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Abstract

In a long-lasting major disease outbreak such as that of COVID-19, the challenge for public

health authorities is to keep people motivated and keen on following safety guidelines. In

this study, a compartmental model with a heterogeneous transmission rate (based on

awareness) is utilized to hypothesize about the public adoption of preventive guidelines.

Three subsequent outbreaks in South Korea, Pakistan, and Japan were analyzed as case

studies. The transmission, behavior change, and behavioral change ease rates of the dis-

ease were measured in these countries. The parameters were estimated using the maxi-

mum likelihood method with an additional identifiability analysis performed to determine the

uniqueness of the estimated parameters for quantitatively comparing them during the first

three waves of COVID-19. The mathematical analysis and simulation results show that indi-

vidual responses had a significant effect on the outbreak. Individuals declining to follow the

public health guidelines in Korea and Japan between the second and third waves contrib-

uted to making the third peak the highest of the three peaks. In Pakistan, however, individual

responses to following public health guidelines were maintained between the second and

third waves, resulting in the third peak being lower than the first, rather than being associ-

ated with the highest transmission rate. Thus, maintaining a high level of awareness is criti-

cal for containing the spread. Improvised public health campaigns are recommended to

sustain individual attention and maintain a high level of awareness.

Introduction

The coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2

virus. Most people infected with the virus experience mild-to-moderate respiratory symptoms

and recover without special treatment. However, some patients can become seriously ill and

may require medical attention. Older people and those with underlying medical conditions

such as cardiovascular diseases, diabetes, chronic respiratory illnesses, or cancer, are more

likely to develop serious illnesses following COVID-19 infection. Anyone can get infected with

COVID-19 and serious consequent health issues, including death, can never be ruled out with

certainty. Chinese authorities have identified this outbreak as a new coronavirus, differing

completely from other coronaviruses previously encountered among humans [1]. The novel
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coronavirus disease (COVID-19) has become a global threat to public health and the economy.

On January 30, 2020, the World Health Organization (WHO) announced a public health

emergency of international concern (PHEIC) [2].

Non-pharmaceutical interventions for reducing the probability of infectious contact are the

primary strategies for stopping outbreaks when pharmaceutical tools, such as vaccines and

medicines are scarce [3]. Due to the short-term existence of both natural and vaccine-induced

immunity against SARS-CoV-2 [4], non-pharmaceutical interventions hold a significant role

in containing the outbreak [5]. Although COVID-19 is a flu-like illness, its high transmissibil-

ity and pandemic nature significantly affect daily human life and communication in this fast-

moving world [6]. Individual disease experiences and beliefs govern the behavioral factors

associated with disease outbreaks [7]. Due to the long-term persistence and subsequent out-

breaks of several strains of COVID-19, maintaining social distance and associated preventive

measures has become challenging [8].

Human behavior evolves in response to epidemic outbreaks [9]. Though fear of disease

increases at the beginning of an outbreak, frustration or boredom associated with stringent

preventive measures relaxes it with time [10]. A social network may also shape the awareness

and response to preventive measures [11, 12]. Societal reactions affect the spread of epidemics,

as discussed in [13, 14]. Further, understanding the incentives for plausible infectious contact

is critical for forming and implementing effective social distancing policies [15]. For instance,

during the 1918 influenza outbreak in the USA, individuals realized the higher cost associated

with contact as a consequence of the high mortality rate and proactively adopted social dis-

tancing [16]. Public health policies may exacerbate the situation and the disease may become

more prevalent when these measures nominate susceptible individuals for lower incentives

[17].

Conversely, behavioral change may shape the outbreak [18]. In [19], it was shown that

behavioral changes may modulate the uncertainty of the peak under both deterministic and

stochastic model settings. Understanding spontaneous behavioral changes can be helpful for

health policymakers in planning public health control strategies and estimating the burden on

healthcare centers over time [20]. An increased sense of safety because of vaccination may

cause aware individuals to loosen the preventive measures [21]. Overcoming fear was identi-

fied as a cause of multiple epidemic waves [22] while avoiding unnecessary fear sentiment is

recommended [13]. As a result, there is a lack of qualitative and quantitative understanding of

fear-induced behavioral changes associated with implementing preventive measures and their

implications for disease spread.

An effort toward modeling fear-induced behavioral change showed that publicly available

information on infection spread results in several waves by stimulating mass acceptance of

preventive measures [23]. Applying a similar modeling assumption to a meta-populational

framework, Massaro et al. showed that intervention measures might also delay the resilience of

societal factors [24]. A cross-country comparison of the COVID-19 outbreak showed that

behavioral changes were adopted quicker in South Korea than in Italy, which resulted in more

successful containment in the former country than in the latter during the first wave [25].

However, in the Daegu/Gyeongbuk area of South Korea, the behavioral change rate was low

compared to the rest of the country, which resulted in a significantly larger outbreak in the

respective area [26]. In another preprint [27], a behavior-disease model incorporated with the

government-imposed public health measures was fitted to the first wave of the COVID-19 out-

break in the city of Metro Manila, Philippines. This study showed that the behavioral change

rate decreased towards the end of the wave. However, several outbreaks of COVID-19 have

been observed throughout the world so far. So, it is interesting to investigate the evolution of

behavioral change over subsequent outbreaks and its relevance to it.
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We extend the behavior-disease modeling approach proposed in [28]. The model was fitted

to each of the first three COVID-19 waves that occurred in South Korea, Pakistan, and Japan.

It is important to accurately associate unknown parameters with the values that relate the

model to the data. For a comprehensive analysis of the modeling results, it is also necessary to

determine the reliability of the parameter estimates. The identifiability analysis guarantees that

the estimated parameters are uniquely determined. If the parameters are identifiable, the

parameter estimation is independent of the initial guess of the unknown parameters. Ensuring

the identifiability of the parameters, a model was fitted to explore the change in individual

responses to public health guidelines, demonstrating that the tendency to adopt preventive

measures inspired by public health initiatives has decreased over time in Korea and Japan but

is maintained in Pakistan.

Materials and methods

Mathematical modeling

As a modification to the model proposed in [28], heterogeneity in transmission is assumed

based on the level of awareness of individuals. The proposed model consists of five classes,

where the total population N(t) was partitioned into classes S(t), Sf(t), I(t), Q(t), and R(t).
These classes denote susceptible, behavior-changed susceptible, infectious, active (quarantined

or hospitalized), and recovered individuals, respectively. A schematic representation of this

model is shown in Fig 1.

The system of equations associated with the aforementioned diagram can be expressed as:

dS
dt
¼ L �

bSI
N
� bf S 1 � e� dQ

� �
þ mf Sf

Sþ R
N

� �

� mS ð1Þ

dSf
dt
¼ �

rbbSf I
N
þ bf S 1 � e� dQ

� �
� mf Sf

Sþ R
N

� �

� mSf ð2Þ

dI
dt
¼
bSI
N
þ

rbbSf I
N
� gþ mð ÞI ð3Þ

Fig 1. Schematic diagram of the proposed mathematical model.

https://doi.org/10.1371/journal.pone.0273964.g001
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dQ
dt
¼ gI � aþ mþ m0ð ÞQ ð4Þ

dR
dt
¼ aQ � mR ð5Þ

In the susceptible class S, individuals become infected with the transmission rate β and

move to the infectious class I. When the number of infected cases increases in society, fear of

the disease prevails in susceptible individuals. With the behavior change rate (transmission

rate of fear) βf, susceptible individuals move to the behavior-changed susceptible class Sf.
Because of this behavioral change, the transmission rate in Sf is lowered by a fraction rβ

(0�rβ�1). Therefore, individuals from Sf move to infectious class I with a lower transmission

rate, rββ than those from S. Strictly following social distancing, mask-wearing, and avoiding

social gatherings are considered as behavioral changes in the proposed model. After confirma-

tion, infectious individuals move to quarantine class Q with a confirmation rate γ and con-

firmed infected individuals Q, move to the recovered class with a rate of recovery α.

Individuals in the model are recruited to susceptible class S with a constant migration rate Λ,

and they are removed from all classes upon natural death rate μ. In quarantined classes, indi-

viduals are also removed with disease-related death rate μ0. Individuals in Sf influenced by the

susceptible and recovered individuals, become hesitant to strictly follow the preventive mea-

sures and revert to the susceptible class at a behavioral change ease rate of μf.

Mathematical analysis

The proposed mathematical model was analyzed to gain an understanding of the dynamics of

models (1)-(5) from an epidemiological perspective.

The model exhibits three equilibria: trivial, (0,0,0,0,0) disease-free (S0,0,0,0,0), and endemic equili-

brium ðS�; S�f ; I
�;Q�;R�Þ. However, bSIN and

rbbSf I
N are not differentiable at the trivial equilibrium.

Therefore, stability analysis at this equilibrium was not feasible using standard linearization methods.

The existence and uniqueness of the remaining equilibria are described in the following propositions:

Proposition 1: The system of Eqs (1)–(5) has a unique disease-free equilibrium E0, defined

as E0 = (S0,0,0,0,0). Here, S0 ¼
L

m
.

Proof. For the disease-free equilibrium, the left-hand side of the system of equations was

set as equal to 0, and it was assumed that there was no disease in the beginning.

Therefore, I = 0, implies Q = 0 and R = 0. From the first and second equations of the system,

it is determined that:

Lþ
mf Sf S
N
� mS ¼ 0 ð6Þ

�
mf Sf S
N
� mSf ¼ 0 ð7Þ

Eq (7) implies that � mf
S
N � m ¼ 0 or Sf = 0. If Sf 6¼0, then

mf
S
N
¼ � m¼)

S
N
¼ �

m

mf
:
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This contradicts the fact that S, N�0; therefore, Sf will always be 0 in a disease-free equilib-

rium. This is biologically meaningful, as it is natural to assume that all susceptible individuals

are fear-free in the beginning. In addition, after time t, if the disease wanes, the fear of the dis-

ease subsides in society and behavioral changes return to normal in the susceptible population.

Letting Sf = 0, we obtain Eq (6) as S ¼ L

m
. Thus, there is a unique disease-free equilibrium

E0 ¼
L

m
; 0; 0; 0; 0

� �
in the model.∎

Proposition 2: The system of Eqs (1)–(5) has a unique endemic equilibrium, E�, defined as

E� ¼ ðS�; S�f ; I
�;Q�;R�Þ: Here,

S� ¼
ð1 � rbR0ÞN�

ð1 � rbÞR0

�
rbðL � mN�Þð1 � R1Þ

mð1 � rbÞ
;

S�f ¼
ðL � mN�Þð1 � R1Þ

mð1 � rbÞ
þ
ðR0 � 1ÞN�

ð1 � rbÞR0

;

I� ¼
ðmþ aþ m0ÞðL � mN�Þ

m0g
;Q� ¼

ðL � mN�Þ
m0

;

and R� ¼ aðL� mN�Þ
mm0

. While R0 ¼
b

gþm
;R1 ¼

ðmþaþm0ÞðmþgÞ

m0g
and

N� ¼ S� þ S�f þ I� þ Q� þ R�:

Proof. For the endemic equilibrium, it is assumed that I6¼0. Using this assumption, the

uniqueness of the endemic equilibrium can be easily proved.∎

Stability analysis

The basic reproduction number, R0, plays a crucial role in the analysis of single-population

outbreaks, which are the total expected secondary cases that the primary infected individual

generates. To determine R0, the approach defined in [29] is used. Thus, the next generation

matrix, J, in our model is

J ¼
b

mþ g
0

0 0

0

@

1

A:

The eigenvalues of J are b

mþg
and 0, which implies that the spectral radius of J is b

mþg
.

Hence,

R0 ¼
b

mþ g
: ð8Þ

Lemma 1: Disease-free equilibrium E0 is locally asymptotically stable in domain R5

þ
if and

only if the basic reproduction number R0, is less than 1.

Proof. If there is no infectious individual, then Proposition 1 ensures the uniqueness of dis-

ease-free equilibrium E0. We show that this unique disease-free equilibrium E0, is locally
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asymptotically stable. The Jacobian matrix of the system of Eqs (1)–(5) at E0 is

B ¼
B1 B2

B3 B4

 !

:

Here; B1 ¼
� m mf

0 � ðmþ mf Þ

 !

;B2 ¼
� b � dbf S0 0

0 dbf S0 0

 !

;

B3 ¼ O3�2; and B4 ¼

b � ðmþ gÞ 0 0

g � ðaþ mþ m0Þ 0

0 a � m

0

B
@

1

C
A:

The eigenvalues of B1 are −μ and −(μ+μf) and the eigenvalues of B4 are

−μ, −(α+μ+μ0) and β−(μ+γ). Therefore, if R0 ¼
b

mþg
< 1, all eigenvalues of B have negative

real parts. Therefore, according to the Routh–Hurwitz stability criterion, E0 is locally asymp-

totically stable in R5

þ
.

Lemma 2: Endemic equilibrium E� is locally asymptotically stable in domain R5

þ
if and

only if the basic reproduction number R0 is greater than 1.

Proof. We prove this result by using the center manifold theorem. Let ϕ be the bifurcation

parameter. If y1 = S, y2 = Sf, y3 = I, y4 = Q, y5 = R and y = y1+y2+y3+y4+y5, the system of equa-

tions can be expressed as follows:

dy1

dt
¼ L �

by1y3

y
� bf y1 1 � e� dy4

� �
þ mf y2

y1 þ y5

y

� �

� my1 ¼ 1
ð9Þ

dy2

dt
¼ �

rbby2y3

y
þ bf y1 1 � e� dy4

� �
� mf y2

y1 þ y5

y

� �

� my2 ¼ 2
ð10Þ

dy3

dt
¼
by1y3

y
þ

rbby2y3

y
� gþ mð Þy3 ¼ 3

ð11Þ

dy4

dt
¼ gy3 � aþ mþ m0ð Þy4 ¼ 4

ð12Þ

dy5

dt
¼ ay4 � my5 ¼ 5

ð13Þ
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The linearization matrix,Dy , of the aforementioned system of equations around E0, when

ϕ = ϕ�, is given by,

Dy ¼

� m mf � �
�

�
dbfL

m
0

0 � ðmþ mf Þ 0
dbfL

m
0

0 0 �
�
� ðmþ gÞ 0 0

0 0 g � ðaþ mþ m0Þ 0

0 0 0 a � m

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

:

It is observed that 0 is a simple eigenvalue of this matrix. Therefore, let H = [h1, h2, h3, h4,

h5]t be the right eigenvector ofDy such that,

� m mf � �
�

�
dbfL

m
0

0 � ðmþ mf Þ 0
dbfL

m
0

0 0 �
�
� ðmþ gÞ 0 0

0 0 g � ðaþ mþ m0Þ 0

0 0 0 a � m

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

h1

h2

h3

h4

h5

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

¼

0

0

0

0

0

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

:

Thus, the right eigenvector, H, is given by,

H ¼ �
1

m
�
�
þ

dbfLg

ðmþ mf Þðaþ mþ m
0Þ

 !

;
dbfLg

mðmþ mf Þðaþ mþ m
0Þ
; 1;

g

aþ mþ m0
;

ag

mðaþ mþ m0Þ

" #t

:

Similarly, the left eigenvector of matrixDy is

C ¼ ½0; 0; 1; 0; 0�t:

Therefore, coefficients a and b are defined as

a ¼
X5

k;i;j¼1

ckhihj

@2

k

@yi@yj
ðE0Þ; and

b ¼
X5

k;i¼1

ckhi

@2

k

@yi@�
:

By substituting the values,

a ¼
2dbfLg

mðmþ mf Þðaþ mþ m
0Þ

m�

L
rb � 1
� �

� �

�
2m�

L
1þ

g

aþ mþ m0
þ

ag

mðaþ mþ m0Þ

� �

;

where b = 1, when ϕ>0, a<0, and b>0. Therefore, based on Theorem 4.1 in [30], the endemic

equilibrium E� is locally asymptotically stable if and only if ϕ>0. This implies that E� is locally

asymptotically stable if and only if R0>1. ∎
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Parameterization

The descriptions and values of the parameters used in the system of equations are presented in

Tables 1 and 2. These parameters are used to solve the system of Eqs (1)–(5). In Table 1, the

parameters are adopted from references or estimated from the data.

According to World Bank, the crude birth rate per year in the Republic of Korea is 6

1000
(see

[31]) and the total population is approximately 52 million. Therefore, the number of new

births per year is 312,000 and the immigration rate per day is 312000

365
� 855. Similarly, the migra-

tion rate for Pakistan and Japan is 16953 and 2413, respectively.

The average life expectancy in South Korea is approximately 83 years [32]; therefore, the

natural death rate in Korea is 1

83
� 1

365
per day. The average life expectancy in Pakistan is 67

years [32]. Therefore, the natural death rate in Pakistan is 1

67
� 1

365
. Similarly, the natural death

rate in Japan is 1

85
� 1

365
[32].

We estimate Pakistan’s disease-related death rate on average is, Deaths due to disease
Confirmed cases

� �
¼ 0:0202

[33]. Furthermore, the disease-related death rate in Japan is 0.0238.

In Table 2, the remaining parameters are estimated by using the maximum likelihood

method. In particular, three parameters are estimated for each of the three waves. The period

Table 1. Parameters sourced from relevant sources or estimated from available data. Here, D.L. indicates dimension lessness.

Symbol Description Value Unit Reference

Λ Immigration rate Korea 855 day−1 Estimated

Pakistan 16953 day−1 Estimated

Japan 2413 day−1 Estimated

μ Natural mortality rate Korea 1

83
� 1

365
day−1 Estimated

Pakistan 1

67
� 1

365
day−1 Estimated

Japan 1

85
� 1

365
day−1 Estimated

rβ Transmission reduction ratio of behaviorally changed individuals 0.02 D.L. [28]

γ Isolation rate 1

4
day−1 [28]

μ0 Disease induced death rate Korea 0.0221 day−1 [28]

Pakistan 0.0202 day−1 Estimated

Japan 0.0238 day−1 Estimated

α Recovery rate 1

14
day−1 [28]

1/δ Characteristic number of confirmed individuals reported by news 1000 day−1 [28]

https://doi.org/10.1371/journal.pone.0273964.t001

Table 2. Parameters estimated using the maximum likelihood method. Here, C.I. stands for the confidence interval.

Symbol Description Values

1st Wave 2nd Wave 3rd Wave

β Transmission rate Korea C.I. 0.3619 (0.3598, 0.3636) 0.6445 (0.6374, 0.6516) 0.9820 (0.9749, 0.9892)

Pakistan C.I. 0.3966 (0.3960,0.3972) 1.1177 (1.1023, 1.1338) 1.7896 (1.7792, 1.8002)

Japan C.I. 0.5310 (0.5242, 0.5380) 0.8318 (0.8291, 0.8345) 1.3023 (1.2759, 1.3315)

βf Transmission rate of the fear of the disease Korea C.I. 0.0517 (0.0506, 0.0527) 0.3245 (0.3149, 0.3346) 0.0690 (0.0640, 0.0742)

Pakistan C.I. 0.0098 (0.0097, 0.0099) 0.1733 (0.1686, 0.1781) 0.1766 (0.1727, 0.1805)

Japan C.I. 0.0642 (0.0601, 0.0686) 0.2174 (0.2123, 0.2226) 0.1722 (0.1500, 0.1958)

μf Behavioral change ease rate Korea C.I. 0.1131 (0.1115, 0.1147) 0.4426 (0.4307, 0.4551) 0.0813 (0.0749, 0.0879)

Pakistan C.I. 0.0139 (0.0136, 0.0141) 0.2134 (0.2084, 0.2185) 0.1900 (0.1859, 0.1941)

Japan C.I. 0.0802 (0.0739, 0.0869) 0.2935 (0.2668, 0.3003) 0.2070 (0.1806, 0.2350)

https://doi.org/10.1371/journal.pone.0273964.t002
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of three waves in Korea was divided into: first wave (February 16, 2020 to August 11, 2020),

second wave (August 11, 2020 to November 11, 2020), and third wave (November 11, 2020, to

February 14, 2021) based on [33, 34] (please refer to S1 Fig and S1 Table in S1 File).

For Pakistan, the timeline of the three peaks was defined as: first wave (March 17, 2020, to

October 13, 2020), second wave (October 13, 2020, to March 7, 2021), and third wave (March

7, 2021, to June 20, 2021) based on [33] (please refer to S2 Fig and S2 Table in S1 File).

The timeline of the three peaks for Japan was described as follows: first wave (March 10,

2020 to June 28, 2020), second wave (June 28, 2020 to October 21, 2020), and third wave

(October 21, 2020 to February 14, 2021) based on [33] (please refer to S3 Fig and S3 Table in

S1 File).

For all three waves, the initial value of the infectious population is estimated using the maxi-

mum-likelihood method. Fear at the start of the disease is negligible; therefore, Sf(0) = 0 in the

first wave. Sf is also modified to N−S−I−Q−R in our system of equations.

It is observed that with an increase in the number of unknown parameters, identifiability

issues are raised. To address these issues, a code in MATLAB is executed for the first wave up

to the initial value of the second wave and considering S(178) = 34.271×106, S(211) =

99.275×106 and S(111) = 55.487×106 as the initial values for the second wave of Korea, Paki-

stan, and Japan, respectively.

Similarly, as in the second wave, we estimated S(0) = 18.691×106, S(0) = 43.773×106 and S
(0) = 33.291×106 for the third wave of the respective countries.

Fitting the temporal data

In the formulation, β is the transmission rate; βf is the behavior change rate; μf is the behavioral

change ease rate; and I(0) is the initial value of the infectious population. As data on the infec-

tious population were unavailable, estimating these unknowns directly from the data was

impossible. Thus, the parameters β, βf, μf, and I(0) were estimated using the maximum likeli-

hood method. Time-series data were employed for active infected cases ([33]). The details of

the time-series data are provided for those countries in S1–S3 Tables in S1 File.

Let X ¼ ðx1; x2; x3; x4; x4Þ ¼ ðS; Sf ; I;Q;RÞ 2 R
5

þ
be the vector of state variables; F is the

right side of the system ((1)-(5)); P = (β, βf, μf, I(0)) is the vector of the unknowns to be esti-

mated; Q(t, P) be the vector of observables, and Q0(t, P) is the observed data at t. Here, t is the

time interval for the first wave (the assumptions were similar for the second and third waves).

It is assumed that all Q0(t, P) are independent and drawn from the Poisson distribution with a

mean equal to Q(t, P); then, the Poisson maximum likelihood function is

L Qðt;PÞjQ0ðt;PÞð Þ ¼
Yn

i¼1

QðtiÞ
Q0
i � e� QðtiÞ

Q0
i !

:

Therefore, the negative log-likelihood function (NLF) reduces to

NLF ¼ � ln
Yn

i¼1

QðtiÞ
Q0
i � e� QðtiÞ

Q0

i !

 !

¼ �
Xn

i¼1

Q0

i lnQðtiÞ þ
Xn

i¼1

QðtiÞ þ
Xn

i¼1

lnQ0

i !:

Because the last term in the aforementioned equation is constant, it remains unchanged as

the parametric values vary. Therefore, only the first two terms of the equation can be
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minimized. Hence, the fitting problem can be expressed as:

minðNLFÞ ¼ min �
Xn

i¼1

Q0

i ln QðtiÞ þ
Xn

i¼1

QðtiÞ

 !

;

subject to

d
dt

X t;Pð Þ ¼ F X;P; tð Þ;

Yðt;PÞ ¼ Qðt;PÞ;

Xð0Þ ¼ ðSð0Þ; Sf ð0Þ; Ið0Þ;Qð0Þ;Rð0ÞÞ;

Xðt;PÞ � 0:

However, this minimization problem provides the desired fitting with feasible parameter

values if P is identifiable, which was confirmed in two steps. First, the structural identifiability

was examined, and next, the practical identifiability was confirmed.

Structural identifiability refers to the existence of a unique solution to X(t, P) for each P
under initial conditions. If any component of P is implicitly related, different values of Pmay

yield the same solution X(t, P) for a given initial condition, which may hinder the unique esti-

mation of parameter P from the data.

The Fisher information matrix (FIM) is used to confirm the structural identifiability. For a

set of observations at n distinct points, a system of 5-dimensional state vector, and 4-dimen-

sional vector of parameters P = (p1, p2, p3, p4) = (β, βf, μf, I(0)). Thus, the sensitivity matrix S,

consists of n time-dependent 1×4 blocks,AðtiÞ.

S ¼

Aðt1Þ

Aðt2Þ

..

.

AðtnÞ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

Here,

A tið Þ ¼
@Qðti;PÞ
@pk

� �

¼
@Qðti;PÞ
@p1

� � �
@Qðti;PÞ
@p4

� �

; i ¼ 1; � � � ; n:

Here, S is called the sensitivity information matrix (see [36] for more details) and the 4×4

FIM is M ¼ STS.

According to the aforementioned definition, the FIM for our problem consists of four col-

umns corresponding to the parameters to be estimated. S is evaluated at P0 and the small per-

turbation about P0
¼ �0:01 ~P is denoted by D~P. Here ~P denotes the estimated parameter

values, that is, D~P ¼ ~P � P0
¼ ~P � 0:01~P. This local perturbation gives rise to a small pertur-

bation, DX ¼ Xðt; ~PÞ � Xðt;P0
Þ. Next, the chain rule of differentiation is applied to obtain

DX ¼ SD~P, indicating that X(t, P) is structurally identifiable if DX ¼ SD~P has a unique solu-

tion for D~P. This is only possible when the FIM rank is equal to the number of unknown

parameters [36]. Because the rank of the FIM in all three waves is four, which is equal to the
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number of unknown parameters, the structural identifiability of the parameters in all three

waves is ensured.

Practical identifiability, or ability to be estimated, refers to the sufficiency of available obser-

vations, as too few observations may be insufficient for fitting. To evaluate practical identifia-

bility, the profile likelihood of parameters β, βf, and μf is computed along with the initial value

I(0) for three different waves. Profile likelihood revealed the dependency of the NLF on indi-

vidual parameters, which in turn helped determine the finite confidence intervals for each

parameter; otherwise, practical non-identifiability is proved. The related profile likelihoods

can be defined as

PLpi
ðpiÞ ¼ min

pj6¼i
NLFðPÞ; where pi 2 ½~pið1 � 0:01Þ; ~pið1þ 0:01Þ�:

To determine the confidence interval, we consider 2ðNLFðPÞ � NLFðP̂ÞÞ � w2
4
. Here, w2

4
is

representing the 95th percentile range of the chi-square distribution with a degree of freedom

equal to the number of unknown parameters. Therefore, the NLF threshold for the 95% confi-

dence interval is NLFðP̂Þ þ 9:4877=2.

Figs 2–4 represent the maximum likelihood fitting of the time series data for Korea, Paki-

stan, and Japan, respectively. While the graphs of relative error for Korea, Pakistan, and Japan

are given in Fig 5. The estimated parameters are listed in Table 2, and the estimation of the

infectious population, I(0), is presented in Tables 3–5 along with the 95% confidence intervals.

In addition, the estimated parameter values are biologically meaningful.

Figs 6–8 depict profile likelihoods, which reveal that NLF is minimized at the estimated

parameter values, thus confirming practical identifiability.

Fig 2. Curve fitting for the three waves of the active cases in South Korea.

https://doi.org/10.1371/journal.pone.0273964.g002
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Fig 4. Curve fitting for the three waves of the active cases in Japan.

https://doi.org/10.1371/journal.pone.0273964.g004

Fig 3. Curve fitting for the three waves of the active cases in Pakistan.

https://doi.org/10.1371/journal.pone.0273964.g003
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Results

A compartmental modeling approach is implemented with two different classes of susceptible

individuals with different transmission rates. Individuals maintaining strict preventive

Fig 5. Relative error analysis graphs. (a) Data fitting relative errors for three waves in Korea. (b) Data fitting relative errors for three

waves in Pakistan. (c) Data fitting relative errors for three waves in Japan.

https://doi.org/10.1371/journal.pone.0273964.g005

Table 3. Initial values for the three different waves in the Republic of Korea. It is assumed that the initial value of the total population is N(0)�52 million for all three

waves [35]. Moreover, Sf(0) = N(0)−S(0)−I(0)−Q(0)−R(0). Confidence intervals for I(0) in the first, second and third waves are (1001, 1047), (543, 590) and (708, 756),

respectively.

Symbol Initial Values References

1st Wave Feb. 16 to Aug. 11 2nd Wave Aug. 11 to Sep. 11 3rd Wave Sep. 11 to Feb. 14

S(0) N(0)−Q(0)−I(0)−R(0) 34,271,000 18,691,000 Estimated

I(0) 1,024 566 732 Estimated

Q(0) 20 626 2,044 [33]

R(0) 9 13,729 25,266 [33]

https://doi.org/10.1371/journal.pone.0273964.t003
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Table 5. Initial values for the three different waves in Japan. It is assumed that the initial value of the total population is N(0)�125.8 million for all three waves [35],

where, Sf(0) = N(0)−S(0)−I(0)−Q(0)−R(0). Confidence intervals for I(0) in the first, second and third waves are (20, 25), (229, 247) and (1528, 1667), respectively.

Symbol Initial Values References

1st Wave March 10 to June 28 2nd Wave June 28 to Oct. 21 3rd Wave Oct. 21 to Feb 14

S(0) N(0)−Q(0)−I(0)−R(0) 55,487,000 33,291,000 Estimated

I(0) 23 238 1,598 Estimated

Q(0) 431 985 5840 [33]

R(0) 102 16452 87107 [33]

https://doi.org/10.1371/journal.pone.0273964.t005

Fig 6. Estimated parameters versus the profile likelihood function for South Korea. (a), (b) and (c) show the graphs of estimated

parameters versus profile likelihood function for the first, second, and third waves, respectively.

https://doi.org/10.1371/journal.pone.0273964.g006

Table 4. Initial values for the three different waves in Pakistan. It is assumed that the initial value of the total population is N(0)�221 million for all three waves [35],

where, Sf(0) = N(0)−S(0)−I(0)−Q(0)−R(0). Confidence intervals for I(0) in the first, second and third waves are (53, 56), (756, 824) and (5097, 5271), respectively.

Symbol Initial Values References

1st Wave March 17 to Oct. 13 2nd Wave Oct. 13 to March 7 3rd Wave March 7 to June 20

S(0) N(0)−Q(0)−I(0)−R(0) 99,275,000 43,773,000 Estimated

I(0) 55 790 5,184 Estimated

Q(0) 234 8,651 18,055 [33]

R(0) 2 304,609 559,248 [33]

https://doi.org/10.1371/journal.pone.0273964.t004
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Fig 8. Estimated parameters versus the profile likelihood function for Japan. (a), (b), and (c) show the graphs of estimated

parameters versus the profile likelihood function for the first, second, and third waves, respectively.

https://doi.org/10.1371/journal.pone.0273964.g008

Fig 7. Estimated parameters versus the profile likelihood function for Pakistan. (a), (b), and (c) show the graphs of estimated

parameters versus the profile likelihood function for the first, second, and third waves, respectively.

https://doi.org/10.1371/journal.pone.0273964.g007
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measures were grouped as behavior-changed (aware) susceptible, Sf. It is assumed that suscep-

tible individuals from S compartment moved to Sf compartment upon realizing the high num-

ber of active cases or when the preventive measures (as a consequence of the high number of

active cases) were strengthened by the public health authority at a rate βf. A behavior-changed

individual moves from Sf to S following individuals in the S and R compartments at a rate μf.
By analyzing the dynamics of the model, it is confirmed that an outbreak occurs when the

basic reproduction number R0 is above unity. It is worth noting that R0 increases with trans-

mission rate β (Eq (8)). In addition, higher values of β are associated with a higher and quicker

appearance of a peak of the active cases (please refer to Fig 9). The effect of the behavioral

change on the intensity and timing of the peaks is discussed in the next subsection. Further,

we have fitted our model to time-series data from South Korea, Pakistan, and Japan to under-

stand the evolution of individual responses to public health guidelines.

Behavioral response to public health guidelines modulates the peak

The intensity of the peak is modulated by the behavioral responses of individuals. Figs 10–12

show the peaks as a function of βf and μf for the three peaks in Korea, Pakistan, and Japan,

respectively. The surface plots show that for a fixed βf, the peak increases when people are neg-

ligent (i.e., μf increases) in following the public health guidelines. The intensity of the peak is

more sensitive to βf than to μf. In addition, the sensitivity is higher for the set of values of βf
and μf, lying between the blue and yellow contour lines in the βf−μf plane. For each value of μf,

Fig 10. Sensitivity to the behavioral response. The surface plots show the sensitivity of the peak for active cases as a function of the

behavior change rate and behavioral change ease rate during the (a) first, (b) second, and (c) third waves of South Korea, respectively.

https://doi.org/10.1371/journal.pone.0273964.g010

Fig 9. Simulation with different values of the transmission rate and time. The surface plots of the transmission rate, time, and

active cases of South Korea, Pakistan, and Japan are presented in (a), (b), and (c), respectively.

https://doi.org/10.1371/journal.pone.0273964.g009
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if the value of βf is above a threshold (shown by the blue contour line), the peak is minimized;

that is, maintaining a high behavior change rate is crucial for flattening the next outbreak.

Change in behavioral response during the pandemic: Case study of Korea,

Pakistan, and Japan

According to [37], people indicated a minimum of one month and a maximum of two years

(mean = 7.20 months) for a return to normal life. The proposed model was used for parameter

estimations to examine the effect of individuals’ behavioral responses to prolonged public

health restrictions established in response to the COVID-19 outbreak. According to our esti-

mation the basic reproduction number R0, is 1.4474 (1.5861, 2.1237), 2.5777 (4.4701, 3.3268),

and 3.9275 (7.1572, 5.2085) for the first, second, and third waves in Korea (Pakistan, Japan),

respectively. Consistently increasing R0, in successive waves is a consequence of the appear-

ance of highly transmissible mutants [38, 39]. Our estimates of β (Table 2) for the consecutive

waves also followed the increasing transmissibility of the new strains. However, the intensity

of the peaks did not follow the transmission rates (Figs 2–4). Each country has implemented

different strategies to control the disease. Public health authorities implemented necessary

actions such as screening, placing people in quarantine after confirmation, closing schools and

offices, and making it compulsory to wear a mask in public places when the cases seemed to be

high. As a result, in Korea, Pakistan, and Japan, βf increased from the first to the second wave,

indicating that more individuals became motivated to strictly follow public health guidelines,

Fig 11. Sensitivity to the behavioral response. The surface plots show the sensitivity of the peak of active cases to behavior change rate

and behavioral change ease rate during the (a) first, (b) second, and (c) third waves of Pakistan, respectively.

https://doi.org/10.1371/journal.pone.0273964.g011

Fig 12. Sensitivity to the behavioral response. The surface plots show the sensitivity of the peak of active cases to behavior change rate

and behavioral change ease rate during the (a) first, (b) second, and (c) third waves of Japan, respectively.

https://doi.org/10.1371/journal.pone.0273964.g012
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outweighing the effect of the increased transmission rate (β) and resulting in a smaller second

wave than the first wave. It is worth noting that in Korea, Pakistan, and Japan, μf increased

from the first to the second wave. As the intensity of the peak is more sensitive to βf than to μf
(as mentioned in the previous subsection), the effect of βf dominates. Additionally, during the

third peak, βf decreased in Korea and Japan but remained constant in Pakistan (comparing

columns 4 and 5 of Table 2). The third peak is the greatest in Korea and Japan because of poor

awareness and strong transmissibility. Although the third peak in Pakistan is larger than the

second in the country because of the increased transmissibility, constant awareness main-

tained it below the first peak.

For the estimated value of transmission rate in each wave, we plot the peaks of the active

cases with respect to βf and μf in Figs 10–12. These figures show that the peak of the active

cases is lower when the values of βf are high, indicating that when fear of the disease is high,

the peak can be delayed and reduced. In the case of a higher behavioral change ease rate, the

peaks are higher, and vice versa. This indicates that a reduction in the fear of the disease may

cause more transmission in society and may cause the next wave. If the transmission rate is

high, then, high fear of the disease would reduce the number of active cases.

Discussion and conclusion

In this study, a mathematical model is used to explore the role of public acceptance of the pub-

lic health guidelines during a pandemic outbreak. It is challenging to maintain a high level of

awareness of preventive measures during a long-term disease with the emergence of subse-

quent outbreaks [37]. Therefore, a model that differentiates between susceptible and aware

susceptible individuals in terms of disease transmission is proposed. Our analysis revealed that

apart from the transmission rate and basic reproduction number, the behavior change rate

modulates the intensity and timing of the peak. It is assumed that when individuals know their

infection status, they are either hospitalized or isolated at home. Therefore, the infected class is

not divided based on behavioral changes, as in the case of susceptible individuals. The fear of

the disease causes susceptible individuals to move to the behavior-changed susceptible class, or

because of monotonous maintenance of preventive measures, the behavior-changed suscepti-

ble individuals move back to the susceptible class. Our mathematical analysis confirmed that

although R0 is the pivotal threshold for the COVID-19 outbreak, behavioral changes associated

with preventive measures may have a considerable effect on the course of the pandemic.

Typically, data from active and recovered cases are used to fit the model, and the infectious

compartment handles the spread of the disease. However, reliable data for the infectious class

are not currently available because of a significant number of asymptomatic infectious individ-

uals. To overcome this limitation, the initial values of the infectious class were estimated using

the maximum-likelihood method. For a comprehensive analysis of the model, an identifiability

analysis is performed to guarantee that the estimated unknown parameters were uniquely

determined and that the numerical values of the estimated parameters were therefore

meaningful.

Different techniques have been used to fit data with mathematical models, several of which

have been described in [40–43]. In this study, the maximum likelihood method is used for fit-

ting. As case studies, the COVID-19 outbreak in Korea, Pakistan, and Japan was investigated

to determine how individual tendencies to follow preventive guidelines may affect the out-

break. The transmission, behavior change, and behavioral change ease rates were estimated for

the three waves of the COVID-19 outbreak in South Korea, Pakistan, and Japan. The behav-

ioral change rate reached an all-time high at the time of the second wave in Korea and Japan

owing to government-imposed restrictions, such as school closures, public mask-wearing, and
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social isolation. However, it is not maintained in the third wave; therefore, the peak in this

wave is the highest among the active cases.

Pakistan lacked diagnostic capabilities during the early stages of COVID-19; thus, suspi-

cious samples were submitted to overseas labs [44]. Even though the transmission rate was the

lowest during the first wave despite the low behavioral change rate and lack of testing facilities,

the peak of this wave is the highest. Pakistan is then given test kits from China as well as prim-

ers from Japan [44]. Pakistan could examine samples from suspected cases nationwide. During

the second wave, the fear level increased substantially. Compared to the second wave, the

transmission rate of the third wave increased by 70%. However, the fear level is approximately

the same as in the second wave. Therefore, Pakistan’s third peak is higher than its second.

It should be noted that a cross-country comparison is not carried out, as the country-based

size of the peak and behavioral response would vary depending on the respective population

size and socioeconomic conditions [45]. Rather, different peak scenarios were compared for

each country. It is observed that in Korea Pakistan and Japan, individual responses to public

health guidelines evolved with disease progression, and people resumed normal life, perceiving

the risk as having declined. Usually, the fear of the disease prompts people to respond by limit-

ing their contact; however, when they face insufficient incentives to alter their behavior, they

return to normal behavior, which may modulate the size of the upcoming outbreak. Our math-

ematical findings highlight the critical necessity of behavioral change educational interven-

tions, and community-level media campaigns. To address these issues, policymakers may

improvise their strategy to make people more inclined to follow safety instructions [46].
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