoidal wave with a small deviation,

k s; tð Þ ¼ k0 sin 2ps=l�!tð Þþ d, which leads to an approximation, kssss » 2p=lð Þ4k. Plugging this approx-

imation into Equation A2 while keeping s fixed, after some rearrangement, one gets:

kþ
CN

l
2pð Þ

4

þav

a
_k¼ l4

2pð Þ4a

q
2ma

qs2
: (A3)

In terms of the dimensionless curvature K ¼ k �L and dimensionless muscle moment
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Ma ¼
l4L

2pð Þ4a

q
2ma

qs2
; (A4)

we can rewrite Equation A3 as:

Kþ t u
_K ¼Ma; (A5)

where

t u ¼
CN

l
2pð Þ

4

þav

a
; (A6)

and we note that Equations A5 and A6 yield Equation 1. In Equation A6, both the wavelength l

and the normal viscous drag coefficient CN vary with the fluid viscosity h (Berri et al., 2009 ; Fang-

Yen et al., 2010).

The above biomechanical framework in our model treats the worm’s body segment as a viscoelas-

tic rod and describes how the body segment bends under the forces provided by the active muscle

moment. However, the simulated oscillation in K comes from the rhythmicity of the active muscle

moment which originates from the hypothesized neuromuscular mechanism described by the follow-

ing relaxation-oscillation process:

i. Proprioceptive feedback is sensed as a linear combination of the current curvature value and

the current rate of change of curvature, P ¼ K þ b _K (black curve in Figure 4D).
ii. During movement of bending, this proprioceptive feedback is constantly compared with two

threshold values Pth and �Pth (gray dashed bars in Figure 4D).
iii. Once the feedback reaches either of the thresholds (the switch points as indicated by red

circles in Figure 4D), a switch command is initiated (blue square wave in Figure 4E).
iv. The switch command triggers the active muscle moment to change toward the opposite sat-

uration value (black curve in Figure 4E).

To simulate the switch-triggered muscle transition we used a modified logistic function:

Ma tð Þ ¼ �M0 � tanh t=2t mð Þ. Here, the plus sign indicates the dorsal-to-ventral muscle moment transi-

tion while the minus sign indicates the opposite direction.

To initiate the oscillation in our model we set the system to bend toward the ventral side by set-

ting Majt¼0
¼ M0 and Kjt¼0

¼ 0. During forward locomotion, the active muscle moment oscillates by

undergoing a relaxation oscillation process: a relaxation subperiod during which Ma stays at a satu-

rated bending state (M0 for ventral bending, �M0 for dorsal bending), alternating between a shorter

subperiod during which Ma quickly transits toward the opposite state due to effects described in iii

and iv. The bending curvature K tð Þ which is driven by Ma in an exponential decaying manner

(Equation A5) follows the rhythmic activity of Ma, thereby also exhibiting an oscillatory dynamic

(Figure 4B).

This relaxation oscillator model reproduces two key features of free locomotion that we observed

from experiments. First, freely moving worms exhibit nonsinusoidal curvature waveform with an

intrinsic asymmetry: bending toward the ventral or dorsal directions occurs slower than straightening

toward a straight posture during each locomotory cycle (Figure 4F). Second, dynamic of the active

muscle moment shows a trapezoidal waveform during forward locomotion (Figure 2D Inset and

Figure 4E). These results are independent of external conditions but reflect intrinsic properties of

the neuromuscular mechanisms underlying locomotion rhythm generation.

Note that parameters M0, t u, and t m were estimated from data of free locomotion using phase

portrait techniques described in the following subsection. Parameters b and Pth were yet degenerate

in this model of free locomotion. Here, we temporarily set b ¼ 0 and then set Pth such that the oscil-

latory period predicted by model matched the average period measured from experiments with a

minimum squared error:

Pth ¼
Pth>0

argmin Tmodel Pthð Þ�Texperiment
� �2

: (A7)

The nondegeneracy of b and Pth was determined by fitting the model to the experimental PRC as

described in the later subsection so that all the parameters for the model are provided as M0 ¼ 8:45,

t u ¼ 260ms, t m ¼ 100ms, b¼ 46ms, and Pth ¼ 2:33.
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Measuring bending relaxation time scale and amplitude of active
muscle moment
To estimate these two parameters, we applied a heuristic method that uses the shape properties of

C. elegans free-running phase plot (Figure 2D). From the curve in the figure, we noticed two ‘flat’

portions symmetrically distributed at quadrant I and III on the phase plane. Recalling Equation 1 (or

Equation A5): K þ t u
_K ¼ Ma tð Þ, the two flat regions indicate that the scaled active muscle moment,

Ma tð Þ, is nearly constant during the corresponding time bouts.

We then computed the linear correlation between variables K and _K to identify the two ‘flat’

regions and, through linear fits, obtained two linear relations respectively: Kh i þ t 1
_K


 �

¼ M1 (region

1) and Kh i þ t 2
_K


 �

¼ M2 (region 2). Thus, the bending relaxation time scale t u and the amplitude of

the scaled active muscle moment are estimated as ^t u ¼ t 1 þ t 2ð Þ=2 and M̂0 ¼ M1j j þ M2j jð Þ=2,

respectively.

The above method used the phase plot measured from locomotion of worms swimming in a 17%

dextran solution (120 mPa�s viscosity) as an example. However, it is also valid for estimating parame-

ters of locomotion in other viscosities.

Measuring active moment transition time scale

With t u (estimated from the above method), Kh i and _K

 �

(measured from locomotion) plugged to

the left side of Equation 1, we were able to compute the waveform of the scaled active muscle

moment Ma tð Þ on the right side of Equation 1. As expected and shown in Figure 2D Inset, the curve

of Ma tð Þ is roughly centrally symmetric around point T0=2; 0ð Þ on the plane, with two plateau portions

indicating two saturated states for dorsal and ventral muscle contractions, respectively.

Between the two plateau portions represents a period during which the active muscle moment is

undergoing a ventral-to-dorsal (or vice-versa) transition. We used a modified logistic function to

model the ventral-to-dorsal muscle moment transition (substituting t with �t for transition in the

other direction):

Ma tð Þ ¼M0 � tanh
t
t m

� �

: (A8)

To estimate t m, the exponential time constant for the transition of active muscle moment, we

took the time derivative of Equation A8 and took the absolute value of the resultant:

dMa

dt

�

�

�

�¼ M0

t m
� exp 2t=t mð Þ

1þexp 2t=t mð Þð Þ2
: (A9)

We notice that when t¼ 0, the maximum of jdMa=dtj is achieved and the value is M0=t m. On the

other hand, the maximum of dMa=dtj j can be obtained from the experimental observation by simply

finding the peak of |dMa=dt| curve where Ma ¼ K tð Þh iþ t u � dK tð Þ=dth i. Thus, t m can be estimated as:

t m ¼ M̂0 � dMa

dt

�

�

�

�

�1

max
: (A10)

Parameter estimation
For our original threshold-switch model, parameters t u, t m, and M0 were estimated from free loco-

motion experiments as described above. These three parameters nearly fully determine the bio-

mechanical framework of C. elegans bending movements (governed by Equation A5 and A8). On

the other hand, parameters b and Pth describe the proprioceptive feedback and the threshold-switch

features in our model. Specifically, they characterize two threshold lines, K þ b _K ¼ �Pth (as shown in

Figure 4C). The two switch points—defined by the intersection between the phase trajectory and

the threshold lines on the phase plane—determine the timing of switches for the active muscle

moment (see Figure 4C–E). We noted that the model behavioral output of free locomotion is

degenerate with respect to these two parameters; the same outcome would be produced if the

threshold lines cross the same pair of switch points. To first determine the free-moving dynamic as
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well as the switch points, we temporarily set b ¼ 0 and then set Pth such that the oscillatory period

defined by model matched the average period measured from the experiments.

To obtain the nondegeneracy of Pth and b, we fit our model to the experimental phase response

curve using a global optimization procedure. Full procedure for the determination of b and Pth is

given below.

Modeling worm oscillations in varied environments
Differences in various environments will change only those parameters that are related to contact

with external forces whereas parameters related to oscillator’s internal properties will not be

affected. In terms of the internal parameters of our model, we used values that were previously

determined, which are t m ¼ 100ms, M0 ¼ 8:45, b ¼ 46ms, Pth ¼ 2:33. For the exogenous parameters,

only the time constant of undulation, t u, varies according to external conditions. According to

Equation A6, t u is explicitly determined in terms of other physical parameters, including bio-

mechanical parameters measured in previous work (Fang-Yen et al., 2010): the internal viscosity of

worm body is measured as av ¼ 5 � 10�16 Nm3s; the bending modulus of worm body is measured as

a ¼ 9:5 � 10�14 Nm3; CN ¼ 31h is the coefficient of viscous drag for movement normal to the body

(Katz et al., 1975), where h is the fluid viscosity. According to previous measurements of undulatory

wavelengths in different viscous solutions (Fang-Yen et al., 2010), we applied a logarithmic fit to the

data points, yielding l=L ¼ �0:158 log10 h=h0
ð Þ þ 1:5 for a continuous model realization in undulatory

frequency and amplitude. Here, l is the wavelength and h
0
¼ 1mPa � s.

Alternative models for locomotor wave generation
To further evaluate the performance of our original model, we explored three alternative models for

simulating locomotory rhythm generation to make comparisons across these models and the experi-

mental observations. Alternative models are based on three previously studied self-oscillator models

described by 2-D nonlinear systems: the van der Pol, Rayleigh, and Stuart-Landau oscillators.

First, we developed a model oscillator in the form taken from the van der Pol Oscillator:

€Kþ aV bVK
2 � 1ð Þ _Kþ!2

VK ¼ 0; (A11)

where K indicates the nondimensional bending curvature. This model has a nonlinear damping term

with a coefficient depending on K. Simulated oscillation is a limit cycle of the model (Figure 5—fig-

ure supplement 1B,F), given parameters aV ¼�0:026 s�1;bV ¼�2:04;!V ¼ 5:51 s�1:

Second, we developed a model oscillator by modifying the Rayleigh Oscillator:

€Kþ aR bR _K
2 � 1

� �

_Kþ!2

RK ¼ 0; (A12)

where K again indicates the nondimensional bending curvature. This model has a nonlinear damping

term with a coefficient depending on _K. Simulated oscillation is a limit cycle of the model (Figure 5—

figure supplement 1C,G), given parameters aR ¼ 2:73 s�1;bR ¼ 0:0023s2;!R ¼ 5:6s�1:

Third, we developed a model oscillator by modifying the Stuart-Landau Oscillator:

_Zþ l
2
Zj j2�s

� �

Z ¼ 0: (A13)

Here, the system is described in the complex domain where Z ¼ Zr þ iZi, l¼ lr þ ili are complex

variables, and s is real. We let Zr, the real part of Z, denote the nondimensional curvature K. This

model has a nonlinear damping term with coefficient depending on jZj. Simulated oscillation is a

limit cycle of the model (Figure 5—figure supplement 1D,H), given parameters

lr ¼ 0:54s�1; li ¼ 0:52s�1;s¼ 5:54s�1:

The three alternative models produce free-running oscillatory dynamics with similar frequency

and amplitude as measured from worms swimming in fluids with viscosity 120mPa � s.

Simulation of optogenetic inhibition
According to our experimental observations on the effect of the optogenetic muscle inhibition

(Figure 3A,B), paralysis of muscles of the illuminated region initiated upon illumination (defined as
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t ¼ 0 for Figure 3B) and reached maximal effect approximately at t ¼ 0:3 s. Here, we modeled the

process of muscle inhibition by multiplying the scaled active muscle moment, Ma, with a factor,

1� Q Dtð Þ, as a function of the time interval Dt in a bell-shaped form (Figure 4—figure supplement

1, Equation A14).

As described in our model, the dorsoventrally alternating feature of the active muscle moment

during locomotion are described by the dynamics of Ma tð Þ. Specifically, Ma tð Þ is positive when ventral

muscles contract and dorsal muscles relax, and negative for the other half of the cycle. Therefore, in

our threshold-switch model, specifically inhibiting dorsal- or ventral- or both-side muscles was com-

putationally equivalent to conditionally modulating Ma tð Þ with the bell-shaped modulating function

depending on the sign of Ma tð Þ.

For simulating inhibition process in the three alternative models, we factored out a specific term

from individual model equations as a generalized active muscle moment. We applied the bell-

shaped modulating function to this term conditionally for each individual model. Detailed descrip-

tions of implementing modeled inhibitions in alternative models are available from below.

To get a deeper understanding of how phase response curves are related to systems dynamics

during wave generation, we systematically simulated transient muscle inhibitions on individual model

oscillators at different times within a cycle period to generate model PRCs. To do that, we theoreti-

cally simulated the process of muscle inhibition by multiplying model active muscle moment with a

modulatory factor, 1� Q Dtð Þ, which has a bell-shaped profile (Figure 4—figure supplement 1):

Q Dtð Þ ¼ H

1þ Dt�r
pj j

2q
� � ; (A14)

where r¼ 0:3s is the timing of the occurrence of maximal paralysis according to our experimental

observations on the effect of muscle inhibition (Figure 3A,B), H indicated the maximal degree of

paralysis, and p, q measure the paralyzing rate and duration, respectively. To ensure sufficient

smoothness during computation, we let p¼ 0:3 � 10�1=q so that QjDt¼0
>0:99. Note that when modeling

the dorsal-side-only muscle inhibition, the parameter H for describing max degree of optogenetic

muscle inhibition was modulated to H ¼ 0:5 �Hoptimal to qualitatively agree with experimental obser-

vations (Figure 6). This factor accounts for unequal degrees of paralysis during ventral vs. dorsal illu-

mination (Figure 6—figure supplement 1), causing the PRC of dorsal-side illumination to show a

relatively moderate response compared to ventral-side illumination.

To simulate the muscle inhibition on our threshold-switch model, we multiplied Ma with 1� Qð Þ

any time the model was to be inhibited during its oscillatory period. To apply this operation to the

alternative models, we factored out a term as a generalized active muscle moment for each individ-

ual model and then multiplied it with the bell-shaped function described above. The generalized

forms of active muscle moment for the alternative models are implemented by modifying their origi-

nal forms as follows:

a. For the van der Pol Oscillator, it is modified as:

€Kþ � ~MV þPV

� �

_Kþ!2

VK ¼ 0

MV ¼ aV 1� bVK
2ð ÞþPV

(

; (A15)

b. For the Rayleigh Oscillator, it is modified as:

€Kþ � ~MR þPR

� �

_Kþ!2

RK ¼ 0

MR ¼ aR 1� bR _K
2

� �

þPR

(

; (A16)

c. For the Stuart-Landau Oscillator, it is modified as:

_Zþ � ~MS þPS

� �

Z ¼ 0

MS ¼ s� l
2
Zj j2þPS

(

: (A17)

For each individual model listed above, ~Mi (subscript i represents V, R, and S, respectively) is the

generalized muscle moment which is to be multiplied by the bell-shaped factor 1�Qð Þ upon pertur-

bation, and Pi is the additional damping coefficient. Note that the minus sign prior to Mi in the first

equation of each set indicates that Mi is a negative damping term that provides power to the
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system, while Pi is set positive for modeling the effect of bending toward the straight posture due to

internal and external viscosity. Also note that Equations A15-A17 would be equivalent to their origi-

nal form (Equations A11–A13) when inhibition is absent (in this case, ~Mi ¼Mi).

By modeling the muscle inhibition process during locomotion, we were able to perform simula-

tions of phase response experiments on individual models to produce perturbed systems dynamics

(Figure 5—figure supplement 1J–L) and the corresponding PRCs (Figure 5—figure supplement

1N–P and Figure 6—figure supplement 2).

Optimization of models
For each individual model we developed, the parameters were determined via a two-round fitting

process. First, a subset of parameters was determined by fitting the model to observations of free-

moving dynamics; the model could generate free-moving dynamics close to observations at this

point. Second, the rest of the parameters were settled by fitting it to experimental phase response

curves; a model would be fully determined at this point. Detailed descriptions of the two-step opti-

mization procedure for individual models are provided as follows:

For the original threshold-switch model, parameters t u, M0, and t m were explicitly estimated

from the experiments of free locomotion using phase portrait techniques described above. To simu-

late free locomotion, we further determined the position of switch points in the model (as indicated

in Figure 4C red circle), which we did using method described by Equation A7. Next, we plugged

the determined parameters into the model and conducted the second round of optimization by fit-

ting the model with undetermined parameters Pth, b, as well as the parameters for simulating muscle

inhibition — H and q. We generated model PRC by perturbing the model oscillator at different times

within a cycle period and settled the parameters such that the model PRC matched the experimental

one with a minimum mean squared error (MSE) (During the computation of MSE, values of both

model and experimental PRCs were sampled across the entire range of f with 100 evenly distributed

samples. In this case, Df ¼ 2p=100):

Pth;b;H;qð Þ ¼
Pth ;b;H;q
argmin

P

2p
0

PRCmodel Pth;b;H;q;fð Þ�PRCexperiment fð Þ
� �2

Df (A18)

To find the parameters that minimize the difference, a global minimum search was performed

using the MATLAB function ‘GlobalSearch’ (Ugray et al., 2007). When run, the function repeatedly

uses a local minimum solver with different batches of parameter range and attempts to locate a solu-

tion that produces the lowest MSE value.

Similarly, the two-step optimization procedures for individual alternative models are summarized

in Appendix 1—table 1.

Appendix 1—table 1. Objective functions used in the optimization procedures for alternative

models.

Type Free locomotion model Complete model

van der Pol

aV ;bV ;!V

argmin
TvdP
Texpt

� 1

� �2

þ AvdP

Aexp
� 1

� �2
� �

pV ;H;q
argmin

P

2p
0

ðPRCvdpðfÞ � PRCexpðfÞÞ
2
Df

Rayleigh

aR ;bR ;!R

argmin
TRayleigh
Texpt

� 1

� �2

þ
ARayleigh

Aexp
� 1

� �2
� �

pR ;H;q
argmin

P

2p
0

ðPRCRayleighðfÞ � PRCexpðfÞÞ
2
Df

Stuart-Landau

aS ;bS ;!S

argmin
TSL
Texpt

� 1

� �2

þ ASL

Aexp
� 1

� �2
� �

pS ;H;q
argmin

P

2p
0

ðPRCSLðfÞ � PRCexpðfÞÞ
2
Df

Two-step optimization procedure for van der Pol, Rayleigh, and Stuart-Landau oscillators. The first-

step optimization determines part of parameters such that individual models generate free locomo-

tion dynamics. The second-step optimization leads to complete models such that models’ perturbed

dynamics and phase response curves are produced.
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